
Pancake: Frequency
Smoothing for Encrypted

Data Stores

Paul Grubbs*,2, Anurag Khandelwal*,1, Marie-Sarah Lacharité*,2, Lloyd Brown4,
Lucy Li2, Rachit Agrawal3, Thomas Ristenpart2

*Equal contribution authors

1

1 2 3 4

Cloud Data Stores

2

Cloud Data Stores

Cloud Storage (Key-Value Store,
e.g., ElastiCache, Amazon S3)

Transition to cloud hosted data stores for ease-of-
management, scalability & cost-efficiency

2

Cloud Data Stores

Cloud Storage (Key-Value Store,
e.g., ElastiCache, Amazon S3)

KV1

KV2

KV3

KV4

Transition to cloud hosted data stores for ease-of-
management, scalability & cost-efficiency

2

Cloud Data Stores

Client

Client

Client

…

Cloud Storage (Key-Value Store,
e.g., ElastiCache, Amazon S3)

KV1

KV2

KV3

KV4

Transition to cloud hosted data stores for ease-of-
management, scalability & cost-efficiency

2

Cloud Data Stores

Client

Trusted

Client

Client

…

Cloud Storage (Key-Value Store,
e.g., ElastiCache, Amazon S3)

KV1

KV2

KV3

KV4

Transition to cloud hosted data stores for ease-of-
management, scalability & cost-efficiency

2

Cloud Data Stores

Client

Trusted

Client

Client

…

Untrusted

Cloud Storage (Key-Value Store,
e.g., ElastiCache, Amazon S3)

KV1

KV2

KV3

KV4

Transition to cloud hosted data stores for ease-of-
management, scalability & cost-efficiency

2

Cloud Data Stores

Client

Trusted

Client

Client

…

Untrusted

Cloud Storage (Key-Value Store,
e.g., ElastiCache, Amazon S3)

KV1

KV2

KV3

KV4

Transition to cloud hosted data stores for ease-of-
management, scalability & cost-efficiency

Key-value pairs encrypted for security

2

Access Pattern Attacks

Client

Trusted

Client

Client

…

Untrusted

KV1

KV2

KV3

KV4

Cloud Storage (Key-Value Store,
e.g., ElastiCache, Amazon S3)

3

Access Pattern Attacks

Client

Trusted

Client

Client

…

Untrusted

KV1

KV2

KV3

KV4

Cloud Storage (Key-Value Store,
e.g., ElastiCache, Amazon S3)

3

Key: Patient Condition
Value: Patient Record

Access Pattern Attacks

Client

Trusted

Client

Client

…

Untrusted

KV1

KV2

KV3

KV4

Cloud Storage (Key-Value Store,
e.g., ElastiCache, Amazon S3)

Access Frequencies

3

Key: Patient Condition
Value: Patient Record

Prior Knowledge

Access Pattern Attacks

Client

Trusted

Client

Client

…

Untrusted

#C
as

es

D
ia

be
te

s

Ca
nc

er

As
th

m
a

Ep
ile

ps
y

KV1

KV2

KV3

KV4

Cloud Storage (Key-Value Store,
e.g., ElastiCache, Amazon S3)

Access Frequencies

3

Key: Patient Condition
Value: Patient Record

Prior Knowledge

Access Pattern Attacks

Client

Trusted

Client

Client

…

Untrusted

#C
as

es

D
ia

be
te

s

Ca
nc

er

As
th

m
a

Ep
ile

ps
y

KV1

KV2

KV3

KV4

Cloud Storage (Key-Value Store,
e.g., ElastiCache, Amazon S3)

Access Frequencies

3

Key: Patient Condition
Value: Patient Record

Prior Knowledge

Access Pattern Attacks

Client

Trusted

Client

Client

…

Untrusted

#C
as

es

D
ia

be
te

s

Ca
nc

er

As
th

m
a

Ep
ile

ps
y

KV1

KV2

KV3

KV4

Cancer Patient

Cloud Storage (Key-Value Store,
e.g., ElastiCache, Amazon S3)

Access Frequencies

3

Key: Patient Condition
Value: Patient Record

Prior Knowledge

Access Pattern Attacks

Client

Trusted

Client

Client

…

Untrusted

#C
as

es

D
ia

be
te

s

Ca
nc

er

As
th

m
a

Ep
ile

ps
y

KV1

KV2

KV3

KV4

Cancer Patient

Cloud Storage (Key-Value Store,
e.g., ElastiCache, Amazon S3)

Many practical attacks: [IKK NDSS’12], [CGPR CCS’15],
[KKNO CCS’16], [GLMP S&P’19], [KPT S&P’19]

Access Frequencies

3

Key: Patient Condition
Value: Patient Record

Existing Solutions

Client

Trusted

Key-Value Store (e.g.,
ElastiCache, Amazon S3)

Untrusted

KV1 KV2 KV3 KV4

4

Existing Solutions

Client

Trusted

Key-Value Store (e.g.,
ElastiCache, Amazon S3)

Untrusted

KV1 KV2 KV3 KV4

4

Active AdversaryThreat model

ORAM, PIRApproach

Existing Solutions

Client

Trusted

Key-Value Store (e.g.,
ElastiCache, Amazon S3)

Untrusted

KV1 KV2 KV3 KV4

4

Active AdversaryThreat model

ORAM, PIR

Poor

Strong

Approach

Security

Performance

Existing Solutions

Client

Trusted

Key-Value Store (e.g.,
ElastiCache, Amazon S3)

Untrusted

KV1 KV2 KV3 KV4

4

Active AdversaryThreat model

ORAM, PIR

Poor

Strong

Approach

Security

Performance O(log n) bandwidth lower bound [BN ITCS’16, LN CRYPTO’19, …]
8x storage & 1600x bandwidth for real workloads!

Snapshot Adversary

SSE

Existing Solutions

Client

Trusted

Key-Value Store (e.g.,
ElastiCache, Amazon S3)

Untrusted

KV1 KV2 KV3 KV4

4

Active AdversaryThreat model

ORAM, PIR

Poor

Strong

Approach

Security

Performance

Snapshot Adversary

Weak

High

SSE

Existing Solutions

Client

Trusted

Key-Value Store (e.g.,
ElastiCache, Amazon S3)

Untrusted

KV1 KV2 KV3 KV4

4

Active AdversaryThreat model

ORAM, PIR

Poor

Strong

Approach

Security

Performance

Snapshot Adversary

Weak

High

SSE

Existing Solutions

Client

Trusted

Key-Value Store (e.g.,
ElastiCache, Amazon S3)

Untrusted

KV1 KV2 KV3 KV4

4

Active AdversaryThreat model

ORAM, PIR

Poor

Strong

Approach

Security

Performance

Unrealistic threat model [GRS HotOS’17]

Snapshot Adversary

Weak

High

SSE

Existing Solutions

Client

Trusted

Key-Value Store (e.g.,
ElastiCache, Amazon S3)

Untrusted

KV1 KV2 KV3 KV4

4

Persistent Passive AdversaryActive AdversaryThreat model

ORAM, PIR

Poor

Strong

Approach

Security

Performance

Snapshot Adversary

Weak

High

SSE

Existing Solutions

Client

Trusted

Key-Value Store (e.g.,
ElastiCache, Amazon S3)

Untrusted

KV1 KV2 KV3 KV4

4

Persistent Passive AdversaryActive AdversaryThreat model

ORAM, PIR

Poor

Captures many real-world
cloud deployments

Strong

Approach

Security

Performance

Snapshot Adversary

Weak

High

SSE

Existing Solutions

Client

Trusted

Key-Value Store (e.g.,
ElastiCache, Amazon S3)

Untrusted

KV1 KV2 KV3 KV4

4

Persistent Passive AdversaryActive AdversaryThreat model

ORAM, PIR

Poor

Captures many real-world
cloud deployments

Strong

Can we achieve low
performance overheads?

?Approach

Security

Performance

KV1 KV2 KV3 KV4

Can we do better?

Client

Trusted

Key-Value Store (e.g.,
ElastiCache, Amazon S3)

Untrusted

KV1 KV2 KV3 KV4

5

KV1 KV2 KV3 KV4

Can we do better?

Client

Trusted

Key-Value Store (e.g.,
ElastiCache, Amazon S3)

Untrusted

KV1 KV2 KV3 KV4

5

KV1 KV2 KV3 KV4

Can we do better?

Key-Value Store (e.g.,
ElastiCache, Amazon S3)

Untrusted

KV1 KV2 KV3 KV4

Client

Trusted

Proxy

5

KV1 KV2 KV3 KV4

Can we do better?

Key-Value Store (e.g.,
ElastiCache, Amazon S3)

Untrusted

KV1 KV2 KV3 KV4

Client

Trusted

Proxy

KV store clients already maintain statistics
about access distributions (e.g., for caching)…

5

KV1 KV2 KV3 KV4

Can we do better?

Key Contributions

Key-Value Store (e.g.,
ElastiCache, Amazon S3)

Untrusted

KV1 KV2 KV3 KV4

Client

Trusted

Proxy

5

KV1 KV2 KV3 KV4

Can we do better?

• Pancake: use frequency smoothing over known access distribution to provide security
against access pattern attacks with constant server storage & bandwidth overheads

Key Contributions

Key-Value Store (e.g.,
ElastiCache, Amazon S3)

Untrusted

KV1 KV2 KV3 KV4

Client

Trusted

Proxy

5

KV1 KV2 KV3 KV4

Can we do better?

• Pancake: use frequency smoothing over known access distribution to provide security
against access pattern attacks with constant server storage & bandwidth overheads

Key Contributions

Key-Value Store (e.g.,
ElastiCache, Amazon S3)

Untrusted

Client

Trusted

Proxy

KV1 KV2 KV3 KV4KV1

5

KV1 KV2 KV3 KV4

Can we do better?

• Pancake: use frequency smoothing over known access distribution to provide security
against access pattern attacks with constant server storage & bandwidth overheads

• Formal security analysis showing passive persistent security

• Comprehensive evaluation shows throughput > 2 orders of magnitude higher than
state-of-the art (PathORAM)!

Key Contributions

Key-Value Store (e.g.,
ElastiCache, Amazon S3)

Untrusted

Client

Trusted

Proxy

KV1 KV2 KV3 KV4KV1

5

Model: Queries drawn from distribution over keys, known to both system & adversaryπ

6

Frequency Smoothing

Model: Queries drawn from distribution over keys, known to both system & adversaryπ

6

Approach: Transform to a “smooth” distribution over (potentially larger set of) encrypted itemsπ

Frequency Smoothing

KV1 KV2 KV3 KV4

Ac
ce

ss

D
is

tr
ib

ut
io

n

Model: Queries drawn from distribution over keys, known to both system & adversaryπ

6

Approach: Transform to a “smooth” distribution over (potentially larger set of) encrypted itemsπ

Frequency Smoothing

KV1 KV2 KV3 KV4

Ac
ce

ss

D
is

tr
ib

ut
io

n

Idea#1: Replication Replicate popular items → uniform distribution across replicas

Model: Queries drawn from distribution over keys, known to both system & adversaryπ

6

Approach: Transform to a “smooth” distribution over (potentially larger set of) encrypted itemsπ

Frequency Smoothing

KV1 KV2 KV3 KV4

Ac
ce

ss

D
is

tr
ib

ut
io

n

KV1KV1KV1 KV1 KV3 KV3 KV3 KV3KV2 KV2 KV2 KV2

Idea#1: Replication Replicate popular items → uniform distribution across replicas

7

Model: Queries drawn from distribution over keys, known to both system & adversaryπ

Approach: Transform to a “smooth” distribution over (potentially larger set of) encrypted itemsπ

Frequency Smoothing

KV1 KV2 KV3 KV4

Ac
ce

ss

D
is

tr
ib

ut
io

n

KV1KV1KV1 KV1 KV3 KV3 KV3 KV3KV2 KV2 KV2 KV2

Idea#1: Replication Replicate popular items → uniform distribution across replicas

Problem: May need a lot of server-side storage

7

Model: Queries drawn from distribution over keys, known to both system & adversaryπ

Approach: Transform to a “smooth” distribution over (potentially larger set of) encrypted itemsπ

Frequency Smoothing

KV1 KV2 KV3 KV4

Ac
ce

ss

D
is

tr
ib

ut
io

n

KV1 KV2 KV3 KV4

Ac
ce

ss

D
is

tr
ib

ut
io

n

KV1KV1KV1 KV1 KV3 KV3 KV3 KV3KV2 KV2 KV2 KV2

Idea#1: Replication Replicate popular items → uniform distribution across replicas

Problem: May need a lot of server-side storage

Idea#2: Fake Accesses Fake accesses to unpopular items → uniform distribution across items 7

Model: Queries drawn from distribution over keys, known to both system & adversaryπ

Approach: Transform to a “smooth” distribution over (potentially larger set of) encrypted itemsπ

Frequency Smoothing

KV1 KV2 KV3 KV4

Ac
ce

ss

D
is

tr
ib

ut
io

n

KV1 KV2 KV3 KV4

Ac
ce

ss

D
is

tr
ib

ut
io

n

KV1KV1KV1 KV1 KV3 KV3 KV3 KV3KV2 KV2 KV2 KV2

Idea#1: Replication Replicate popular items → uniform distribution across replicas

Problem: May need a lot of server-side storage

Idea#2: Fake Accesses Fake accesses to unpopular items → uniform distribution across items 7

Model: Queries drawn from distribution over keys, known to both system & adversaryπ

Approach: Transform to a “smooth” distribution over (potentially larger set of) encrypted itemsπ

Frequency Smoothing

KV1 KV2 KV3 KV4

Ac
ce

ss

D
is

tr
ib

ut
io

n

KV1 KV2 KV3 KV4

Ac
ce

ss

D
is

tr
ib

ut
io

n

KV1KV1KV1 KV1 KV3 KV3 KV3 KV3KV2 KV2 KV2 KV2

Idea#1: Replication Replicate popular items → uniform distribution across replicas

Problem: May need a lot of server-side storage

Idea#2: Fake Accesses Fake accesses to unpopular items → uniform distribution across items

Problem: May add a lot of bandwidth overheads

7

Model: Queries drawn from distribution over keys, known to both system & adversaryπ

Approach: Transform to a “smooth” distribution over (potentially larger set of) encrypted itemsπ

Frequency Smoothing

Pancake

Combine replication and fake accesses!

8

Model: Queries drawn from distribution over keys, known to both system & adversaryπ

Pancake

KV1 KV2 KV3 KV4

KV1 KV2 KV3 KV4

Combine replication and fake accesses!

8

Model: Queries drawn from distribution over keys, known to both system & adversaryπ

Pancake

KV1 KV2 KV3 KV4

KV1 KV2 KV3 KV4

Combine replication and fake accesses!

KV1 KV1 KV2 KV2 KV3 KV3 KV4

KV1 KV1 KV1 KV2 KV3 KV4

Step 1: Replication - Create “just enough” replicas to partially smooth out distribution with bounded storageπ

8

Model: Queries drawn from distribution over keys, known to both system & adversaryπ

Pancake

KV1 KV2 KV3 KV4

KV1 KV2 KV3 KV4

Combine replication and fake accesses!

KV1 KV1 KV2 KV2 KV3 KV3 KV4

KV1 KV1 KV1 KV2 KV3 KV4

Step 1: Replication - Create “just enough” replicas to partially smooth out distribution with bounded storageπ

At most 2x total KV pairs

8

Model: Queries drawn from distribution over keys, known to both system & adversaryπ

Pancake

KV1 KV2 KV3 KV4

KV1 KV2 KV3 KV4

Combine replication and fake accesses!

KV1 KV1 KV2 KV2 KV3 KV3 KV4

KV1 KV1 KV1 KV2 KV3 KV4

Step 1: Replication - Create “just enough” replicas to partially smooth out distribution with bounded storageπ

Step 2: Add fake access distribution to smooth out the resulting distribution completelyπf

At most 2x total KV pairs

8

Model: Queries drawn from distribution over keys, known to both system & adversaryπ

Pancake

KV1 KV2 KV3 KV4

KV1 KV2 KV3 KV4

Combine replication and fake accesses!

KV1 KV1 KV2 KV2 KV3 KV3 KV4

KV1 KV1 KV1 KV2 KV3 KV4

Step 1: Replication - Create “just enough” replicas to partially smooth out distribution with bounded storageπ

Step 2: Add fake access distribution to smooth out the resulting distribution completelyπf

At most 2x total KV pairs

At most one fake access (from) per real access (from)πf π
8

Model: Queries drawn from distribution over keys, known to both system & adversaryπ

Pancake
Combine replication and fake accesses!

9

Pancake
Combine replication and fake accesses!

Pancake Logic

9

Key-Value Store (e.g.,
ElastiCache, Amazon S3)

Untrusted

Client

Trusted

Proxy

Challenge: How to issue fake+real accesses without revealing which is which?

Pancake
Combine replication and fake accesses!

Pancake Logic

9

Key-Value Store (e.g.,
ElastiCache, Amazon S3)

Untrusted

Client

Trusted

Proxy

Challenge: How to issue fake+real accesses without revealing which is which?

Approach: Send fi xed-size batches of real+fake accesses per query

Pancake
Combine replication and fake accesses!

Pancake Logic

9

Key-Value Store (e.g.,
ElastiCache, Amazon S3)

Untrusted

Client

Trusted

Proxy

Pancake
Combine replication and fake accesses!

Pancake Logic

Every time a new query arrives, enqueue it

q1

9

Key-Value Store (e.g.,
ElastiCache, Amazon S3)

Untrusted

Client

Trusted

Proxy

Pancake
Combine replication and fake accesses!

Pancake Logic

Every time a new query arrives, enqueue it

q1

and flip B coins

9

Key-Value Store (e.g.,
ElastiCache, Amazon S3)

Untrusted

Client

Trusted

Proxy

Pancake
Combine replication and fake accesses!

Pancake Logic

Every time a new query arrives, enqueue it

q1

B=3

TTH

and flip B coins

9

Key-Value Store (e.g.,
ElastiCache, Amazon S3)

Untrusted

Client

Trusted

Proxy

Pancake
Combine replication and fake accesses!

Pancake Logic

Every time a new query arrives, enqueue it
If heads, dequeue a real query (or draw from)π

q1

B=3

TTH

and flip B coins

9

Key-Value Store (e.g.,
ElastiCache, Amazon S3)

Untrusted

Client

Trusted

Proxy

Pancake
Combine replication and fake accesses!

Pancake Logic

Every time a new query arrives, enqueue it
If heads, dequeue a real query (or draw from)π

q1

B=3

TTH

and flip B coins

9

Key-Value Store (e.g.,
ElastiCache, Amazon S3)

Untrusted

Client

Trusted

Proxy

Pancake
Combine replication and fake accesses!

Pancake Logic

Every time a new query arrives, enqueue it
If heads, dequeue a real query (or draw from)π
Else, draw a fake access from πf

q1

B=3

TTH

and flip B coins

9

Key-Value Store (e.g.,
ElastiCache, Amazon S3)

Untrusted

Client

Trusted

Proxy

Pancake
Combine replication and fake accesses!

Pancake Logic

Every time a new query arrives, enqueue it
If heads, dequeue a real query (or draw from)π
Else, draw a fake access from πf

q1

B=3

TTH

q2 q3

and flip B coins

9

Key-Value Store (e.g.,
ElastiCache, Amazon S3)

Untrusted

Client

Trusted

Proxy

Pancake
Combine replication and fake accesses!

Pancake Logic

Every time a new query arrives, enqueue it
If heads, dequeue a real query (or draw from)π
Else, draw a fake access from πf

q1 q2 q3

and flip B coins

9

Key-Value Store (e.g.,
ElastiCache, Amazon S3)

Untrusted

Client

Trusted

Proxy

Pancake
Combine replication and fake accesses!

Pancake Logic

Every time a new query arrives, enqueue it
If heads, dequeue a real query (or draw from)π
Else, draw a fake access from πf

bandwidth overhead, storage overhead3 × ≤ 2 ×

q1 q2 q3

and flip B coins

9

Key-Value Store (e.g.,
ElastiCache, Amazon S3)

Untrusted

Client

Trusted

Proxy

Pancake Security

10

Pancake Security
 Assumptions:

10

Pancake Security
 Assumptions:

• Persistent passive adversary: can observe, but not inject or tamper with accesses

10

Pancake Security
 Assumptions:

• Persistent passive adversary: can observe, but not inject or tamper with accesses

• Pancake has a reasonable estimate of π

10

Pancake Security
 Assumptions:

• Persistent passive adversary: can observe, but not inject or tamper with accesses

• Pancake has a reasonable estimate of π

• Fake & real accesses cannot be distinguished by server (e.g., using timing analysis)

10

Pancake Security
 Assumptions:

• Persistent passive adversary: can observe, but not inject or tamper with accesses

• Pancake has a reasonable estimate of π

• Fake & real accesses cannot be distinguished by server (e.g., using timing analysis)

Formal guarantee: Real-versus-random indistinguishability
under chosen distribution attack (ROR-CDA)

10

Pancake Security
 Assumptions:

• Persistent passive adversary: can observe, but not inject or tamper with accesses

• Pancake has a reasonable estimate of π

• Fake & real accesses cannot be distinguished by server (e.g., using timing analysis)

Formal guarantee: Real-versus-random indistinguishability
under chosen distribution attack (ROR-CDA)

Real world
N Pancake replicated
+ encrypted KV pairs

KV1

KV2

KVN

…

10

Pancake Security
 Assumptions:

• Persistent passive adversary: can observe, but not inject or tamper with accesses

• Pancake has a reasonable estimate of π

• Fake & real accesses cannot be distinguished by server (e.g., using timing analysis)

Formal guarantee: Real-versus-random indistinguishability
under chosen distribution attack (ROR-CDA)

Real world

+

N Pancake replicated
+ encrypted KV pairs

KV1

KV2

KVN

…

T encrypted Pancake
real + fake KV accesses

q1 q2 q3 qT…

10

Pancake Security
 Assumptions:

• Persistent passive adversary: can observe, but not inject or tamper with accesses

• Pancake has a reasonable estimate of π

• Fake & real accesses cannot be distinguished by server (e.g., using timing analysis)

Formal guarantee: Real-versus-random indistinguishability
under chosen distribution attack (ROR-CDA)

Ideal worldReal world

+

N Pancake replicated
+ encrypted KV pairs

KV1

KV2

KVN

…

T encrypted Pancake
real + fake KV accesses

q1 q2 q3 qT…

N random
bit strings

s3@#$

0K3x!

#1j%f

…

10

Pancake Security
 Assumptions:

• Persistent passive adversary: can observe, but not inject or tamper with accesses

• Pancake has a reasonable estimate of π

• Fake & real accesses cannot be distinguished by server (e.g., using timing analysis)

Formal guarantee: Real-versus-random indistinguishability
under chosen distribution attack (ROR-CDA)

Ideal worldReal world

+

N Pancake replicated
+ encrypted KV pairs

KV1

KV2

KVN

…

T encrypted Pancake
real + fake KV accesses

q1 q2 q3 qT… +

N random
bit strings

s3@#$

0K3x!

#1j%f

…

T uniform random accesses
over N random bit strings

q1 q2 q3 qT…

10

Pancake Security
 Assumptions:

• Persistent passive adversary: can observe, but not inject or tamper with accesses

• Pancake has a reasonable estimate of π

• Fake & real accesses cannot be distinguished by server (e.g., using timing analysis)

Formal guarantee: Real-versus-random indistinguishability
under chosen distribution attack (ROR-CDA)

Ideal worldReal world

Indistinguishable

+

N Pancake replicated
+ encrypted KV pairs

KV1

KV2

KVN

…

T encrypted Pancake
real + fake KV accesses

q1 q2 q3 qT… +

N random
bit strings

s3@#$

0K3x!

#1j%f

…

T uniform random accesses
over N random bit strings

q1 q2 q3 qT…

10

Pancake: Additional Challenges

11

Pancake: Additional Challenges

Update KV pair with replicas?
Buffer updates to KV replicas

until next access

11

Pancake: Additional Challenges

Update KV pair with replicas?
Buffer updates to KV replicas

until next access

Dynamic access patterns?
Adjust fake distribution &

reassign replicas

11

Pancake: Additional Challenges

Update KV pair with replicas?
Buffer updates to KV replicas

until next access

Dynamic access patterns?
Adjust fake distribution &

reassign replicas

11

Estimate access distribution,
detect distribution changes?

Sliding-window histograms,
two-sample KS test

Pancake: Additional Challenges

Update KV pair with replicas?
Buffer updates to KV replicas

until next access

Dynamic access patterns?
Adjust fake distribution &

reassign replicas

11

Estimate access distribution,
detect distribution changes?

Sliding-window histograms,
two-sample KS test

Details in the paper!

Pancake Performance

12

Pancake Performance
Cloud Storage: Redis on t3.2xlarge Amazon EC2 instances, Client/Proxy: Amazon EC2 r4.8xlarge instances

12

Pancake Performance
Cloud Storage: Redis on t3.2xlarge Amazon EC2 instances, Client/Proxy: Amazon EC2 r4.8xlarge instances

Dataset: 106 x 1KB key-value pairs, Workload: YCSB Workload A (50% reads + 50% writes)

12

Pancake Performance
Cloud Storage: Redis on t3.2xlarge Amazon EC2 instances, Client/Proxy: Amazon EC2 r4.8xlarge instances

Dataset: 106 x 1KB key-value pairs, Workload: YCSB Workload A (50% reads + 50% writes)

Takeaways

12

Approach Insecure Baseline PathORAM Pancake

Server Storage 1 GB 8 GB 2 GB

Proxy Storage 0 GB 8 MB 24 MB

→

Server storage 4x lower than PathORAM, low proxy storage (~1% of server storage)

Pancake Performance
Cloud Storage: Redis on t3.2xlarge Amazon EC2 instances, Client/Proxy: Amazon EC2 r4.8xlarge instances

Dataset: 106 x 1KB key-value pairs, Workload: YCSB Workload A (50% reads + 50% writes)

Takeaways

12

Approach Insecure Baseline PathORAM Pancake

Server Storage 1 GB 8 GB 2 GB

Proxy Storage 0 GB 8 MB 24 MB

Latency 1.15 ms 31.32 ms 2.61 ms

Throughput 50,990 Op/s 32 Op/s 6,718 Op/s

→

Throughput 220x higher and latency 12x lower than PathORAM
Server storage 4x lower than PathORAM, low proxy storage (~1% of server storage)

Pancake Performance
Cloud Storage: Redis on t3.2xlarge Amazon EC2 instances, Client/Proxy: Amazon EC2 r4.8xlarge instances

Dataset: 106 x 1KB key-value pairs, Workload: YCSB Workload A (50% reads + 50% writes)

Takeaways

Many more results in the paper!
12

Approach Insecure Baseline PathORAM Pancake

Server Storage 1 GB 8 GB 2 GB

Proxy Storage 0 GB 8 MB 24 MB

Latency 1.15 ms 31.32 ms 2.61 ms

Throughput 50,990 Op/s 32 Op/s 6,718 Op/s

→

Throughput 220x higher and latency 12x lower than PathORAM
Server storage 4x lower than PathORAM, low proxy storage (~1% of server storage)

Summary

• Pancake: first system that protects data stores against access pattern attacks
at constant factor server storage & bandwidth overheads

• Formal security analysis showing passive persistent security

• Comprehensive evaluation shows throughput > 2 orders of magnitude
higher than state-of-the art (PathORAM)!

13

Summary

• Pancake: first system that protects data stores against access pattern attacks
at constant factor server storage & bandwidth overheads

• Formal security analysis showing passive persistent security

• Comprehensive evaluation shows throughput > 2 orders of magnitude
higher than state-of-the art (PathORAM)!

Thank You!
Questions?

13

