
Datalog Disassembly

Antonio Flores-Montoya
GrammaTech, Inc.

afloresmontoya@grammatech.com

Eric Schulte
GrammaTech, Inc.

eschulte@grammatech.com

Abstract
Disassembly is fundamental to binary analysis and rewrit-

ing. We present a novel disassembly technique that takes a
stripped binary and produces reassembleable assembly code.
The resulting assembly code has accurate symbolic informa-
tion, providing cross-references for analysis and to enable ad-
justment of code and data pointers to accommodate rewriting.
Our technique features multiple static analyses and heuris-
tics in a combined Datalog implementation. We argue that
Datalog’s inference process is particularly well suited for dis-
assembly and the required analyses. Our implementation and
experiments support this claim. We have implemented our ap-
proach into an open-source tool called Ddisasm. In extensive
experiments in which we rewrite thousands of x64 binaries
we find Ddisasm is both faster and more accurate than the
current state-of-the-art binary reassembling tool, Ramblr.

1 Introduction

Software is increasingly ubiquitous and the identification and
mitigation of software vulnerabilities is increasingly essential
to the functioning of modern society. In many cases—e.g.,
COTS or legacy binaries, libraries, and drivers—source code
is not available so identification and mitigation requires binary
analysis and rewriting. Many disassemblers [9, 10, 23, 31, 36,
56,57,59], analysis frameworks [4,7,12,19,25–27,29,39,48],
rewriting frameworks [9, 16, 17, 32, 33, 52, 55, 58, 63], and
reassembling tools [36,56,57] have been developed to support
this need. Many applications depend on these tools including
binary hardening with control flow protection [20, 37, 40, 54,
62,64], memory protections [15,41,49], memory diversity [14,
30], binary refactoring [53], binary instrumentation [44], and
binary optimization [44, 47, 55].

Modifying a binary is not easy. Machine code is not de-
signed to be modified and the compilation and assembly pro-
cess discards essential information. In general reversing as-
sembly is not decidable. The information required to produce
reassembleable disassembly includes:

Instruction boundaries Recovering where instructions start
and end can be challenging especially in architectures
such as x64 that have variable length instructions, dense
instruction sets1, and sometimes interleave code and data.
This problem is also referred as content classification.

Symbolization information In binaries, there is no distinc-
tion between a number that represents a literal and a
reference that points to a location in the code or data. If
we modify a binary—e.g., by moving a block of code—
all references pointing to that block, and to all of the
subsequently shifted blocks, have to be updated. On the
other hand, literals, even if they coincide with the address
of a block, have to remain unchanged. This problem is
also referred to as Literal Reference Disambiguation.

We have developed a disassembler that infers precise infor-
mation for both questions and thus generates reassembleable
assembly for a large variety of programs. These problems are
not solvable in general so our approach leverages a combi-
nation of static program analysis and heuristics derived from
empirical analysis of common compiler and assembler idioms.
The static analysis, heuristics, and their combination are im-
plemented in Datalog. Datalog is a declarative language that
can be used to express dataflow analyses very concisely [50]
and it has recently gained attention with the appearance of
engines such as Souffle [28] that generate highly efficient
parallel C++ code from a Datalog program. We argue that
Datalog is so well suited to the implementation of a disassem-
bler that it represents a qualitative change in what is possible
in terms of accuracy and efficiency.

We can conceptualize disassembly as taking a series of de-
cisions. Instruction boundary identification (IBI) amounts to
deciding, for each address x in an executable section, whether
x represent the beginning of an instruction or not. Symbol-
ization amounts to deciding for each number that appears
inside an instruction operand or data section whether it corre-
sponds to a literal or to a symbolic expression and what kind
of symbolic expression it is.2

1Almost any combination of bytes corresponds to a valid instruction.
2E.g., symbol, symbol+constant, or symbol−symbol.



The high level approach for each of these decisions is the
same. A variety of static analyses are performed that gather
evidence for possible interpretations. Then, Datalog rules as-
sign weights to the evidence and aggregate the results for
each interpretation. Finally, a decision is taken according to
the aggregate weight of each possible interpretation. Our im-
plementation infers instruction boundaries first (described in
Sec. 4). Then it performs several static analyses to support the
symbolization procedure: the computation of def-use chains,
a novel register value analysis, and a data access pattern anal-
ysis described in Sec. 5.1, 5.2, and 5.3 respectively. Finally, it
combines the results of the static analyses with other heuris-
tics to inform symbolization. All these steps are implemented
in a single Datalog program. It is worth noting that—Datalog
being a purely declarative language—the sequence in which
each of the disassembly steps is computed stems solely from
the logical dependencies among the different Datalog rules.
Combining multiple analyses and heuristics is essential to
achieve high accuracy for IBI and symbolization. No individ-
ual analysis or heuristic provides perfect information but by
combining several, Ddisasm maximizes its chances to reach
the right conclusion. The declarative nature of Datalog makes
this combination easy.

We have tested Ddisasm and compared it to Ramblr [56]
(the current best published disassembler that produces re-
assembleable assembly) on 200 benchmark programs includ-
ing 106 Coreutils, 25 real world applications, and 69 bina-
ries from DARPA’s Cyber Grand Challenge (CGC) [1]. We
compile each benchmark using 7 compilers and 5 or 6 opti-
mization flags (depending on the benchmark) yielding a total
of 7658 unique binaries (888 MB of binary data). We com-
pare the precision of the disassemblers by making semantics-
preserving modifications to the assembly code—we “stretch”
the program’s code address space by adding NOPs at regu-
lar intervals—reassembling the modified assembly code, and
then running the test suites distributed with the binaries to
check that they retain functionality. Additionally, we evaluate
the symbolization step by comparing the results of the disas-
sembler to the ground truth extracted from binaries generated
with all relocation information. Finally, we compare the dis-
assemblers in terms of the time taken by the disassembly
process. Ddisasm is faster and more accurate than Ramblr.

Our contributions are:

1. We present a new disassembly framework based on com-
bining static analysis and heuristics expressed in Datalog.
This framework enables much faster development and
empirical evaluation of new heuristics and analyses.

2. We present multiple static analyses implemented in this
framework to support building reassembleable assembly.

3. We present multiple empirically motivated heuristics
that are effective in inferring the necessary information
to produce reassembleable assembly.

4. Our implementation is called Ddisasm and it is open

source and publicly available3. Ddisasm produces as-
sembly text as well as an intermediate representation
(IR) tailored for binary analysis and rewriting4.

5. We demonstrate the effectiveness of our approach
through an extensive experimental evaluation of over
7658 binaries in which we compare Ddisasm to the state-
of-the-art tool in reassembleable disassembly Ramblr.

2 Related Work

2.1 Disassemblers
Bin-CFI [64] is an early work in reassembleable disassem-
bly. This work requires relocation information (avoiding the
need for symbolization). With this information, disassembly
is reduced to the problem of IBI. Bin-CFI combines linear
disasssembly with the backward propagation of invalid op-
codes and invalid jumps. Our IBI also propagates invalid
opcodes and jumps backwards, but it couples it with a more
sophisticated forward traversal.

Many other works focus solely on IBI [10,31,36,59]. None
of these address symbolization. In general they try to obtain
a superset of all possible instructions or basic blocks in the
binary and then determine which ones are real using heuris-
tics. This idea is also present in our approach. Both Miller et
al. [36] and Wartell et al. [59] use probabilistic methods to
determine which addresses contain instructions. In the former,
probabilistic techniques with weighted heuristics are used to
estimate the probability that each offset in the code section is
the start of an instruction. In the latter, a probabilistic finite
state machine is trained on a large corpus of disassembled
programs to learn common opcode operand pairs. These pairs
are used to select among possible assembly codes.

Despite all the work on disassembly, there are disagree-
ments on how often challenging features for IBI—e.g., over-
lapping instructions, data in code sections, and multi-entry
functions—are present in real code [6,35,36]. Our experience
matches [6] for GCC and Clang, in that we did not find data
in executable sections nor overlapping instructions in ELF
binaries. However, this is not true for the Intel compiler (ICC)
which often allocates jump tables in executable sections.

There are only a few systems that address the symboliza-
tion problem directly. Uroboros [57] uses linear disassembly
as introduced by Bin-CFI [64] and adds heuristics for symbol-
ization. The authors distinguish four classes of symbolization
depending on if the source and target of the reference are
present in code or data. The difficulty of each class is as-
sessed and partial solutions are proposed for each class.
Ramblr [56] is the closest related work. It improves upon

Uroboros with increasingly sophisticated static analyses.
Ramblr is part of the Angr framework for binary analysis [48].
Our system also uses static analyses in combination with

3https://github.com/GrammaTech/ddisasm
4https://github.com/GrammaTech/gtirb

https://github.com/GrammaTech/ddisasm
https://github.com/GrammaTech/gtirb


heuristics. Our static analyses (Sec. 5) are specially tailored
to enable symbolization while remaining efficient. Moreover,
our Datalog implementation allow us to easily combine anal-
ysis results and heuristics.

RetroWrite [18] also performs symbolization, but only for
position independent code (PIC) as it relies on relocations. In
Sec. 7.1, we argue why we believe that relocations are not
enough to perform symbolization even for PIC.

2.2 Rewriting Systems

REINS [58] rewrites binaries in such a way as to avoid mak-
ing difficult decisions about symbolization. REINS partitions
the memory of rewritten programs into untrusted low-memory
which includes rewritten code and trusted high-memory (di-
vided at a power of two for efficient guarding). They imple-
ment a lightweight binary lookup table to rewrite each old
jump targets with a tagged pointer to its new location in the
rewritten code. REINS targets Windows binaries and its main
goal is to rewrite untrusted code to execute it safely. REINS
uses IDA Pro [3] to perform IBI and to resolve indirect jumps.

SecondWrite [52] also avoids making symbolization deci-
sions by translating jump targets at their point of usage. They
do a conservative identification of code and data by perform-
ing speculative disassembly and keeping the original code
section intact. Any data in the code section can still be ac-
cessed, but jumps and call targets are translated to a rewritten
code section. SecondWrite disassembles to LLVM IR.

MULTIVERSE [9] goes a step further than SecondWrite
and also avoids making code location determinations by treat-
ing every possible instruction offset as a valid instruction.
Similarly to SecondWrite, it avoids making symbolization
determinations by generating rewritten executables in which
every indirect control flow is mediated by additional machin-
ery to determine where the control flow would have gone
in the original program and redirecting it to the appropriate
portion of the rewritten program.

The approaches of REINS, SecondWrite and MULTI-
VERSE increasingly avoid making decisions about code lo-
cation and symbolization and thus offer more guarantees to
work for arbitrary binaries. However, these approaches also
have disadvantages. They introduce overhead in the rewritten
binaries both in terms of speed and size. Moreover, the addi-
tional translation process for indirect jumps or calls is likely
to hinder later analyses on the disassembled code. On the
other hand, our approach, although not guaranteed to work,
generates assembly code with symbolic references. This en-
ables performing advanced static analyses on the assembly
code that can be used to support more sophisticated rewriting
techniques. A binary can be rewritten multiple times without
introducing a new layer of indirection in every rewrite.

2.3 Static Analysis Using Datalog

Datalog has a long history of being used to specify and im-
plement static analyses. In 1995 Reps [43] presented an ap-
proach to obtain demand driven dataflow analyses from the
exhaustive counterparts specified in Datalog using the magic
sets transformation. Much of the subsequent effort has been
in scaling Datalog implementations. In that vein, Whaley et
al. [60,61] achieved significant pointer analysis scalability im-
provements using an implementation based on binary decision
diagrams. More recently, Datalog-based program analysis has
received new impetus with the development of Souffle [28],
a highly efficient Datalog engine. The most prominent ap-
plication of Datalog to program analysis to date has been
Doop [11,50,51], a context sensitive pointer analysis for Java
bytecode that scales to large applications. Doop is currently
one of the most comprehensive and efficient pointer analysis
for Java.

In the context of binary analysis, we are only aware of the
work of Brumley et al. [13] which uses Datalog to specify an
alias analysis for assembly code. Schwartz et al. [46] present
a binary analysis to recover C++ classes from executables
written in Prolog. Prolog, being more expressive than Data-
log, is typically evaluated starting from a goal—in contrast to
Datalog which can be evaluated bottom-up—and using back-
tracking. Thus, in Prolog programs the order of the inference
rules is important and its evaluation is harder to parallelize.

Very recently, Grech et al. [24] have implemented a de-
compiler, named Gigahorse, for Etherium virtual machine
(EVM) byte code using Datalog. Gigahorse shares some high
level ideas with our approach, i.e. the inference of high level
information from low-level code using Datalog. However,
both the target and the inferred information differ consider-
ably. In EVM byte code, the main challenge is to obtain a
register based IR (EVM byte code is stack based), resolve
jump targets and identify function boundaries. On the other
hand, Ddisasm focuses on obtaining instruction boundaries
and symbolization information for x64 binaries. Additionally,
although Gigahorse also implements heuristics using Datalog
rules, it does not use our approach of assigning weights to
heuristics and aggregating them to make final decisions.

3 Preliminaries

3.1 Introduction to Datalog

A Datalog program is a collection of Datalog rules. A Datalog
rule is a restricted kind of horn clause with the following
format: h :− t1, t2, . . . , tn where h, t1, t2, . . . , tn are predicates.
Rules represent a logical entailment: t1 ∧ t2 ∧ . . .∧ tn → h.
Predicates in Datalog are limited to flat terms of the form
t(s1,s2, . . . ,sn) where s1,s2 . . . ,sn are variables, integers or
strings. Given a Datalog rule h :− t1, t2, . . . , tn, we say h is the
head of the rule and t1, t2, . . . , tn is its body.



instruction(A:A,Size:Z64,Prefix:S,Opcode:S,Op1:O,Op2:O,Op3:O,Op4:O)
invalid(A:A)
op_regdirect(Op:O,Reg:R)
op_immediate(Op:O,Immediate:Z64)
op_indirect(Op:O,Reg1:R,Reg2:R,Reg3:R,Mult:Z64,Disp:Z64,Size:Z64)

data_byte(A:A,Val:Z64)
address_in_data(A:A,Val:Z64)

Figure 1: Initial facts. Facts generated for executable sections on the left and facts generated for all sections on the right.

Datalog rules are often recursive, and they can contain
negated predicates, represented as !t. However, negated predi-
cates need to be stratified—there cannot be circular dependen-
cies that involve negated predicates e.g. p(X):−!q(X) and
q(A):−!p(A). This restriction guarantees that its semantics
are well defined. Additionally, all variables in a Datalog rule
need to be grounded, i.e. they need to appear in at least one
non-negated predicate on the rule’s body. Datalog also admits
disjunctive rules denoted with a semicolon e.g. h :− t1 ; t2 that
are equivalent to several regular rules h :− t1 and h :− t2.

The Datalog dialect that we adopt (Souffle’s dialect) sup-
ports additional constructs such as arithmetic operations,
string operations and aggregates. Aggregates compute op-
erations over a complete set of predicates such as summation,
maximums or minimums, and we use them to integrate the
results of our heuristics.

A Datalog engine takes as input a set of facts, which are
predicates known to be true, and a Datalog program (a set
of rules). The engine generates new predicates by repeatedly
applying the inference rules until a fixpoint is reached. One of
the appeals of Datalog is that it is fully declarative. The result
of a computation does not depend on the order in which rules
are considered or the order in which predicates within a rule’s
body are evaluated. This makes it easy to define multiple
analyses that depend and collaborate with each other.

In our case, the initial set of facts encodes all the informa-
tion present in the binary, the disassembly procedure (with
all its auxiliary analyses) is specified as a set of Datalog rules.
The results of the disassembly are the new set of predicates.
These predicates are then used to build an IR for binaries that
can be reassembled.

3.2 Encoding Binaries in Datalog

The first step in our analysis is to encode all the informa-
tion present in the binary into Datalog facts. We consider
two basic domains: strings, denoted as S, and 64 bit machine
numbers, denoted as Z64. We consider also the following
sub-domains: addresses A⊆ Z64, register names R⊆ S and
operand identifiers O⊆ Z64. We adopt the convention of hav-
ing Datalog variables start with a capital letter and predicates
with lower case. We represent addresses in hexadecimal and
all other numbers in decimal. We only use the prefix 0x for
hexadecimal numbers if there is ambiguity.

Fig. 1 declares the predicates used to represent the initial

416C35: mov RBX, -624
416C3C: nop
416C40: mov RDI, QWORD PTR [RIP+0x25D239]
416C47: mov RSI, QWORD PTR [RBX+0x45D328]
416C4E: mov EDX, OFFSET 0x45CB23
416C53: call 0x413050
416C58: add RBX, 24
416C5C: jne 0x416C40

Figure 2: Assembly (before symbolization) extracted from
wget-1.19.1 compiled with Clang 3.8 and optimization -O2.
This code reads 8 byte data elements at address 416C47 within
the address range [45D0B8,45D328] and spaced every 24
bytes.

set of raw instruction facts. Predicate fields are annotated
with their type. To generate these initial facts we apply a de-
coder (Capstone [42]) to attempt to decode every address x
in the executable sections of a binary5. If the decoder suc-
ceeds, we generate an instruction fact with A= x. If the de-
coder fails, the fact invalid(x) is generated instead. In each
instruction predicate, the field Size represents the size of
the instruction, Prefix is the instruction’s prefix, and Opcode
is the instruction code. Instruction operands are stored as inde-
pendent facts op_regdirect, op_immediate and op_indirect
, whose first field Op contains a unique identifier. This identi-
fier is used to match operands to their instructions. The fields
Op1 to Op4 in predicate instruction contain the operands’
unique identifiers or 0 if the instruction does not have as many
operands. We place source operands first and the destination
operand last. The predicate op_regdirect contains a register
name Reg, op_immediate contains an immediate Immediate
and op_indirect represents an indirect operand of the form
Reg1:[Reg2+Reg3×Mult+Disp]. That is, Reg1 is the segment
register, Reg2 is the base register, Reg3 is the index register,
Mult represents the multiplier, and Disp represents the dis-
placement. Finally, the field Size represents the size of the
data element being accessed in bytes.

Example 1. Consider the code in Fig. 2. The encoding of
the instructions at addresses 416C47 and 416C58 together with
their respective operands can be found below:

5This is different from linear disassembly which would try to decode an
instruction at address x+ s after decoding an instruction of size s at address
x (skipping the addresses in between).



instruction(416C47,7,’’,’mov’,14806,538,0,0)
op_indirect(14806,’NONE’,’RBX’,’NONE’,1,45D328,8)
op_regdirect(538,’RSI’)

instruction(416C58,4,’’,’add’,188,519,0,0)
op_immediate(188,24)
op_regdirect(519,’RBX’)

Note that the operand identifiers have no particular mean-
ing. They are assigned to operands sequentially as these are
encountered during the decoding.

In addition to decoding every possible instruction, we en-
code every section (both data and executable sections) as
follows. For each address A in a section, a fact data_byte(A,
Val) is generated where Val is the value of the byte at address
A. We also generate the facts address_in_data(A,Addr) for
each address A in a section such that the values of the bytes
from A to A+7 (8 bytes)6 correspond to an address Addr that
falls in the address range of a section in the binary. These facts
will be our initial candidates for symbolization. Executable
sections are also encoded this way to support binaries that
interleave data with code.

Finally, additional facts are generated from the section, relo-
cation, and symbol tables of the executable as well as a special
fact entry_point(A:A) with the entry point of the executable.
Note that for libraries, function symbol predicates are gener-
ated for all exported functions and they will be considered as
entry points.

4 Instruction Boundary Identification

The predicate instruction contains all the possible instruc-
tions that might be in the executable. IBI amounts to deciding
which of these are real instructions.

Our IBI is based on three steps:
1. A backward traversal starting from invalid addresses.
2. A forward traversal that combines elements of linear-

sweep and recursive-traversal.
3. A conflict resolution phase to discard spurious blocks.
Both the backward and forward traversals use the

auxiliary predicates may_fallthrough(From:A,To:A) and
must_fallthrough(From:A,To:A) to represent instructions
at address From that may fall through or must fall through
to an address To. Fig. 3 contains the rules that define both
predicates7. An instruction at address From may fall through
to the next one at address From+Size as long as it is not a
return, a halt, or an unconditional jump instruction. Rule 1
depends in turn on other auxiliary predicates that abstract
away specific aspects of concrete assembler instructions e.g.
return_operation is simply defined as return_operation
(’ret’) for x64. The predicate must_fallthrough restricts

6Our analysis considers x64 architecture.
7Some of the rules have been slightly adapted for presentation purposes.

may_fallthrough(From,To):−
instruction(From,Size,_,OpCode,_,_,_,_),
To=From+Size,
!return_operation(OpCode),
!unconditional_jump_operation(OpCode),
!halt_operation(OpCode).

(1)

must_fallthrough(From,To):−
may_fallthrough(From,To),
instruction(From,_,_,OpCode,_,_,_,_),
!call_operation(OpCode),
!interrupt_operation(OpCode),
!jump_operation(OpCode),
!instruction_has_loop_prefix(From).

(2)

Figure 3: Auxiliary Datalog predicates used for traversal.

may_fallthrough further by discarding instructions that
might not continue to the next instruction i.e. calls, jumps,
or interrupt operations (we consider instructions with a loop
prefix as having a jump to themselves).

The traversals also depend on other predicates whose defi-
nitions we omit: direct_jump(From:A,To:A), direct_call
(From:A,To:A), pc_relative_jump(From:A,To:A), and
pc_relative_call(From:A,To:A) represent instructions at
address From that have a direct or RIP-relative jump or call to
an address To.

Example 2. Consider the code in Fig. 2. The mov
instruction at address 416C4E generates the predicates

must_fallthrough(416C4E,416C53) and may_fallthrough
(416C4E,416C53) whereas the call instruction only generates
may_fallthrough(416C53,416C58). This is because the func-
tion at address 413050 (the target of the call) might not return.
The call instruction also generates the predicate direct_call
(416C53,413050).

4.1 Backward Traversal

Our backward traversal simply expands the amount of
invalid predicates through the implication that any instruc-
tion unconditionally leading to an invalid instruction must
itself be invalid.
invalid(From):−

(must_fallthrough(From,To) ;
direct_jump(From,To) ;
direct_call(From,To) ;
pc_relative_jump(From,To) ;
pc_relative_call(From,To)),

(invalid(To) ;
!instruction(To,_,_,_,_,_,_,_)).

(3)

possible_effective_address(A):−
instruction(A,_,_,_,_,_,_,_), !invalid(A).

(4)

Rule 3 specifies that an instruction at address From that
jumps, calls or must fall through to an address To that does



code_in_block_candidate(A,A):−
possible_target(A),
possible_effective_address(A).

(5)

code_in_block_candidate(A,Block):−
code_in_block_candidate(Aprev,Block),
must_fallthrough(Aprev,A),
!block_limit(A).

(6)

code_in_block_candidate(A,A):−
code_in_block_candidate(Aprev,Block),
may_fallthrough(Aprev,A),
(!must_fallthrough(Aprev,A) ;

block_limit(A)),
possible_effective_address(A).

(7)

possible_target(A):−
initial_target(A).

(8)

possible_target(Dest):−
code_in_block_candidate(Src,_),
(may_have_symbolic_immediate(Src,Dest) ;

pc_relative_jump(Src,Dest) ;
pc_relative_call(Src,Dest)).

(9)

possible_target(A):−
after_block_end(_,A).

(10)

Figure 4: Block forward traversal rules.

not contain an potential instruction or to an address To
that contains an invalid instruction is also invalid. The

predicate possible_effective_address(A:A) contains the
addresses of the remaining instructions not discarded by
invalid (Rule 4).

4.2 Forward Traversal

The forward traversal follows an approach that falls between
the two classical approaches linear-sweep and recursive-
traversal. It traverses the code recursively but is much more
aggressive than typical traversals in terms of the targets that
it considers. Instead of starting the traversal only on the tar-
gets of direct jumps or calls, every address that appears in
one of the operands of the already traversed code is consid-
ered a possible target. For example, in Fig. 2, as soon as the
analysis traverses instruction mov EDX, OFFSET 0x45CB23,
it will consider the address 45CB23 as a potential target that it
needs to explore. Additionally, potential addresses appearing
in the data (instances of predicate address_in_data) are also
considered potential targets.

The traversal is defined with two mutually recursive predi-
cates: possible_target(A:A) specifies addresses where we
start traversing the code and code_in_block_candidate(A:A
,Block:A) takes care of the traversing and assigning instruc-
tions to basic blocks. A predicate code_in_block_candidate
(A:A,Block:A) denotes that the instruction address A be-
longs to the candidate code block that starts at address Block.

The definition of these predicates can be found in Fig. 4.

The traversal starts with the initial_target (Rule 8) that
contains the addresses of: entry points, any existing function
symbols, landing pad addresses (defined in the exception in-
formation sections), the start addresses of executable sections,
and all addresses in address_in_data. This last component
implies that all the targets of jump tables or function pointers
present in the data sections will be traversed.

However, not all jump tables are lists of absolute addresses
(captured by address_in_data). Sometimes jump tables are
stored as differences between two symbols i.e. Symbol1−
Symbol2. In these tables, the jump target Symbol1 is computed
by loading Symbol2 first and then adding the content of the
jump table entry. We found this pattern in PIC code and in
position dependent code compiled with ICC (see App. A). An
approximation of these jump tables is detected with ad-hoc
rules and their targets are included in initial_target.

A possible target, marks the beginning of a new basic block
candidate (Rule 5). The candidate block is then extended
as long as the instructions are guaranteed to fall through
and we do not reach a block_limit (Rule 6). The predi-
cate block_limit over-approximates possible_target (it is
computed the same way but without requiring the predicate
code_in_block_candidate in Rule 9). Rule 7 starts a new
block if the instruction is not guaranteed to fall through or
if there is a block limit. That is where the previous block
ends. Any addresses or jump/call targets that appear in a
block candidate are considered new possible targets (Rule 9).
may_have_symbolic_immediate includes direct jumps and
calls but also other immediates. E.g. instruction mov EDX,
OFFSET 45CB23 generates may_have_symbolic_immediate
(416C4E,45CB23). Note that this is much more aggressive
than a typical recursive traversal that would only consider the
targets of jumps or calls. Finally, Rule 10 adds a linear-sweep
component to the traversal. after_block_end(End:A,A:A)
contains addresses A after blocks that end with an instruction
that cannot fall through at End (e.g. an unconditional jump or
a return). This predicate skips any padding (e.g., contiguous
NOPs) that might be found after the end of the previous block.

It is worth noting that in our Datalog specification we do
not have to worry about many issues that would be important
in lower level implementations of equivalent binary traver-
sals. For instance, we do not need to keep track of which
instructions and blocks have already been traversed nor do
we specify the order in which different paths are explored.

4.3 Solving Block Conflicts

Once the second traversal is over, we have a set of candi-
date blocks, each one with a set of instructions (encoded in
the predicate code_in_block_candidate). These blocks rep-
resent our best effort to obtain an over-approximation of the
basic blocks in the original program. In principle, it is pos-
sible to miss code blocks. However, such code block would
have to be reachable only through a computed jump/call and



be preceded by data that derails the linear-sweep component
of the traversal (Rule 10). We have not found any instance of
this situation. We remark that if the address of a block appears
anywhere in the code or in the data, it will be considered. For
instance, ICC puts some jump tables in executable sections.
By detecting these jump tables, we consider their jump tar-
gets (which are typically the blocks after the jump table) as
possible targets in our traversal.

The next step in our IBI is to decide which candidate blocks
are real. For that, we detect the blocks that overlap with each
other or with a potential data segment (e.g. a jump table in
the executable section). Overlapping blocks are extremely
uncommon in compiled code. The situations in which they
appear tend to respond to very specific patterns such as a block
starting with or without a lock prefix [35]. We recognize those
patterns with ad-hoc rules and consider that the remaining
blocks should not overlap. Thus, if two blocks overlap, we
assume one of them is spurious and needs to be discarded.
This assumption could be relaxed if we wanted to disassemble
malware but it is generally useful for compiled binaries.

We decide which blocks to discard using heuristics.
Each heuristic is implemented as a Datalog rule that pro-
duces a predicate of the form block_points(Block:A,Src:A
,Points:Z64,Why:S). Such a predicate assigns Points points
to the block starting at address Block. The field Src is an
optional reference to another block that is the cause of the
points or zero for heuristics that are not based on other blocks.
The field Why is a string that describes the heuristic for debug-
ging purposes and to distinguish the predicate from others
generated from different heuristics.

We compute the total number of points for each block using
Souffle’s aggregates [28]. Then, given two overlapping blocks,
we discard the one with the least points. In case of a tie, we
keep the first block and emit a warning. We also discard blocks
if their total points is below a threshold. This is useful for
blocks whose heuristics indicate overlap with data elements.

Our heuristics are mainly based on how blocks are inter-
connected, how they fit together spatially, and whether they
are referenced by potential pointers or overlap with jump ta-
bles. Some of the heuristics used are described below (+ for
positive points and − for negative points):
+ The block is called, jumped to, or there is a fallthrough

from a non-overlapping block.
+ The block’s initial address appears somewhere in the

code or data sections. If the appearance is at an aligned
address, it receives more points.

+ The block calls/jumps other non-overlapping blocks.
− A potential jump table overlaps with the block.
All memory not covered by a block is considered data.

5 Auxiliary Analyses

The next step in our disassembly procedure is symbolization.
However, we first perform several static analyses to infer how

data is accessed and used, and thus deduce its layout.

5.1 Register Def-Use Analysis
First, we compute register definition-uses chains. The analysis
produces predicates of the form:
def_used(Adef:A,Reg:R,Aused:A,Index:Z64)

The register Reg is defined at address Adef and used at address
Aused in the operand with index Index.

The analysis first infers definitions def(Adef:A,Reg:R)
and uses use(Aused:A,Reg:R,Index:Z64). Then, it propa-
gates definitions through the code and matches them to uses.
The analysis is intra-procedural in that it does not traverse
calls but only direct jumps. This makes the analysis incom-
plete but improves scalability. During the propagation of
definitions, the analysis assumes that certain registers keep
their values through calls following Linux x64 calling con-
vention [34].

Example 3. Consider the code fragment in Fig. 2. The Def-
Use analysis produces the following predicates:
def_used(416C35,’RBX’,416C47,1)
def_used(416C35,’RBX’,416C58,2)
def_used(416C58,’RBX’,416C58,2)
def_used(416C58,’RBX’,416C47,1)

One important detail is that the analysis considers the 32
bits and 64 bits registers as one given that the x64 architec-
ture zeroes the upper part of 64 bits registers whenever the
corresponding 32 bits register is written. That means that for
instruction mov EDX, OFFSET 0x45CB23 at address 416C4E,
the analysis generates a definition def(416C4E,RDX).

Once we have def-use chains, we want to know which reg-
ister definitions are potentially used to compute addresses to
access memory. For that purpose, the disassembler computes
a new predicate:
def_used_for_address(Adef:A,Reg:R)

that denotes that the register Reg defined at address Adef might
be used to compute a memory access. This predicate is com-
puted by traversing def-use chains backwards starting from
instructions that access memory. This traversal is transitive,
if a register R is used in an instruction that defines another
register R′ and that register is used to compute an address,
then R is also used to compute an address. This is captured in
the following Datalog rule:
def_used_for_address(Adef,Reg):−

def_used_for_address(Aused,_),
def_used(Adef,Reg,Aused,_).

(11)

5.2 Register Value Analysis
In contrast to instructions that refer to code, where direct ref-
erences (direct jumps or calls) predominate, memory accesses



are usually computed. Rather than accessing a fixed address,
instructions typically access addresses computed with a com-
bination of register values and constants. This address com-
putation is often done over several instructions. Such is the
case in the example code in Fig. 2.

In order to approximate this behavior, we developed an
analysis that computes the value held in a register at an
address. There are many ways of approximating register
values ranging from simple constant propagation to complex
abstract domains that take memory locations into account
e.g. [8]. Generally, the more complex the analysis domain,
the more expensive it is. Therefore, we have chosen a
minimal representation that captures the kind of register
values that are typically used for accessing memory. Our
value analysis representation is based on the idea that typical
memory accesses follow a particular pattern where the
memory address that is accessed is computed using a base
address, plus an index multiplied by a multiplier. Conse-
quently, the value analysis produces predicates of the form:
reg_val(A:A,Reg:R,A2:A,Reg2:R,Mult:Z64,Disp:Z64)

which represents that the value of a register Reg at address
A is equal to the value of another register Reg2 at address A2
multiplied by Mult plus an displacement Disp (or offset).

The analysis proceeds in two phases. The first phase pro-
duces predicates of the form reg_val_edge which share the
signature with reg_val. We generate one reg_val_edge per
instruction and def-use predicate for the instructions whose be-
havior can be modeled in this domain and are used to compute
an address (def_used_for_address). For example, Rule 12
below generates reg_val_edge predicates for add instructions
that add a constant to a register:
reg_val_edge(A,Reg,Aprev,Reg,1,Imm):−

def_used_for_address(Aprev,Reg),
def_used(Aprev,Reg,A,_),
instruction(A,_,_,’add’,Op1,Op2,0,0),
op_immediate(Op1,Imm),
op_regdirect(Op2,Reg).

(12)

Example 4. Continuing with Example 3, the predicates
reg_val_edge generated for the code in Fig. 2 are:
P1 val_reg_edge(416C35,’RBX’,416C35,’NONE’,0,−624)
P2 val_reg_edge(416C58,’RBX’,416C35,’RBX’,1,24)
P3 val_reg_edge(416C58,’RBX’,416C58,’RBX’,1,24)

Predicate P1 captures that RBX has a constant value after
executing the instruction in address 416C35 (note that the
multiplier is 0 and the register has a special value ’NONE’).
Predicate P2, generated from Rule 12, specifies that the value
of RBX defined at address 416C58 corresponds to the value of
RBX defined at 416C35 plus 24. Finally, P3 denotes that the
value of RBX at 416C58 can be the result of incrementing the
value of RBX defined at the same address by 24.

The set of predicates reg_val_edge can be seen as directed
relational graph. The nodes in the graph are pairs of address

and register (A, Reg) and the edges express relations between
their values i.e. they are labeled with a multiplier and offset.

Once this graph is computed, we perform a propagation
phase akin to a transitive closure. This propagation phase
chains together reg_val_edge predicates. The chaining starts
from the leafs of the graph (nodes with no incoming edges).
Leafs in the reg_val_edge graph can be instructions that load
a constant into a register such as mov RBX, -624 in Fig. 2
or instructions where a register is assigned the result of an
operation not supported by the domain. For example, loading
a value from memory mov RDI, [RIP+0x25D239] in Fig. 2.
In that case, the generated predicate would be the tautological
predicate reg_val(416C40,RBX,416C40,RBX,1,0).

In order to ensure termination and for efficiency reasons
we limit the number of propagation steps by a constant
step_limit with an additional field S:Z64 in the reg_val
predicates. The main rule for combining reg_val_edge predi-
cates is the following:
reg_val(A1,R1,A3,R3,M1∗M2,(D2∗M1)+D1,S+1):−

reg_val(A2,R2,A3,R3,M2,D2,S),
reg_val_edge(A1,R1,A2,R2,M1,D1), A1 != A2,
step_limit(Limit), S+1 < Limit.

(13)

This rule chains edges linearly by combining their multipliers
and displacements. It keeps track of operations that involve
one source register and one destination register. However, we
also want to detect situations where multiple edges converge
into one instruction. Specifically, we want to detect loops and
operations that involve multiple registers.

Detecting Simple Loops. The following rule (Rule 14)
detects situations where a register R is initialized to a constant
D1, then incremented/decremented in a loop by a constant D2.
reg_val(A,Reg,A2,’Unknown’,D2,D1,S+1):−

reg_val(A,R,A2,’NONE’,0,D1,S),
reg_val_edge(A,R,A,R,0,D2),
step_limit(Limit), S+1 < Limit.

(14)

This pattern can be interpreted as D1 being the base for a
memory address and D2 being the multiplier used to access
different elements of a data structure. Our new multiplier D2
does not actually multiply any real register, so we set the

register field to a special value ’Unknown’.

Example 5. Consider the propagation of the predicates in
Example 4. The generated predicates are:

P4 val_reg(416C35,’RBX’,416C35,’NONE’,0,−624)
P5 val_reg(416C58,’RBX’,416C35,’NONE’,0,−600)
P6 val_reg(416C58,’RBX’,416C35,’Unknown’,24,−600)

First, predicate P4 is generated from P1 which is a leaf. Then,
P4 is combined with P2 using Rule 13 into predicate P5.
Finally, Rule 14 is applied to P5 and P3 to generate P6 which
denotes that the register RBX takes values that start at −600
and are incremented in steps of 24 bytes.

Multiple Register Operations. In general, operations over
two source registers cannot be expressed with reg_val predi-



cates. However, if one of the registers has a constant value or
both registers can be expressed in terms of a third common
register (a diamond pattern), we can propagate their value.

Example 6. The following assembly code contains a simple
diamond pattern:

0: mov RBX, [RCX]
1: mov RAX, RBX
2: add RAX, RAX
3: add RAX, RBX

The last instruction adds the registers RAX and RBX. However,
the value of RAX is two times the value of RBX. This is reflected
in the predicates reg_val(2,RAX,0,RBX,2,0) and reg_val
(0,RBX,0,RBX,1,0). Therefore, we can generate a predicate
reg_val(3,RAX,0,RBX,3,0).

Note that the register value analysis intends to capture
some of the relations between register values but it makes no
attempt capture all of them. The goal of this analysis is not
to obtain a sound over-approximation of the register values
but to provide as much information as possible about how
memory is accessed. The analysis is also not strictly an under-
approximation as it is based on def-use chains which are
over-approximating.

5.3 Data Access Pattern Analysis
The data access pattern (DAP) analysis takes the results of the
register value analysis and the results of the def-use analysis
to infer the register values at each of the data accesses and
thus compute which addresses are accessed and which
pattern is used to access them. The DAP analysis generates
predicates of the form:
data_access_pattern(A:A,Size:Z64,Mult:Z64,From:A)

which specifies that address A is accessed from an instruction
at address From and Size bytes are read or written. Moreover,
the access uses a multiplier Mult.

Example 7. The code in Fig. 2 generates several DAPs:
P7 data_access_pattern(673E80,8,0,416C40)
P8 data_access_pattern(45D0B8,8,0,416C47)
P9 data_access_pattern(45D0D0,8,24,416C47)

The instruction at address 416C40 produces P7 which repre-
sents an access to a fixed address that reads 8 bytes. Con-
versely, the instruction at address 416C47 yields two predi-
cates: P8 and P9. This is because register RBX can have multi-
ple values at address 416C47. If there are multiple DAPs to the
same address, we choose the one with the highest multiplier.

These DAPs provide very sparse information, but if an ad-
dress x is accessed with a multiplier m, it is likely that x+m,
x+ 2m, etc., are also accessed the same way. Thus, we ex-
tend DAPs based on their multiplier. The analysis produces
a predicate propagated_data_access with the same format

as data_access_pattern. Our auxiliary analyses provide no
information on what is the upper limit of an index in a data
access. Thus, we simply propagate a DAP until it reaches the
next DAP that coincides on the same address or that has a
different multiplier. The idea behind this criterion is that the
next data structure in the data section is probably accessed
from somewhere in the code. So rather than trying to deter-
mine the size of the data structure being accessed, we assume
that such data structure ends where the next one starts. These
propagated DAPs will inform our symbolization heuristics.

Example 8. In our running example (Fig. 2) the DAP
data_access_pattern(45D0D0,8,24,416C40) is propagated
from address 45D0D0 up to address 45D310 in 24 byte
intervals. The generated predicates are:

propagated_data_access(45D0D0,8,24,416C40)
propagated_data_access(45D0E8,8,24,416C40)
· · · · · ·

propagated_data_access(45D310,8,24,416C40)

The DAP is not propagated to the next address 45D328
because that address contains another DAP generated at a
different part of the code.

5.4 Discussion

There are two important aspects that set our register value
analysis and DAP analysis apart from previous approaches
like Ramblr [56].

First, the register value analysis is relational—it represents
the value of one register at some location in terms of the
value of another register at another location—in contrast to
traditional value set analyses (VSA) [8]. This is also different
from the affine-relations analysis [38] used in VSA analyses
which computes relations between register values at the same
location. A reg_val predicate between two registers also
implies a data dependency i.e. a register is defined in terms
of the other.

As a consequence, register value analysis can provide use-
ful information (for our use-case) in many cases where ob-
taining a concrete value for a register would be challenging.
Consider the code in Example 6. Our analysis concludes that
at address 3 RAX is 3 times the value of RBX at address 0 re-
gardless of what that value might be. In contrast, a traditional
VSA analysis will only provide useful information for the
value of RAX as long as it can precisely approximate the value
of RCX and the values of all the possible memory locations
pointed by RCX. If any of those locations has an imprecise
abstract value e.g. >, so will RAX.

Example 9. Let us consider a continuation of Example 6:
4: mov R8, QWORD PTR [RAX*8+0x1000]
5: mov R9, WORD PTR [RAX*8+0x1008]
6: mov R10, BYTE PTR [RAX*8+0x1010]

There will be DAPs for addresses 0x1000, 0x1008 and 0x1010



with sizes 8, 2, and 1 and a multiplier of 24 each. This infor-
mation, though unsound in the general case (we are assuming
RAX can take the value 0), is useful in practice.

These DAPs are the second distinguishing aspect of our
analyses. Ramblr recognizes primitives and arrays of prim-
itives. However, these DAPs indicate that address 0x1000
likely contains a struct with (at least) three fields of

different sizes. Moreover, thanks to the multiplier and the
propagated_access_pattern predicate we can conclude that
address 0x1000 holds in fact an array of structs where the first
field (at addresses 0x1000, 0x1018, 0x1030. . .) has size 8 and
might contain a pointer whereas the second and third fields (at
addresses 0x1008, 0x1020, 0x1038. . . and 0x1010, 0x1028, 0
x1040. . . respectively) have size 2 and 1 and thus are unlikely
to hold a pointer.

6 Symbolization

The next step to obtain assembleable code is to perform sym-
bolization. It consists of deciding for each constant in the
code or in the data whether it is a literal or a symbol. A first
approximation can be achieved by considering as symbols all
numbers that fall within the range of the address space. How-
ever, as reported by Wang et al. [56], this leads to both false
positives and false negatives. Next, we explain our approach
to reduce the presence of false positives and negatives.

6.1 False Positives: Value Collisions
False positives are due to value collisions, literals that happen
to coincide with range of possible addresses. In order to re-
duce the false positive rate, we require additional evidence in
order to classify a number as a symbol.

6.1.1 Numbers in Data

For numbers in data, similarly to the approach used for blocks,
we start by defining a set of “data object” candidates. Each
candidate has an address, a type, and a size. We define data
object candidates for the following types:
Symbol Whenever the number falls into the right range

(address_in_data).
String A sequence of printable characters ended in 0.
Symbol-Symbol We detect jump tables using ad-hoc rules

based on def-use chains, register values, and the DAPs
computed in Sec. 5 (see App. A).

Other An address is accessed with a different size than the
pointer size (8 bytes in x64 architecture) using the predi-
cate propagated_data_access computed in Sec. 5.3.

We assign points to each of the candidates using heuristics
based on the analyses results and detect if they are overlap-
ping. If they are, we discard the candidate with fewer points.
This process is analogous to how conflicts are resolved among

basic blocks in Sec. 4.3. Note that detecting objects of type
“String” and “Other” helps to discard false positives (i.e. sym-
bol candidates) that overlap with them. As with blocks, we
discard candidates if their total points fall below a threshold.

The main heuristics for data objects are (+ positive points
and − for negative points):
+ Pointer to instruction beginning: A symbol candidate

points to the beginning of an instruction. This heuristic
relies on the results of the already computed IBI.

+ Data access match: The data object candidate is ac-
cessed from the code with the right size. This heuristic
checks the existence of a propagated_data_access that
matches the data object candidate’s address and size.

+ Symbol arrays: There are several (at least 3) contiguous
or evenly spaced symbol candidates. This indicates that
they belong to the same data structure. Also, it is less
likely to have several consecutive value collisions.

+ Pointed by symbol array: Multiple candidates of the
same type pointed by a single symbol array.

+ Aligned symbols: A symbol candidate is located at an
address with 8 bytes alignment.

+ Strings: A string candidate receives some points by de-
fault. If the string is longer that 5 bytes, it receives more
points.

− Access conflict: There is some data access in the middle
of a symbol candidate.

− Pointer to special section: A symbol candidate points
to a location inside a special section such as .eh_frame.

6.1.2 Numbers in Code

We follow the same approach to disambiguate numbers in in-
struction operands. However, only the first and the last heuris-
tics of the ones listed above, “Pointer to instruction beginning”
and “Pointer to special section,” are applicable to numbers in
code. We distinguish two cases: numbers that represent im-
mediate operands and numbers that represent a displacement
in an indirect operand. After taking these two heuristics into
account, we have not found false positives in displacements.
For immediate operands we consider the following additional
heuristics:
+ Used for address: The immediate is stored in a register

used to compute an address (detected using predicate
def_used_for_address from Sec. 5).

− Uncommon pointer operation: The immediate or the
register where it is loaded is used in an operation uncom-
mon for pointers such as MUL or XOR.

− Compared to non-address: The immediate is com-
pared or moved to a register that in turn is compared
to another immediate that cannot be an address.

These heuristics are tailored to the inference of how the imme-
diate is used, and they rely on def-use chains and the results
of the register value analysis.



6.2 False Negatives: Symbol+Constant

False negatives can occur in situations where the original
code contains an expression of the form symbol+constant. In
such cases, the binary under analysis contains the result of
computing that expression.

There is no general procedure to recover the original ex-
pression in the code as that information is simply not present
in the binary. Having a new symbol pointing to the result
of the symbol+constant expression instead of the original
expression is not a problem for rewrites which leave the
data sections unmodified (even if the sections are moved)
or rewrites that only add data to the beginning or the end of
data sections. However, sometimes the resulting address of
a symbol+constant expression falls outside the data section
ranges or falls into the wrong data section. In such cases, a
naive symbolization approach can result in false negatives.

We detect and correct these cases by detecting common
patterns where compilers generate symbol+constant using
the results of our def-use analysis and the register value anal-
ysis. We distinguish two cases: displacements in an indirect
operands and immediate operands.

6.2.1 Displacements in Indirect Operands

For displacements in indirect operands, we know that the
address that results from the indirect operand should be valid.
Consider a generic data access [R1+R2×M+D] where R1 and
R2 are registers, M is the multiplier and D the displacement.
The displacement D might not fall onto a data section, but the
expression R1+R2×M+D should.

Typically, in a data access as the one above, one of the
addends represents a valid base address that points to the
beginning of a data structure and the rest of the addends
represent an offset into the data structure. In our generic
access, D might be the base address, in which case it should be
symbolic, or the base address might be in one of the registers,
in which case D should not be symbolic.

We detect cases in which D should be symbolic even if it
does not fall in the range of a data section. For example if the
data access is of the form [R2×M+D] with M> 1, it is likely that
D represents the base address and should be symbolic. We can
detect less obvious cases with the help of the register value
analysis (see Sec. 5.2). If we have a data access of the form
[R1+D] but the value of R1 can be expressed as the value of
some other register Ro multiplied by a multiplier M> 1 (there
is a predicate of the form reg_val(_,R1,_,Ro,M,0)) , then D
is also likely to be the base address and thus symbolic. On the
other hand, if R1 has a value that is a valid data address (there
is a predicate reg_val(_,R1,_,’NONE’,0,A) where A falls in
a data section), then D is probably not a base address.

Knowing that a displacement should be symbolic is not
enough, we need to infer the right data section to which the
symbolic expression should refer. If the data access generates

a DAP, we use the destination address of the DAP as a ref-
erence for creating the symbolic expression. Otherwise, we
choose the closest boundary of a data section as a reference.

6.2.2 Immediate Operands

Having a symbolic immediate that falls outside the data sec-
tions is uncommon. The main pattern that we have identified
is when the immediate is used as an initial value for a loop
counter or as a loop bound to which the counter is compared.

Example 10. Consider the following code fragment taken
from the program conflict-6.0 compiled with GCC 5.5 and
optimization -O1. It presents an immediate of the form symbol
+constant landing in a different section.
40109D: mov EBX, 402D40
4010A2: mov EBP, 402DE8
4010A7: mov RCX,QWORD PTR [RBX]
... ...

4010C5: add RBX,8
4010C9: cmp RBX,RBP
4010CC: jne 4010A7

The number 402DE8 loaded at 4010A2 represents a loop bound
and it is used in instruction 4010C9 to check if the end of the
data structure has been reached. Address 402d40 is in section
.rodata but address 402DE8 is in section .eh_frame_hdr.

We detect this and similar patterns by combining the in-
formation of the def-use analysis and the value analysis. We
note that in these situations, the address that falls outside
the section or on a different section and the address range
of the correct section are within the distance of one multi-
plier. That is, let x be a candidate address that might represent
the result of a symbol+constant expression, and let [si,s f )
be the address range of the original symbol’s section. Then
x ∈ [si−M,s f +M] where M is the increment of the loop
counter. Therefore, our detection mechanism generates an
extended section range as above for every register that we
identify as loop counter. Then, it checks if there is some im-
mediate compared to the loop counter that falls within this
extended range. If that happens, the immediate is rewritten
using the base of the loop counter as a symbol.

Example 11. Example 10 continued. The register value anal-
ysis detects that RBX is a loop counter with a base address of
402D40 and a step size of 8. Thus, we consider an extension of
section .rodata to the range [402718, 402DF0] (the original
address range is [402720, 402DE8)). Finally, using def-use
chains we detect that the loop counter is compared to the im-
mediate 402DE8 which falls within the extended section range.
Consequently, we generate the following statement:
4010A2: mov EBP,OFFSET .L_402D40+168

where .L_402D40 is a new symbol pointing to address 402D40.



Program Size Program Size Program Size Program Size Program Size
bar-1.11.0 91 bison-2.1 359 bool-0.2 48 conflict-6.0 28 doschk-1.1 18
ed-0.9 63 enscript-1.6.1 253 flex-2.5.4 196 gawk-3.1.5 485 gperf-3.0.3 409
grep-2.5.4 181 gzip-1.2.4 81 lighttpd-1.4.18 255 m4-1.4.4 154 make-3.80 202
marst-2.4 104 patch-2.6.1 155 re2c-0.13.5 2554 rsync-3.0.7 1685 sed-4.2 201
tar-1.29 547 tnef-1.4.7 74 units-1.85 65 wget-1.19.1 620 yasm-1.2.0 899

Table 1: Real world example benchmarks. Each program is annotated with its size in KB when compiled with GCC 7.1.0 and
optimization flag -O0.

Benchmark Binaries Refs Ddisasm Ramblr
FP FN WS Broken FP FN Broken Broken w/o ICC

Real world 1050 5957016 0 20 50 6 50258 62060 408 273
Coreutils 3710 4279339 3 0 0 3 8246 140774 752 323
CGC 2898 7220451 0 17 2 12 10892 43683 391 31

Table 2: Symbolization evaluation of Ddisasm and Ramblr. “Refs” represents the total number of references in these binaries;
“FP” and “FN” list the number of false positives and false negatives respectively for each tool; “WS” lists the number of references
pointing to the wrong section (only shown for Ddisasm); “Broken” lists the number of binaries that are broken (have at least one
“FP,” “FN” or “WS”). “Broken w/o ICC” lists broken binaries without counting the ones compiled with ICC.

7 Experimental Evaluation

We implemented our disassembly technique in a tool called
Ddisasm. Ddisasm takes a binary and produces an IR
called GrammaTech Intermediate Representation for Binaries
(GTIRB) [45]. This representation can be printed to assembly
code that can be directly reassembled. Currently Ddisasm
only supports x64 Linux ELF binaries but we plan to extend
it to support other architectures and binary formats. Ddisasm
is predominantly implemented in Datalog (4336 non-empty
LOC) which is compiled into highly efficient parallel C++
code using Souffle [28].

Benchmarks. We performed several experiments against
a variety of benchmarks, compilers, and optimization flags.
We selected 3 benchmarks. The first one is Coreutils 8.25
which is composed of 106 binaries and has been used in the
experimental evaluations of Ramblr [56] and Uroboros [57].
Programs in Coreutils are known to share a lot of code [5], so
it is important to also consider other benchmarks. The second
benchmark is a subset of the programs from the DARPA
Cyber Grand Challenge (CGC). We adopt a modified version
of these binaries that can be compiled for Linux systems in
x64 [2]. We exclude programs that fail to compile or fail
all their tests. That leaves 69 CGC programs. Finally, the
third benchmark is a collection of 25 real world open source
applications whose binary size ranges from 28 KB to 2.5 MB.
Table 1 contains the names, version, and sizes (in KB) of
the applications in the real world benchmark. Some of the
original binaries in all benchmarks fail some tests. We take
the results of the original binary as a baseline which rewritten
binaries must match exactly—including failures.

Compilation Settings. For each of those programs we
compile the binaries with 7 compilers: GCC 5.5.0, GCC 7.1.0,

GCC 9.2.1, Clang 3.8.0, Clang 6.0, Clang 9.0.1, and ICC
19.0.5. For each compiler we use the following 6 compiler
flags: -O0, -O1, -O2, -O3, -Os, and -Ofast. All programs are
compiled as position dependent code8.That means that for
each original program we test 42 versions except for Coreutils
where -Ofast generates original binaries that fail many of the
tests and thus we skip it. In summary, we test 3710 different
binaries for Coreutils, 2898 binaries for the CGC benchmark,
and 1050 binaries from our real world selection. All bench-
marks together represent a total of 888 MB of binaries. Note
that the real world examples represent a significant portion of
the binary data (324 MB).

7.1 Symbolization Experiments
We disassemble all the benchmarks and collect the num-
ber of false positives (FP) and false negatives (FN) in the
symbolization procedure. We obtain ground truth by generat-
ing binaries with complete relocation information using the
-emit-relocs ld linker option. We also detect an additional
kind of error WS—i.e. when we create a symbolic expression,
but the symbol points to the wrong section (see Sec. 6.2).

For comparison, we run the same experiments using
Ramblr, the tool with the best published symbolization re-
sults. Table 2 contains the results of this experiment. Detailed
tables with results broken down by compiler and optimiza-
tion flag can be found in [22]. The complete set of binaries,
detailed experiment logs, and the scripts to replicate the ex-
periments can be found at [21].

8This is harder to disassemble than position independent code (PIC),
which is though to be easier because it contains relocation information for
absolute addresses [18]. Nonetheless, this does not make symbolization of
PIC trivial as we argue in Sec. 7.1.



Benchmark Binaries Ddisasm Ramblr
Disasm Reassemble Test Disasm Reassemble Test Test w/o ICC

Real world 1050 100.00% 100.00% 99.90% 99.62% 74.29% 39.90% 45.55%
Coreutils 3710 100.00% 100.00% 100.00% 99.27% 88.35% 71.26% 80.22%
CGC 2865 100.00% 99.93% 99.44% 100.00% 73.75% 51.24% 58.18%

Table 3: The functionality of binaries reassembled using Ddisasm and Ramblr as measured using the test suites distributed
with the binaries. The “Disasm,” “Reassemble,” and “Test” (w/o ICC) columns list the percentage of binaries successfully
disassembled, reassembled into a new binary, and that pass their original test suite (without counting binaries compiled with
ICC) respectively.

Ddisasm presents a very low error rate. This shows the
effectiveness of the approach. Ddisasm builds on many of
the ideas implemented in Ramblr, but makes significant im-
provements (see Sec.5.4). App. B contains a discussion of
Ddisasm’s failures. Ramblr performs well on Coreutils and
CGC compiled with GCC and Clang (in line with their experi-
ments). 315 out of the 323 broken Coreutils binaries (without
counting ICC) are broken due to a unique symbolization error
in the binaries compiled with Clang 9.0.1. This illustrates the
degree to which programs in Coreutils share code. Nonethe-
less, Ramblr’s precision drops greatly against the real world
examples (39% of broken examples) and binaries compiled
with ICC (where all optimized binaries are broken). Addi-
tionally, we do not detect WS in Ramblr, as this information
is not readily available. Thus, the numbers in the ’Broken’
column are biased against Ddisasm as there might be binaries
broken by Ramblr that are not counted.

It is worth pointing out that the ground truth extracted from
relocations is incomplete for binaries compiled with ICC. This
compiler generates jump tables with Symbol−Symbol entries.
These jump tables do not need nor have relocations associated
to them—even in PIC. We believe that this directly contradicts
the claim made by Dinesh et al. [18] that x64 PIC code can
be symbolized without heuristics—only using relocations.

The heuristics’ weights for both IBI and symbolization
have been manually set and work well generically across
compilers and flags. Importantly, we fixed the weights be-
fore running the experiments on GCC 9.2.1 and Clang 9.0.1.
Nonetheless, the results for these two compilers are on par
with the results for the other compilers. Only 5 of a total of 21
broken binaries were compiled with GCC 9.2.1 or Clang 9.0.1.
Thus, the heuristics’s weights are robust across compiler ver-
sions. When ground truth can be obtained, these weights could
be automatically learned and adjusted based on a program
corpus, we leave that for future work.

Finally, we are interested in knowing the importance of
different heuristics. Thus, we repeat the symbolization exper-
iments for the real world benchmarks deactivating different
kinds of heuristics. We deactivate heuristics that 1) detect
strings, 2) heuristics that use DAPs (“Data access match” and
“Access conflict”), and 3) both kinds at the same time. The
results are in Table 4. Without both kinds of heuristics (row
3), we have a high number of FPs. Detecting strings (row 2)

Heuristics FP FN WS Broken
No Strings 59 20 50 53
No DAP 45 43 50 49
No DAP & Strings 113 0 50 98

Table 4: Symbolization evaluation of Ddisasm on the real
world benchmarks deactivating groups of heuristics.

brings this number down, but we miss symbols that look like
strings (FNs). DAPs give us additional evidence for those
symbols through the “Data access match” heuristic. With
DAPs but no strings (row 1), we also discard some FPs (by
detecting objects of type “Other”) but not all. The heuristics
complement each other. Note that the 20 FNs produced by
DAPs correspond to an array of structs that is correctly de-
tected, but its pointer fields are accessed with size 4 instead
of 8 which derails the analysis.

7.2 Functionality Experiments
Using the same benchmarks we check how many of the disas-
sembled binaries can be reassembled and how many of those
pass their original test suites without errors.

For Ddisasm, we perform the experiment on the stripped
versions of the binaries. Additionally, in order to increase our
confidence that both IBI and symbolization are correct, we
modify the locations (and relative locations) of all the instruc-
tions by adding NOPs at regular intervals before reassembling.
We add 8 NOPs every 8 instructions to maintain the original
instructions’ alignment throughout the executable section9.
We also add 64 zero bytes at the beginning of each data sec-
tion. This demonstrates that our symbolization is robust to
significant modification of code (by adding or removing code)
and data (by adding content at the beginning of sections).

For Ramblr, we use unstripped binaries because Ramblr
fails to produce reassembleable assembly for the stripped
versions of most binaries. Many of the failures are because
Ramblr generates assembly with undefined labels or with
labels defined twice. This kind of inconsistency is easy to
avoid in a Datalog implementation. Additionally, we do not

9We skip regions in between jump table entries of the form .byte
Symbol−Symbol. Adding NOPs to these regions can easily make the
result of Symbol−Symbol fall out of the range expressible with one byte.



0 50 100 150 200 250 300 350
0

50

100

150

Ramblr

Dd
is
as
m

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

Ramblr

Dd
is
as
m

Figure 5: Disassembly time. The two graphs show the disas-
sembly times (in seconds) for all the binaries at two different
scales (the bottom graph displays smaller binaries in detail).
Ddisasm’s disassembly time is plotted (vertically) against
Ramblr’s (horizontally). In all graphs, points below the di-
agonal represent binaries for which Ddisasm is faster than
Ramblr.

perform any modification of assembly generated by Ramblr—
this ensures that we do not report an overly pessimistic result
for Ramblr by accidentally breaking the code generated by
Ramblr. So we compare Ddisasm at a significant handicap
against Ramblr.

The results of this experiment are in Table 3. For CGC, we
discarded 33 binaries that fail their tests non-deterministically
leaving 2865 binaries. Ddisasm produces reassembleable as-
sembly code for all the binaries but two. One binary in the
real world benchmarks and 14 binaries in the CGC bench-
mark fail their tests. This is close to the results of our previous
experiment (Table 2). The FNs in real world examples and 5
of the 17 FNs in CGC cause 1 and 5 test failures respectively.
The remaining FPs, FNs, and WS symbols do not cause test
failures. Additionally, there are 9 other test failures in CGC
not caused by symbolization errors.

7.3 Performance Evaluation

Finally, we measure and compare the performance of both
Ramblr and Ddisasm. We measure the time that it takes to
disassemble each of the binaries in the three benchmarks. The
results can be found in Fig. 5. Ddisasm is faster than Ramblr
in all but 294 of 7658 total binaries. In particular, Ddisasm is
on average 4.9 times faster than Ramblr.

8 Conclusion

We have developed a new reassembleable disassembler called
Ddisasm. Ddisasm in implemented in Datalog and combines
novel static analyses and heuristics to determine how data
is accessed and used. We show that Datalog is well suited
to this task as it enables the compositional and declarative
specification of static analyses and heuristics, and it compiles
them into a unified, parallel, and efficient executable.
Ddisasm is, to the best of our knowledge, the first disas-

sembler for machine code implemented in Datalog. Our ex-
periments show that Ddisasm is both more precise and faster
than the state-of-the-art tools for reassembleable disassem-
bly, and better handles large complex real-world programs.
Ddisasm makes binary rewriting practical by enabling binary
rewriting of real world programs compiled with a range of
compilers and optimization levels with unprecedented speed
and accuracy.

9 Acknowledgments

This material is based upon work supported by the Office
of Naval Research under contract No. N68335-17-C-0700.
Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the Office of Naval Research.

References

[1] Cyber grand challenge (CGC). https://www.darpa.
mil/program/cyber-grand-challenge.

[2] GrammaTech’s CGC benchmarks. https://github.
com/grammatech/cgc-cbs.

[3] Hex-rays: The IDA Pro disassembler and debugger.
https://www.hex-rays.com/products/ida.

[4] National Security Agency. Ghidra, 2019. https://
www.nsa.gov/resources/everyone/ghidra/.

[5] D. Andriesse, A. Slowinska, and H. Bos. Compiler-
agnostic function detection in binaries. In 2017 IEEE
European Symposium on Security and Privacy (EuroS
P), pages 177–189, April 2017.

[6] Dennis Andriesse, Xi Chen, Victor van der Veen, Asia
Slowinska, and Herbert Bos. An in-depth analysis of
disassembly on full-scale x86/x64 binaries. In The 25th
USENIX Security Symposium, pages 583–600, Austin,
TX, 2016. USENIX Association.

[7] Cryptic Apps. Hopper. https://www.hopperapp.
com/.

https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://github.com/grammatech/cgc-cbs
https://github.com/grammatech/cgc-cbs
https://www.hex-rays.com/products/ida
https://www.nsa.gov/resources/everyone/ghidra/
https://www.nsa.gov/resources/everyone/ghidra/
https://www.hopperapp.com/
https://www.hopperapp.com/


[8] Gogul Balakrishnan and Thomas Reps. Analyzing mem-
ory accesses in x86 executables. In Evelyn Duesterwald,
editor, Compiler Construction, pages 5–23, Berlin, Hei-
delberg, 2004. Springer Berlin Heidelberg.

[9] Erick Bauman, Zhiqiang Lin, and Kevin W. Hamlen.
Superset disassembly: Statically rewriting x86 binaries
without heuristics. In NDSS, 01 2018.

[10] M. Ammar Ben Khadra, Dominik Stoffel, and Wolfgang
Kunz. Speculative disassembly of binary code. In The
International Conference on Compilers, Architectures
and Synthesis for Embedded Systems, CASES ’16, pages
16:1–16:10, New York, NY, USA, 2016. ACM.

[11] Martin Bravenboer and Yannis Smaragdakis. Strictly
declarative specification of sophisticated points-to anal-
yses. In 24th ACM SIGPLAN Conference on Object
Oriented Programming Systems Languages and Appli-
cations, OOPSLA’09, pages 243–262, NY, USA, 2009.
ACM.

[12] David Brumley, Ivan Jager, Thanassis Avgerinos, and
Edward J. Schwartz. BAP: A binary analysis platform.
In Ganesh Gopalakrishnan and Shaz Qadeer, editors,
Computer Aided Verification, pages 463–469, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

[13] David Brumley and James Newsome. Alias analysis
for assembly. Technical report, Technical Report CMU-
CS-06-180, Carnegie Mellon University School of Com-
puter Science, 2006.

[14] Xi Chen, Herbert Bos, and Cristiano Giuffrida. Codear-
mor: Virtualizing the code space to counter disclosure
attacks. In The 2017 IEEE European Symposium on
Security and Privacy, pages 514–529. IEEE, 2017.

[15] Xi Chen, Asia Slowinska, Dennis Andriesse, Herbert
Bos, and Cristiano Giuffrida. Stackarmor: Comprehen-
sive protection from stack-based memory error vulnera-
bilities for binaries. In The 2015 Annual Network and
Distributed System Security Symposium, 2015.

[16] Zhui Deng, Xiangyu Zhang, and Dongyan Xu. Bistro:
Binary component extraction and embedding for soft-
ware security applications. In European Symposium
on Research in Computer Security, pages 200–218.
Springer, 2013.

[17] Artem Dinaburg and Andrew Ruef. Mcsema: Static
translation of x86 instructions to LLVM. In ReCon
2014 Conference, Montreal, Canada, 2014.

[18] Sushant Dinesh, Nathan Burow, Dongyan Xu, and Math-
ias Payer. Retrowrite: Statically instrumenting cots bina-
ries for fuzzing and sanitization. In The 41st Symposium
on Security and Privacy. IEEE, 2020. To Appear.

[19] Chris Eagle. The IDA Pro Book: The Unofficial Guide
to the World’s Most Popular Disassembler. No Starch
Press, 2011.

[20] Mohamed Elsabagh, Dan Fleck, and Angelos Stavrou.
Strict virtual call integrity checking for C++ binaries.
In 2017 ACM on Asia Conference on Computer and
Communications Security, pages 140–154. ACM, 2017.

[21] Antonio Flores-Montoya and Eric Schulte. Datalog
disassembly: Artifact evaluation, February 2020. https:
//doi.org/10.5281/zenodo.3637587.

[22] Antonio Flores-Montoya and Eric M. Schulte. Datalog
disassembly. CoRR, abs/1906.03969, 2019. http://
arxiv.org/abs/1906.03969.

[23] Free Software Foundation. GNU Binary Utilities. Free
Software Foundation, May 2002.

[24] Neville Grech, Lexi Brent, Bernhard Scholz, and Yannis
Smaragdakis. Gigahorse: Thorough, declarative decom-
pilation of smart contracts. In ICSE, 2019. To appear.

[25] Galois Inc. Open source binary analysis tools. https:
//github.com/GaloisInc/macaw.

[26] Vector 35 Inc. Binary ninja: a new kind of reversing
platform. https://binary.ninja/.

[27] Software Engineering Institute. Automated static analy-
sis tools for binary programs. https://github.com/
cmu-sei/pharos.

[28] Herbert Jordan, Bernhard Scholz, and Pavle Subotić.
Soufflé: On synthesis of program analyzers. In Swarat
Chaudhuri and Azadeh Farzan, editors, Computer Aided
Verification, pages 422–430, Cham, 2016. Springer In-
ternational Publishing.

[29] Minkyu Jung, Soomin Kim, HyungSeok Han, Jaeseung
Choi, and Sang Kil Cha. B2R2: Building an efficient
front-endfor binary analysis. In Binary Analysis Re-
search (BAR), 2019, 2019.

[30] Koen Koning, Herbert Bos, and Cristiano Giuffrida.
Secure and efficient multi-variant execution using
hardware-assisted process virtualization. In 2016 46th
Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks (DSN), pages 431–442.
IEEE, 2016.

[31] Christopher Kruegel, William Robertson, Fredrik Valeur,
and Giovanni Vigna. Static disassembly of obfuscated
binaries. In The 13th Conference on USENIX Secu-
rity Symposium - Volume 13, SSYM’04, pages 18–18,
Berkeley, CA, USA, 2004. USENIX Association.

https://doi.org/10.5281/zenodo.3637587
https://doi.org/10.5281/zenodo.3637587
http://arxiv.org/abs/1906.03969
http://arxiv.org/abs/1906.03969
https://github.com/GaloisInc/macaw
https://github.com/GaloisInc/macaw
https://binary.ninja/
https://github.com/cmu-sei/pharos
https://github.com/cmu-sei/pharos


[32] James R Larus and Eric Schnarr. Eel: Machine-
independent executable editing. In ACM Sigplan No-
tices, volume 30, pages 291–300. ACM, 1995.

[33] Zephyr Software LLC. IRDB cookbook ex-
amples. https://git.zephyr-software.com/
opensrc/irdb-cookbook-examples.

[34] Michael Matz, Jan Hubicka, Andreas Jaeger, Mark
Mitchell, Milind Girkar, Hongjiu Lu, David Kreitzer,
and Vyacheslav Zakharin. System V Application Binary
Interface: AMD64 Architecture Processor Supplement
(With LP64 and ILP32 Programming Models), 2013.

[35] Xiaozhu Meng and Barton P. Miller. Binary code is not
easy. In The 25th International Symposium on Software
Testing and Analysis, ISSTA 2016, pages 24–35, New
York, NY, USA, 2016. ACM.

[36] Kenneth Miller, Yonghwi Kwon, Yi Sun, Zhuo Zhang,
Xiangyu Zhang, and Zhiqiang Lin. Probabilistic dis-
assembly. In International Conference on Software
Engineering (ICSE). ACM, 2019.

[37] Vishwath Mohan, Per Larsen, Stefan Brunthaler,
K Hamlen, and Michael Franz. Opaque control-flow
integrity. In Symposium on Network and Distributed
System Security (NDSS), 2015.

[38] Markus Müller-Olm and Helmut Seidl. Precise inter-
procedural analysis through linear algebra. In The 31st
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’04, pages 330–341,
New York, NY, USA, 2004. ACM.

[39] pancake. radare. https://www.radare.org/r/.

[40] Vasilis Pappas, Michalis Polychronakis, and Angelos D
Keromytis. Smashing the gadgets: Hindering return-
oriented programming using in-place code randomiza-
tion. In 2012 IEEE Symposium on Security and Privacy,
pages 601–615. IEEE, 2012.

[41] Manish Prasad and Tzi-cker Chiueh. A binary rewriting
defense against stack based buffer overflow attacks. In
USENIX Annual Technical Conference, General Track,
pages 211–224, 2003.

[42] Nguyen Anh Quynh. Capstone: Next-gen disassembly
framework. Black Hat USA, 2014.

[43] Thomas W. Reps. Demand interprocedural program
analysis using logic databases. In Raghu Ramakrishnan,
editor, Applications of Logic Databases, pages 163–196,
Boston, MA, 1995. Springer US.

[44] Ted Romer, Geoff Voelker, Dennis Lee, Alec Wolman,
Wayne Wong, Hank Levy, Brian Bershad, and Brad

Chen. Instrumentation and optimization of Win32/Intel
executables using Etch. In USENIX Windows NT Work-
shop, volume 1997, pages 1–8, 1997.

[45] Eric M. Schulte, Jonathan Dorn, Antonio Flores-
Montoya, Aaron Ballman, and Tom Johnson. GTIRB:
intermediate representation for binaries. CoRR,
abs/1907.02859, 2019.

[46] Edward J. Schwartz, Cory F. Cohen, Michael Duggan,
Jeffrey Gennari, Jeffrey S. Havrilla, and Charles Hines.
Using logic programming to recover C++ classes and
methods from compiled executables. In ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’18, pages 426–441, NY, USA, 2018. ACM.

[47] Benjamin Schwarz, Saumya Debray, Gregory Andrews,
and Matthew Legendre. Plto: A link-time optimizer for
the Intel IA-32 architecture. In Proc. 2001 Workshop on
Binary Translation (WBT-2001), 2001.

[48] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens,
M. Polino, A. Dutcher, J. Grosen, S. Feng, C. Hauser,
C. Kruegel, and G. Vigna. Sok: (state of) the art of
war: Offensive techniques in binary analysis. In 2016
IEEE Symposium on Security and Privacy (SP), pages
138–157, May 2016.

[49] Asia Slowinska, Traian Stancescu, and Herbert Bos.
Body armor for binaries: Preventing buffer overflows
without recompilation. In USENIX Annual Technical
Conference, pages 125–137, 2012.

[50] Yannis Smaragdakis and Martin Bravenboer. Using
Datalog for fast and easy program analysis. In Oege
de Moor, Georg Gottlob, Tim Furche, and Andrew Sell-
ers, editors, Datalog Reloaded, pages 245–251, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

[51] Yannis Smaragdakis, George Kastrinis, and George Bal-
atsouras. Introspective analysis: Context-sensitivity,
across the board. In 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation,
PLDI ’14, pages 485–495, NY, USA, 2014. ACM.

[52] Matthew Smithson, Khaled ElWazeer, Kapil Anand,
Aparna Kotha, and Rajeev Barua. Static binary rewrit-
ing without supplemental information: Overcoming the
tradeoff between coverage and correctness. In Reverse
Engineering (WCRE), 2013 20th Working Conference
on, pages 52–61. IEEE, 2013.

[53] Eli Tilevich and Yannis Smaragdakis. Binary refac-
toring: Improving code behind the scenes. In The 27th
international conference on Software engineering, pages
264–273. ACM, 2005.

https://git.zephyr-software.com/opensrc/irdb-cookbook-examples
https://git.zephyr-software.com/opensrc/irdb-cookbook-examples
https://www.radare.org/r/


[54] Victor Van Der Veen, Enes Göktas, Moritz Contag, An-
dre Pawoloski, Xi Chen, Sanjay Rawat, Herbert Bos,
Thorsten Holz, Elias Athanasopoulos, and Cristiano
Giuffrida. A tough call: Mitigating advanced code-reuse
attacks at the binary level. In 2016 IEEE Symposium on
Security and Privacy (SP), pages 934–953. IEEE, 2016.

[55] Ludo Van Put, Dominique Chanet, Bruno De Bus, Bjorn
De Sutter, and Koen De Bosschere. Diablo: a reliable,
retargetable and extensible link-time rewriting frame-
work. In The Fifth IEEE International Symposium on
Signal Processing and Information Technology, 2005.,
pages 7–12. IEEE, 2005.

[56] Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Ar-
avind Machiry, John Grosen, Paul Grosen, Christopher
Kruegel, and Giovanni Vigna. Ramblr: Making reassem-
bly great again. In NDSS, 2017.

[57] Shuai Wang, Pei Wang, and Dinghao Wu. Reassem-
bleable disassembling. In 24th USENIX Security Sym-
posium (USENIX Security 15), pages 627–642, Wash-
ington, D.C., 2015. USENIX Association.

[58] Richard Wartell, Vishwath Mohan, Kevin W Hamlen,
and Zhiqiang Lin. Securing untrusted code via compiler-
agnostic binary rewriting. In The 28th Annual Com-
puter Security Applications Conference, pages 299–308.
ACM, 2012.

[59] Richard Wartell, Yan Zhou, Kevin W Hamlen, and Murat
Kantarcioglu. Shingled graph disassembly: Finding
the undecideable path. In Pacific-Asia Conference on
Knowledge Discovery and Data Mining, pages 273–285.
Springer, 2014.

[60] John Whaley, Dzintars Avots, Michael Carbin, and Mon-
ica S. Lam. Using Datalog with binary decision dia-
grams for program analysis. In Kwangkeun Yi, editor,
Programming Languages and Systems, pages 97–118,
Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[61] John Whaley and Monica S. Lam. Cloning-based
context-sensitive pointer alias analysis using binary deci-
sion diagrams. In The ACM SIGPLAN 2004 Conference
on Programming Language Design and Implementation,
PLDI ’04, pages 131–144, NY, USA, 2004. ACM.

[62] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, László
Szekeres, Stephen McCamant, Dawn Song, and Wei Zou.
Practical control flow integrity and randomization for
binary executables. In Security and Privacy (SP), 2013
IEEE Symposium on, pages 559–573. IEEE, 2013.

[63] Mingwei Zhang, Rui Qiao, Niranjan Hasabnis, and
R Sekar. A platform for secure static binary instrumenta-
tion. In The 10th ACM SIGPLAN/SIGOPS international

conference on Virtual execution environments, pages
129–140. ACM, 2014.

[64] Mingwei Zhang and R Sekar. Control flow integrity for
COTS binaries. In USENIX Security, pages 337–352,
2013.

A Symbol-Symbol Jump Tables

This appendix describes jump tables with relative offsets and
how they are detected by our disassembler.

Most jump tables in programs compiled with GCC and
Clang (position dependent code) are lists of absolute ad-
dresses that can be detected like any other symbolic value.
This is not the case for jump tables generated by ICC and
jump tables generated by PIC code. These jump tables are
often expressed as lists of Symbol−Symbol expressions.

In this kind of jump tables, one of the symbols represents
a reference point, and the other symbol represents the jump
target. The reference point is the same for all the jump table
entries and the actual value stored at each the jump table entry
is the distance between the jump target and the reference point.
The size of jump table entries can vary i.e. 1, 2, 4 or 8 bytes.

47DA7b: lea RDX, QWORD PTR [RIP+.L_4A09F0]
47DA82: movzx EDX, BYTE PTR [RDX+RCX*1]
47DA86: lea RAX, QWORD PTR [RIP+.L_47DA93]
47DA8d: add RAX,RDX
47DA90: jmp RAX

4a09f0: .byte .L_47DB3F -.L_47DA93
.byte .L_47DB36 -.L_47DA93
.byte .L_47DB2B -.L_47DA93
.byte .L_47DB20 -.L_47DA93

Figure 6: Assembly (after symbolization) extracted from tar-
1.29 compiled with ICC -O2. This code implements a jump
table of Symbol-Symbol entries of size 1 byte.

Example 12. Consider the example code in Fig. 6. The first
instruction loads the start address of the jump table onto RDX;
the second instruction reads the jump table entry and stores it
in RDX; the third instruction loads address 47DA93 that acts as
a reference for the jump table onto RAX; the fourth instruction
computes the jump target by adding RAX and RDX and the last
instruction executes the jump.

In order to find a jump table, we need to determine: the
jump table starting point, the jump table reference point, and
the size of each jump table entry. Fortunately, the code pat-
terns used to implement this kind of jump tables are relatively
regular. We have specialized Datalog rules to detect them.



jump_table_start(AJump,Size,Start,Reference):−
reg_jump(AJump,_),
def_used(ASum,Reg,AJump,_),
reg_reg_op(ASum,Reg,RegEntry,RegRef,1,0),

def_used(AEntry,RegEntry,ASum,_),
data_access_pattern(Start,Size,Size,AEntry),

def_used(ARef,RegRef,ASum,_),
reg_val(ARef,RegRef,_,’NONE’,0,Reference).

(15)

Rule 15 is simplified version of the rule that detect the
pattern in Fig. 6. The rule finds a jump that uses a register and
“walks back” the code using def-use chains to the instruction
where the jump target is computed (at address Asum). At that
location, reg_reg_op represents an abstraction of an assem-
bly instruction on two registers Reg=RegEntry+RegRef×1+0.
Then, the rule examines the definition of RegEntry to find
where the jump table entry is read (at address AEntry) and
thanks to its data_access_pattern, it determines the jump
table starting address Start and the size of each entry Size.
The other register RegRef should contain the jump table ref-
erence point. So its value is obtained using reg_val which
should contain a constant value (not expressed in terms of
another register).

By relying on the analyses presented in Sec. 5, i.e def-use
chains, DAPs and the register value analysis; the Datalog rule
is more robust than exact pattern matching. The instructions
involved in the jump table do not necessarily appear all to-
gether or in a fixed order, and the rule does not rely on specific
instructions being used. E.g. the jump target computation is
sometimes done using LEA instead of ADD.

Once we have found the jump table beginning and
its corresponding data_access_pattern, we can use the
propagated_data_access (see Sec. 5.3) to create symbol−
symbol candidates for each of the jump table entries. That
means that we will consider that the jump table extends until
there is another data access from a different part of the code.

The detection of these jump tables has been the main ad-
dition required to support the ICC compiler. Other analyses
and heuristics have remained largely the same. We expect that
supporting additional compilers will require similar additions
as each compiler has its own particular code patterns. How-
ever, the analyses described in Sec. 5 remain useful building
blocks that facilitate supporting these special constructs in a
robust manner.

B Symbolization Failures

We manually examined and diagnosed Ddisasm’s symboliza-
tion failures to determine what are the causes that lead to the
remaining FPs, FNs or WS.

Real world Benchmarks In the real world benchmarks, the
20 FPs corresponds to a single array of structs that contains

pointers. Our analysis obtains the right DAP with the right
multipliers but only 4 bytes of each of the pointers are read
instead of 8. This leads Ddisasm to conclude that those loca-
tions contains data objects of type “Other” of size 4 instead
of symbols. These FNs cause the corresponding tests to fail.

The 50 symbols pointing to the wrong section (WS) are
displacements in indirect operands and happen in 5 variants
of the same program (lighttpd-1.4.18) compiled with Clang
6.0 and Clang 9.0.1. These particular cases are not currently
detected by our heuristics but they also do not cause test
failures in our functionality experiments.

Coreutils Benchmarks In Coreutils, there are 3 FPs, all in
binaries compiled with -O0. They correspond to immediate
operands that are moved or compared to registers. Those
registers are loaded from the stack immediately before the
location of the immediate and they are stored in the stack
again immediately after. Therefore, our analyses do not obtain
any evidence on the type of those immediates. These FPs do
not cause tests failures, probably because the Coreutils test
suites are not exhaustive.

CGC Benchmarks In the CGC benchmarks, 5 of the
12 “Broken” binaries have FNs where the corresponding
relocations refer to the symbols __init_array_start and
__init_array_end. These binaries, compiled with ICC, do
not have an .init_array section and in fact the symbols’
addresses are the same and fall outside all data sections.
Nonetheless, the code uses the difference between the two
symbols (which is zero) and thus it has the same behavior
even though these references have not been made symbolic.
In fact, we do not observe test failures in these binaries.

There are 2 other binaries, variants of the same program
compiled with ICC, that have displacements in an indirect
operand pointing to the wrong section (WS). These particular
cases are not currently detected by our heuristics. They also
do not cause test failures.

Two variants of the same binary compiled with Clang 9.0.1
have a FN in an indirect operand. The symbol candidate points
to the end of the .rodata section which coincides with the
beginning of .eh_frame_hdr. This triggers the “Pointer to
special section” heuristic which leads Ddisasm to incorrectly
discard the symbol candidate. We plan to refine the “Pointer
to special section” heuristic to avoid this corner case.

The 3 remaining failures are due to FN in variants of the
same program compiled with GCC 7.1. They correspond to an
immediate that should be a Symbol+Constant. The immediate
is a loop bound but it corresponds to a triple nested loop
that our heuristics do not detect well. The extended section
considered is not large enough for the constant required by
the immediate. These FPs cause the tests to fail.


	Introduction
	Related Work
	Disassemblers
	Rewriting Systems
	Static Analysis Using Datalog

	Preliminaries
	Introduction to Datalog
	Encoding Binaries in Datalog

	Instruction Boundary Identification
	Backward Traversal
	Forward Traversal
	Solving Block Conflicts

	Auxiliary Analyses
	Register Def-Use Analysis
	Register Value Analysis
	Data Access Pattern Analysis
	Discussion

	Symbolization
	False Positives: Value Collisions
	Numbers in Data
	Numbers in Code

	False Negatives: Symbol+Constant
	Displacements in Indirect Operands
	Immediate Operands


	Experimental Evaluation
	Symbolization Experiments
	Functionality Experiments
	Performance Evaluation

	Conclusion
	Acknowledgments
	Symbol-Symbol Jump Tables
	Symbolization Failures

