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Can we do better?

• Pancake: use frequency smoothing over known access distribution to provide security 
against access pattern attacks with constant server storage & bandwidth overheads

• Formal security analysis showing passive persistent security 

• Comprehensive evaluation shows throughput > 2 orders of magnitude higher than 
state-of-the art (PathORAM)!
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Pancake Logic

Every time a new query arrives, enqueue it
If heads, dequeue a real query (or draw from )π
Else, draw a fake access from πf

bandwidth overhead,  storage overhead3 × ≤ 2 ×

q1 q2 q3

and flip B coins

9

Key-Value Store (e.g., 
ElastiCache, Amazon S3)

Untrusted

Client

Trusted

Proxy



Pancake Security

10



Pancake Security
    Assumptions:

10



Pancake Security
    Assumptions:

• Persistent passive adversary: can observe, but not inject or tamper with accesses

10



Pancake Security
    Assumptions:

• Persistent passive adversary: can observe, but not inject or tamper with accesses

• Pancake has a reasonable estimate of π

10



Pancake Security
    Assumptions:

• Persistent passive adversary: can observe, but not inject or tamper with accesses

• Pancake has a reasonable estimate of π

• Fake & real accesses cannot be distinguished by server (e.g., using timing analysis)

10



Pancake Security
    Assumptions:

• Persistent passive adversary: can observe, but not inject or tamper with accesses

• Pancake has a reasonable estimate of π

• Fake & real accesses cannot be distinguished by server (e.g., using timing analysis)

Formal guarantee: Real-versus-random indistinguishability  
under chosen distribution attack (ROR-CDA)

10



Pancake Security
    Assumptions:

• Persistent passive adversary: can observe, but not inject or tamper with accesses

• Pancake has a reasonable estimate of π

• Fake & real accesses cannot be distinguished by server (e.g., using timing analysis)

Formal guarantee: Real-versus-random indistinguishability  
under chosen distribution attack (ROR-CDA)

Real world
N Pancake replicated  
+ encrypted KV pairs

KV1

KV2

KVN

…

10



Pancake Security
    Assumptions:

• Persistent passive adversary: can observe, but not inject or tamper with accesses

• Pancake has a reasonable estimate of π

• Fake & real accesses cannot be distinguished by server (e.g., using timing analysis)

Formal guarantee: Real-versus-random indistinguishability  
under chosen distribution attack (ROR-CDA)

Real world

+

N Pancake replicated  
+ encrypted KV pairs

KV1

KV2

KVN

…

T encrypted Pancake  
real + fake KV accesses

q1 q2 q3 qT…

10



Pancake Security
    Assumptions:

• Persistent passive adversary: can observe, but not inject or tamper with accesses

• Pancake has a reasonable estimate of π

• Fake & real accesses cannot be distinguished by server (e.g., using timing analysis)

Formal guarantee: Real-versus-random indistinguishability  
under chosen distribution attack (ROR-CDA)

Ideal worldReal world

+

N Pancake replicated  
+ encrypted KV pairs

KV1

KV2

KVN

…

T encrypted Pancake  
real + fake KV accesses

q1 q2 q3 qT…

N random  
bit strings

s3@#$

0K3x!

#1j%f

…

10



Pancake Security
    Assumptions:

• Persistent passive adversary: can observe, but not inject or tamper with accesses

• Pancake has a reasonable estimate of π

• Fake & real accesses cannot be distinguished by server (e.g., using timing analysis)

Formal guarantee: Real-versus-random indistinguishability  
under chosen distribution attack (ROR-CDA)

Ideal worldReal world

+

N Pancake replicated  
+ encrypted KV pairs

KV1

KV2

KVN

…

T encrypted Pancake  
real + fake KV accesses

q1 q2 q3 qT… +

N random  
bit strings

s3@#$

0K3x!

#1j%f

…

T uniform random accesses 
over N random bit strings

q1 q2 q3 qT…

10



Pancake Security
    Assumptions:

• Persistent passive adversary: can observe, but not inject or tamper with accesses

• Pancake has a reasonable estimate of π

• Fake & real accesses cannot be distinguished by server (e.g., using timing analysis)

Formal guarantee: Real-versus-random indistinguishability  
under chosen distribution attack (ROR-CDA)

Ideal worldReal world

Indistinguishable

+

N Pancake replicated  
+ encrypted KV pairs

KV1

KV2

KVN

…

T encrypted Pancake  
real + fake KV accesses

q1 q2 q3 qT… +

N random  
bit strings

s3@#$

0K3x!

#1j%f

…

T uniform random accesses 
over N random bit strings

q1 q2 q3 qT…

10



Pancake: Additional Challenges

11



Pancake: Additional Challenges

Update KV pair with replicas?
Buffer updates to KV replicas 

until next access

11



Pancake: Additional Challenges

Update KV pair with replicas?
Buffer updates to KV replicas 

until next access

Dynamic access patterns?
Adjust fake distribution &  

reassign replicas

11



Pancake: Additional Challenges

Update KV pair with replicas?
Buffer updates to KV replicas 

until next access

Dynamic access patterns?
Adjust fake distribution &  

reassign replicas

11

Estimate access distribution, 
detect distribution changes?

Sliding-window histograms,  
two-sample KS test



Pancake: Additional Challenges

Update KV pair with replicas?
Buffer updates to KV replicas 

until next access

Dynamic access patterns?
Adjust fake distribution &  

reassign replicas

11

Estimate access distribution, 
detect distribution changes?

Sliding-window histograms,  
two-sample KS test

Details in the paper!
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higher than state-of-the art (PathORAM)!
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Thank You!
Questions?
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