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Abstract
Password vault applications allow a user to store multiple
passwords in a vault and choose a master password to encrypt
the vault. In practice, attackers may steal the storage file of the
vault and further compromise all stored passwords by offline
guessing the master password. Honey vaults have been pro-
posed to address the threat. By producing plausible-looking
decoy vaults for wrong master passwords, honey vaults force
attackers to shift offline guessing to online verifications.

However, the existing honey vault schemes all suffer from
intersection attacks in the multi-leakage case where an old
version of the storage file (e.g., a backup) is stolen along
with the current version. The attacker can offline identify
the decoys and completely break the schemes. We design a
generic construction based on a multi-similar-password model
and further propose an incremental update mechanism. With
our mechanism, the attacker cannot get any extra advantages
from the old storage, and therefore degenerates to an attacker
only with knowledge of the current version.

To further evaluate the security in the traditional single-
leakage case where only the current version is stolen, we
investigate the theoretically optimal strategy for online verifi-
cations, and propose practical attacks. Targeting the existing
schemes, our attacks crack 33%–55% of real vaults via only
one-time online guess and achieve 85%–94% accuracy in dis-
tinguishing real vaults from decoys. In contrast, our design
reduces the values of the two metrics to 2% and 58% (close to
the ideal values 0% and 50%), respectively. This indicates that
the attackers needs to carry out 2.8x–7.5x online verifications
to break our scheme.

1 Introduction

Password vaults, a.k.a wallets or managers, are highly recom-
mended for password management. A user can store multiple
∗Due to the page limit, the mathematical derivation and some design

details are left in the full version of this paper (see the authors’ websites).
†Corresponding author. He is also with Key Laboratory of High Confi-

dence Software Technologies (PKU), Ministry of Education, China.
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Figure 1: The difference between traditional and honey pass-
word vaults in the view of attackers.

passwords in a vault and further set a master password to en-
crypt the vault. The user thus only needs to remember the mas-
ter password instead of a long list of daily-use passwords. In
practice, the user usually uses the vault among multiple clients
(e.g., smartphone or PC), and requires its synchronization via
online services. The synchronization may be provided by the
vault applications (e.g., LastPass and 1Password) or third-
party file sync services (e.g., Dropbox and iCloud). However,
the sync services may suffer from leakage [25, 30, 42, 43, 45],
which leads to a great threat for password vaults.

If an attacker steals the storage file of a vault (including the
ciphertext), the attacker can launch guessing attacks against
the master password to compromise all stored passwords. For
a vault encrypted by traditional password-based encryption
(PBE), decrypting it with an incorrect guess will yield a failure
(i.e., ⊥) or random junk. So the attacker can immediately
identify the validity of guesses offline. In addition, since the
master password is human-memorable, it may be low-entropy
[10, 50] and could be guessed as easily as a website login
password [34,48,49]. Accordingly, the attacker can efficiently
carry out this offline attack with a high probability of success.

Honey password vault [8] is proposed to address this threat.
Its core idea is to generate plausible-looking decoy vaults for
incorrect guesses to confuse attackers. As shown in Fig. 1,
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launching offline guessing produces many decoy vaults (with
a real one), which need to be online verified (i.e., trying to
log in with passwords in the vaults). By pushing attackers to
online verification, the honey vault mechanism significantly
enhances the security of vaults, as the verification can be
practically detected and prevented [16, 20, 40].

The design of decoy vaults originates from Bojinov et
al. [8]. Their proposed Kamouflage pre-generates a static
amount (e.g., 1,000) of decoy vaults with corresponding de-
coy master passwords, and further stores them with the real
ones. Later, Chatterjee et al. [12] introduced a honey vault
scheme NoCrack based on Honey Encryption (HE) [22]. HE
is used to turn a vault to a random-looking bit string called
seed with a probabilistic encoder—distribution transforming
encoder—and further encrypt the seed. Due to the “honey”
feature provided by HE, using an arbitrary wrong master
password in decryption can yield a random-looking seed that
will be further decoded to a decoy vault on the fly. This brings
attackers much more difficulties to tell the real vault, com-
pared with the pre-generating method. Subsequently, Golla et
al. [17] proposed adaptive encoders which adjust themselves
according to the encrypted vault to make decoys more similar
to it. Cheng et al. [13] found both Chatterjee et al.’s [12] and
Golla et al.’s [17] encoders suffer from encoding attacks. They
further proposed a generic transformation that can convert a
probability model to an encoder resisting encoding attacks.

However, all existing honey vault schemes suffer from in-
tersection attacks in the multi-leakage case where an old
version of the storage file is stolen along with the current
version. This is an open question left in [12, 17]. More specif-
ically, the schemes only provide full update for a vault, i.e.,
reprocessing the updated vault as a brand new one, even if a
user just changes a password (or add a new one). This yields a
totally different new version for each decoy vault (by decrypt-
ing the new ciphertext with the same master password); and
meanwhile the old and new versions of the real vault are the
same except for the changed password. Hence, the attacker
can offline identify the real vault. This is a realistic threat be-
cause: 1) the old version of the storage file usually is backed
up and stored with the current version by the online services
or applications, (for example, Dropbox keeps all history ver-
sions of files for 30 days [15], and 1Password automatically
creates a backup for each change [6]); 2) the online storage
may suffer from multiple leakages due to increasing number
of network attacks and software bugs [5, 19, 24, 32, 42–44].

1.1 Our Contributions

To resist intersection attacks, we propose a generic construc-
tion and an incremental update mechanism for HE-based
honey vaults. We build our construction from: 1) a multi-
similar-password model which models the conditional pass-
word distribution given multiple old passwords (i.e., the old
vault); and 2) the corresponding conditional encoder which

can encode a password given multiple old ones. With the
construction, we can encode the changed (or added) password
to a (sub) seed and pad it to the tail of the vault seed. With a
prefix-keeping PBE scheme, the similarity between the old
and new versions of each decoy vault is kept the same as that
for the real vault. This means that our scheme resists inter-
section attacks. Formally, the attacker cannot get any extra
advantages from the old storage file, and degenerates to an
attacker in the single-leakage case (where the attacker only
steals the current version).

To further evaluate the security of (HE-based) honey vault
schemes against distinguishing attacks in the single-leakage
case, we formally investigate the optimal strategy for online
verifications and further propose several practical attacks1.
For the existing schemes [12, 13, 17], our attacks crack 33%–
55% of real vaults via only one-time online guess and achieve
85%–94% accuracy in distinguishing real vaults from decoys.
We further find that the adaptive encoder [17] does leak extra
information about the real vault. Leveraging the information,
our attacks can achieve 91%–93% distinguishing accuracy
against the adaptive encoder, which is 6.2%–9.0% higher than
that of the static variant. This makes the adaptive encoder
more insecure than its static variant.

To instantiate our construction, we design a multi-similar-
password model according to users’ password-generating
habits. The design is built on the top of a single-password
model (capturing how the user creates a brand new password),
a single-similar-password model (capturing how a user cre-
ates a new password by reusing an old one) and an unreused
probability function. For our design, the existing and our
proposed attacks only crack at most 2% of real vaults via one-
time online guess and achieve at most 58% distinguishing
accuracy. The results are close to 0% and 50% maintained
by an ideal secure scheme, respectively. This also means the
attacker has to carry out 2.8x–7.5x online verifications against
our scheme as compared to others. Since online verifications
can be quickly detected and prevented, our design achieves a
significant improvement on security.

In summary, we describe our main contributions as follows.
1. We propose a new generic construction and an incre-

mental update mechanism for HE-based honey vault
schemes, which resists intersection attacks.

2. We formally investigate the optimal strategy for online
verifications and further propose several practical attacks,
which can effectively distinguish real and decoy vaults
for the existing honey vault schemes.

3. We instantiate our construction with a well-designed
multi-similar-password model, which can generate more
plausible-looking decoys.

1Here, we only focus on human-generated passwords, since it is of great
challenge to generate indistinguishable decoys [12] for them but trivial for
randomly-generated ones. Although many vault applications recommend
users to use randomly-generated passwords, they always store some human-
generated passwords in the vaults [33, 38].
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2 Background and Related Work

2.1 Traditional Solutions to Offline Guessing

A straightforward solution to master password guessing is
to leverage a special password hashing as the key derivation
function (KDF) used in password-based encryption (PBE),
such as an iterated hash function [23,41], a memory-hard func-
tion [9,39]. LastPass employs this solution (using the 100,100
rounds of PBKDF2-SHA256 [3]) to increase the computa-
tional cost of attackers in launching master password guess.
Nevertheless, the cost of a valid user is also increased by
the same factor. Without leveraging heavy hashing, one may
use an extra key stored on a device (e.g., iOS keychain [4],
a server [27]), to enhance the master password to a crypto-
graphic key for further encryption, like 1Password [4]. But
this has a defect that if the device gets lost without any backup,
all the passwords stored in the vault cannot be recovered any-
more. Note that these solutions can be used in honey vault
schemes to achieve complementary protection. There may be
other approaches but we don’t explore them here. We will
only focus on the solutions based on honey vaults.

2.2 Honey Encryption

Honey Encryption (HE) [22], proposed by Juels and Risten-
part, can resist the brute-force attack by yielding plausible-
looking messages for arbitrary incorrect keys, even in the
case where a low-entropy key (e.g., password) is used. Later,
Jaeger et al. [21] proved that HE satisfies the stronger notions
of target-distribution semantic security and target-distribution
non-malleability. The core design of HE relies on an encoder,
called distribution transforming encoder (DTE), being able
to capture the message distribution. Intaking a message M
following some distribution M , DTE can encode it to a bit
string S called seed which is indistinguishable from a random
string. HE further encrypts S to a ciphertext C by a traditional
but carefully-chosen PBE scheme with a key K. Decrypting C
with a wrong key K′ (e.g., a guessing key from attackers), the
carefully-chosen PBE (e.g., the CTR-mode AES with PBKDF
used in [12, 17, 22]) can yield a random-looking bit string S′.
DTE then decodes S′ into a honey message M′ which is sam-
pled from the same distribution M . Note in the context of
honey vault, the message and key correspond to the password
vault and master password, respectively.

Juels and Ristenpart use inverse sampling to convert a dis-
tribution to an encoder called IS-DTE. This method performs
well for simple distributions, e.g., uniform distributions. But
when handling messages (e.g., natural language) with a huge
space size and a complex distribution, it definitely yields ex-
plosive complexity in time and storage space. To tackle this
problem, Chatterjee et al. [12] introduce a natural language
encoder, and later Cheng et al. [13] propose a probability
model transforming encoder (see Sections 2.3 and 2.4).

Table 1: The storage format of honey vaults

Plaintext
part

Domain Facebook Myspace 000Webhost Twitter . . .
Username Aaron Aaron1 AaronJ Aaron . . .
Randomly-generated No No Yes No . . .
Password position 1 3 1 2 . . .

Ciphertext
part

Human-generated (123456, 123456a, 1234567, . . . )
Randomly-generated (cYp97@v84G$9GNv̂s%3R, . . . )

Note: Each randomly-generated password is encoded by the encoder for the
uniform distribution and further encrypted separately. All human-generated
passwords are encoded by the encoder for the vault model and further en-
crypted as a whole.

2.3 HE-based Honey Vault Schemes
Unlike traditional solutions to offline master password guess-
ing, honey vault schemes yield decoy vaults for incorrect
guesses and therefore force attackers to online verify these
decoy vaults. We only focus on HE-based schemes [12,13,17]
in this paper due to their advantage on security.

Storage format. The existing schemes only use HE to
encrypt passwords and leave other parts (e.g., domains and
usernames) in plaintext2. We give an example in Table 1 to
show the storage format.

Vault model. The probability model for password vaults
(vault model, for short) is the foundation used to generate
indistinguishable decoys. It should characterize the real vault
distribution as precisely as possible. Because of users’ various
password generation (and reuse) habits, it is a great challenge
to design models for human-generated passwords3. The exist-
ing vault models [12, 17] choose a single-password model as
the base to characterize the single-password distribution and
further extend it to capture the similarity (reuse habits) among
multiple passwords in a vault: Chatterjee et al. [12] use the
probabilistic context-free grammar (PCFG) model and extend
it by the sub-grammar approach; Golla et al. [17] leverage the
Markov model and extend it by the reuse-rate approach. Note
that Cheng et al. [13] do not propose a new vault model but
leverage/recommend Golla et al.’s design. In addition, Golla
et al. introduce and apply adaptive concept to vault model,
encoder and honey vault scheme. Before encrypting a real
vault V , an adaptive scheme adjusts its vault model (as well as
its encoder) according to V . With well-designed adjustments,
an adaptive model may produce decoys that are more similar
to V , bringing more difficulties to attackers in identifying
them.

2One may choose to further encrypt domains and usernames, but this will
break the “honey” property of HE. Note that a real username is registered
on the domain, but its decoy is not. Thus, the attacker can easily identify the
decoy vaults by registering with the usernames. Without using encryption,
Chatterjee et al. [12] provide another way to hide domains. They generate
decoy accounts for the domains where users have not registered, and further
store the decoy usernames in plaintext. But this method still suffers from the
aforementioned attack. It seems that there does not exist an effective solution
to hide domains and usernames. We leave this as an open problem.

3Since it is trivial for randomly-generated passwords [12], we do not
consider them in this paper.
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Encoder. An encoder for a vault model should encode a
vault sampled from the model to a seed being indistinguish-
able from a random bit string. However, the natural language
encoders designed by Chatterjee et al. [12] and used by Golla
et al. [17] fail to achieve this requirement, and therefore suf-
fer from encoding attacks [13]. Cheng et al. [13] tackle this
vulnerability by employing their encoders for the old models.
To evaluate the existing honey vault schemes without the neg-
ative effect caused by encoding attacks, we will adopt Cheng
et al.’s encoders to [12] and [17] in this paper, and still refer to
the resulting schemes as Chatterjee et al.’s and Golla et al.’s.
Under our adoption, Golla et al.’s scheme (with Cheng et al.’s
encoder) becomes the same as Cheng et al.’s scheme (with
Golla et al.’s model as they recommended).

Deployment consideration. Due to the special feature of
honey vaults, if a user enters an incorrect master password
(e.g., a typo), it will get a decoy vault and further lead to a
login failure. Dynamic security skin can be used to address
the issue as suggested in [8, 12]. This approach shows a pic-
ture to the user according to the master password input. By
checking if the picture is identical to the one from the last
(correct) input, the user can verify the correctness of the mas-
ter password. Unlike the ciphertext, the picture is not stored
by the application, and thus will not be stolen from the online
storage. Note the user does not need to remember the whole
picture but just a vague impression. Other typo-correcting
methods (e.g., [11]) can also be used in deployment without
putting an extra burden on users.

2.4 Model-to-encoder transformation

Cheng et al. [13] propose a generic method to transform an ar-
bitrary probability model to a probability model transforming
encoder, which resists encoding attacks. Their core idea is to
assume that messages are created by generating paths (i.e., a
sequence of generating rules). Based on the idea, they formal-
ize all current models for the single password or password
vault. For example, in their formalization for PCFG models,
the generating rules are production rules and the generating
paths are leftmost derivations. To further encode a message,
their encoder parses all generating paths of the message, ran-
domly selects one path with its probability, and encodes each
rule in the path. (In contrast, the existing encoders in [12, 17]
use deterministic path selection, therefore it is easy to ex-
clude the decoy seeds of which paths are not the deterministic
ones.) In this way, each seed of this message can be randomly
and uniformly picked. This feature is called seed uniformity,
which is the “cure” to encoding attacks.

However, in some models associated with great ambiguity,
a message may be generated by various paths. Parsing all
these paths may yield heavy time complexity in encoding.
Although Cheng et al. attempted to reduce the ambiguity by
pruning some unnecessary paths, the low encoding perfor-
mance still limits the scalability of their encoders.

3 Our Incrementally Updateable Scheme

We propose a generic construction for vault models and fur-
ther construct an encoder, which provides incremental update
for password vaults and achieves the update security (i.e.,
resisting intersection attacks).

3.1 Our New Construction
In practice, the passwords in a vault V = (pwi)

n
i=1 are gener-

ated one by one. Therefore, the probability Prreal(V ) can be
expanded as

Prreal(V ) =
n−1

∏
i=0

Prreal(pwi+1 | pw1, pw2, . . . , pwi), (1)

where Prreal(pwi+1 | (pwi′)
i
i′=1) is the probability of creat-

ing a new password pwi+1 under the condition of given i
old passwords (pwi′)

i
i′=1. Naturally, we can leverage a con-

ditional probability model PrMSPM(·|·) to estimate the con-
ditional probability and further construct a vault model. We
denote PrMSPM(·|·) as multi-similar password model.

3.2 Conditional Probability Model Transform-
ing Encoder

For a probability model with the following construction

Prmodel((Mi)
n
i=1) =

n

∏
i=1

Prmodel(Mi | (Mi′)
i−1
i′=1), (2)

using Cheng et al.’s model-to-encoder transformation can
yield a probability model transforming encoder. However,
the encoder has exponential time complexity if the model is
ambiguous. Specifically, if there exit ki paths to generate Mi
from (Mi′)

i−1
i′=1, then there will be ∏

n
i=1 ki generating paths

for M = (Mi)
n
i=1. Cheng et al.’s encoder has to calculate the

probabilities of ∏
n
i=1 ki paths and randomly select one with

its probability, which yields the time complexity O(∏n
i=1 ki).

To reduce the time complexity of the encoder, we extend
Cheng et al.’s [13] transformation for conditional probability
models. Since a conditional probability model can be seen as a
probability model for each condition, a conditional probability
model transforming encoder (conditional encoder for short)
can be achieved by transforming the conditional probability
model for each condition with Cheng et al.’s transformation.

By using the conditional encoder (encode(·|·),decode(·|·))
for Prmodel(·|·), we design a new encoder for Prmodel(·) as
follows:

1. To encode a message M = (Mi)
n
i=1: encode Mi to a seed

Si by encode(Mi | (Mi′)
i−1
i′=1), then output the concatenat-

ing of {Si}n
i=1, i.e., S = S1||S2|| . . . ||Sn.

2. To decode a seed S: split S to {Si}n
i=1 according to

the fixed length of Si, decode Mi from Si in order by
decode(Si | (Mi′)

i−1
i′=1), then output M = (Mi)

n
i=1.
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In contrast to Cheng et al.’s encoder, our new encoder com-
bined by conditional encoder only needs to select one path
from ki paths for 1 ≤ i ≤ n, which significantly reduces the
time complexity to O(∑n

i=1 ki). In addition, since the condi-
tional encoder is seed-uniform, our new encoder naturally
inherits this property and therefore resists encoding attacks.

3.3 Incrementally Updateable Encoder
The proposed conditional encoder for the multi-similar-
password model can encode a vault password by password4.
This naturally brings an incremental update mechanism. In
detail, we update the storage file of a vault as follows:

1. To add a new password: decrypt the vault, encode the
new password by the conditional encoder for the multi-
similar-password model, add the password seed to the
tail of the vault seed, record the password position in
plaintext, and finally encrypt the updated seed with the
same (correct) key and the same nonce.

2. To delete an old password: mark the password as deleted
(in plaintext) without changing the ciphertext.

3. To change an old password: delete the old password, add
the new password as in Item 1, and update the password
position for the corresponding account.

To achieve the update security, the PBE adopted in HE
must satisfy the prefix-keeping property:

1. If a string str1 is a prefix of a string str2, then the cipher-
text C1 of str1 is also a prefix of the ciphertext C2 of str2
with the same key and the same random nonce. Note the
nonce is stored in plaintext, e.g., the salt for PBKDF and
the initialization vector for CTR-mode.

2. If a ciphertext C1 is a prefix of a ciphertext C2 (with the
same nonce), then the plaintext str1 of C1 is a prefix of
the plaintext str2 of C2 under any (incorrect) key.

The PBE scheme used in [12, 13, 17], i.e., AES in CTR-
mode merged with PBKDF, satisfies the prefix-keeping prop-
erty. Thus, we use the same scheme for our design.

Intersection-attack resistance. Compared with the full up-
date in the current honey vault schemes, our design decreases
the time complexity in updating but also guarantees the up-
date security against intersection attacks. As shown in Table
2, owing to the prefix-keeping property that our chosen PBE
provides, we ensure that the old ciphertext is a prefix of its
new version. Decrypting the old and new ciphertexts with the
same (incorrect) master password, we will have that the new
seed is the same as its old version except for the added tail
(note if one leverages the schemes with full update, these two
seeds will be totally different). Accordingly, the new decoy
vault is identical to its old version except for the changed or
added passwords. This means that the similarity of the old
and new versions for each decoy vault is kept the same as
that for the real vault. Therefore, if an attacker steals the old

4When initializing a vault with a set of existing passwords, the application
can shuffle the passwords and then encode them one by one.

Table 2: The difference between old and new vaults after
changing Facebook password1

Position2 Ciphertext Seed3 Passwords3

Previous 1 C1‖. . .‖C10 S1‖. . .‖S10 pw1,. . ., pw10
Updated 11 C1‖. . .‖C10‖C11 S1‖. . .‖S10‖S11 pw1,. . ., pw10, pw11

1 We take the vault in Table 1 as an example and assume it contains 10
(human-generated) passwords.

2 By position we refer to the password position of Facebook account.
3 The previous and updated seeds/passwords are under a master password

which may be the correct one or an incorrect one.

version of the vault storage file along with the current version,
the attacker cannot get extra advantages and degenerates to
an attacker only with the knowledge of the current version.
This means the attacker cannot launch intersection attacks but
only (traditional) distinguishing attacks based on the current
version. We confirm this statement in an experiment with
real-world datasets (see Appendix C).

Other potential threats. Unlike the existing schemes,
our scheme maintains the password history (including the
changed and deleted passwords), which may bring an ad-
vantage in distinguishing attacks. Based on users’ password-
changing habits, the attacker may leverage similarity among
the old and new passwords for distinguishing. (Note the
password-similarity attack proposed in Section 4 can be nat-
urally extended for this purpose.) To address this issue, we
can leverage a well-designed multi-similar-password model
to capture the password-changing habits and further generate
plausible-looking password histories for decoys. In addition,
keeping the password history is provided by many real-world
vault applications as a feature (rather than a flaw), e.g., Last-
Pass [2]. Our scheme naturally provides this feature, while
the existing ones cannot.

3.4 Multi-Similar-Password Model
To instantiate our construction for honey vault scheme, we
need a multi-similar-password model PrMSPM which can pre-
cisely estimate Prreal(pwi+1 | (pwi′)

i
i′=1). To the best of our

knowledge, such models do not exist in the literature. Pal
et al. [36] mention this notion in their work on password
guessing, but they leave it as future work without providing a
specific model. Here, we give a simple design for the model.

Our design. We model a user’s generation of a new pass-
word pwi+1 with i old passwords (pwi′)

i
i′=1 by a simplifica-

tion that pwi+1 either is created by “reusing” an old password
(including a direct reuse or a slight modification of it) or is a
brand new creation. Accordingly,

PrMSPM(pwi+1 | pw1, pw2, . . . , pwi) (3)

= f (i)PrSPM(pwi+1)+
1− f (i)

i

i

∑
i′=1

PrSSPM(pwi+1 | pwi′),

where PrSSPM, PrSPM and f (i) represent a single-similar-
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Figure 2: Unreused probability f (i) that the i+1-th password
is not reused from the first i passwords.

password model, a single-password model, and the unreused
probability function, respectively. The single-password model
captures the new generation, the single-similar-password
model captures the reusing, and the unreused probability func-
tion is the probability that the user does not reuse i old ones.

Then we carefully instantiate the three components. For the
single-password model, we choose to use a Markov model
with well-set parameters (denoted as Best-Markov), since it
performs the best under the single-password attack among ex-
isting single-password models [34, 35, 46, 49] (see Appendix
D). For the single-similar-password model, we design a sim-
ple model which only captures the most prevalent password-
reuse habit, i.e., head or tail modification [14]. For simplicity,
this model regards two passwords as reused passwords if the
length of their longest common substring is at least half of
the maximum length of them (note we say the password pair
has Feature LCSStr). In this way, our model is simple and
further leads to the efficiency of encoding. The details of the
model are given in Appendix A. We also try to use the existing
single-similar-password models, e.g., the password-to-path
model [36] and the context Wasserstein autoencoder [37]. But
we find our model is more suitable for honey vaults because
of its best performance on the decoy vault generation and the
high encoding efficiency (see Appendix E).

For the unreused probability function, we can leverage a
real-world vault dataset (Pastebin, see Section 5.2) and count
the empirical probability f̂ (i) of the event that the i+1-th
password is not reused from the first i passwords5. Further,
we perform nonlinear regression on f̂ (i) and find f̂ (i) can
be fitted well with a 3-degree rational function in the form
f (i) = 1/(∑3

k=0 akik). As shown in Fig. 2, the fitted function
ffit(i) = 1

0.02455i3−0.2945i2+3.409i+0.0852 is very close to f̂ (i),
and | ffit(i)− f̂ (i)| ≤ 4.101×10−3. Thus, we use ffit(i) as the
unreused probability function6. In addition, f̂ (i) decreases as
i increases, indicating that the more passwords a user has, the

5There may be a great number of i+1-tuples for some i. Thus, we estimate
the probability by sampling 104 tuples (with replacement) and counting f̂ (i)
in the samples instead of directly counting in all tuples.

6In the experiments with 5-fold cross-validation (see Section 5.2), the
coefficients of ffit(i) are not obtained from Pastebin but the training set,
which is 4/5 of Pastebin.
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Figure 3: Technical roadmap of our designs.

less likely he is to create a brand new password. This reflects
the limit of human memory on passwords.

With the above constructions and instantiations, we finally
construct a concrete model and an encoder for honey vaults.
The full construction is shown in Fig. 3.

Time complexity of encoding. Applying the transforma-
tion proposed in Section 3.2, we can get a conditional encoder
for the multi-similar-password model and with efficiency in
encoding. Specifically, pwi is generated by reusing old pass-
words (pwi′)

i−1
i′=1 or is a brand new creation in our model.

Therefore, there are at most i generating paths for pwi under
the condition of (pwi′)

i−1
i′=1. The time complexity of encod-

ing a vault (pwi)
n
i=1 is O(n2). The details of the conditional

encoder are provided in Appendices A and B .
Complying with password policies. Many websites may

adopt password policies to prevent users from using weak
passwords, e.g., requiring passwords to contain at least 8 char-
acters. The passwords generated by the vault models (i.e.,
in the decoy vaults) should always comply with the corre-
sponding policies, otherwise, attackers will easily identify
those decoys which do not. We introduce an efficient method
to adjust our model to support two classic policies, length
restriction (e.g., ≥ 8 characters) and character requirement
(e.g., the inclusion of an upper-case letter), guaranteeing that
all passwords sampled from the model achieve the complying
requirement. The core idea is to exclude the noncompliant
lengths or characters when encoding and decoding. Specifi-
cally, we adjust the length distribution in best-Markov and our
single-similar-password model; and meanwhile, we model
the position of the required character type and adjust the
corresponding character distribution (by adjusting, we mean
excluding the lengths or characters not complying the require-
ment and re-normalizing the probabilities of the rest ones).

We note it is very challenging to guarantee the need w.r.t.
more complex policies (e.g., blacklist or password strength re-
quirement) and we leave this as an open problem. For the web-
sites with these policies, users can use randomly-generated
passwords that are easily complied with the policies.
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3.5 Leakage Detection
We propose a mechanism to detect the leakages of storage
files of honey vaults. The core idea is to generate and store
some decoy accounts (called honeypot accounts) in a user’s
real vault. For example, if the user has a real account(name)
“Alice07” on Google, the vault application may generate (and
register) a honeypot account “Alice07” on Yahoo (with a
password generated by our model). These honeypot accounts
will not be used by the user (note we can choose the websites
the user rarely visits for honeypot accounts to avoid the user’s
misuse); and meanwhile they are really registered on the
corresponding websites. An attacker with the stolen storage
file cannot tell them from real accounts and will probably
log in to them (for online verification). Once the logins of
honeypot accounts occur, the leakage can be reliably detected.
Then the user should change all passwords in the vault to
prevent consequent account compromise. In this way, we
significantly mitigate the risk of vault file leakages.

Further, we consider the threat in the case where a pass-
word in a vault is leaked as well as the vault storage file.
In this case, the attacker can offline tell the real vault by
checking if the leaked password is in the vault. Although
this is an important and practical threat, it is not considered
in [12, 13, 17]. Fortunately, leveraging the leakage detection
mechanism for honey vaults and the existing alert mecha-
nisms for password breaches (e.g., [1, 18]), we can detect the
password and vault leakages, respectively. This enables users
to timely change the leaked passwords or vaults. Our solution
is a “pre-action” mechanism for the threat (preventing it from
happening) rather than a post-action (resisting the attacks
after the threat is there).

The design details and security analysis are given in the
full version of this paper.

4 Attacks Against Honey Vault Schemes

To evaluate the security of honey vault schemes in the single-
leakage case, we investigate the theoretically optimal strategy
for online verifications, and further propose several practical
attacks.

4.1 Attacker Model
Attacker ability. We consider a significant threat for honey
vaults: an attacker steals the (current) storage file of a vault
(e.g., from online sync services), and tries to reveal all stored
passwords from the file. The attacker also gets the program of
the honey vault scheme, including the HE algorithm and the
encoder, since the program should be stored along with the
storage file to provide handy service to users. So the attacker
can try to decrypt the ciphertext with a dictionary of master
password guesses. To distinguish the real and decoy vaults
decrypted from the ciphertext, the attacker may leverage some

public information, e.g., leaked datasets, website password
policies. Note that if the vault scheme uses a public dataset
to train its vault model, the attacker can identify the dataset
from the encoder and may further use it to launch attacks.

In this section, we do not consider the cases where the
attacker additionally gets an old version of the storage file or
a website password in the vault. We have addressed these two
cases in Sections 3.3 and 3.5, respectively.

Attack process. To reveal passwords from an encrypted
vault, the attacker should decrypt the ciphertext c with a dic-
tionary of the master password guesses {mpwi}N

i=1, and then
obtain a (large) group of vaults {Vi}N

i=1, in which at most one
of the vaults is real. To check the correctness of the vaults,
the attacker needs to log in with the passwords in the vaults
(i.e., online verification).

The effectiveness of the attack depends on 1) the offline
guessing order of master passwords and 2) the online veri-
fication order of the vaults. The former is mainly related to
the strength of the master password, while the latter relies
on the security of the encoder (i.e. the indistinguishability of
real and decoy vaults). We recall that a master password is
a human-memorable password and may suffer from general
password guessing attacks [34, 36, 48, 49]. We take the same
research direction as [12, 13, 17], focusing on the security of
encoders.

We assume attackers will test target vaults (via online veri-
fication) in a descending order defined by a priority function.
Each vault is assigned a priority value so that attackers first
online verify those vaults with greater values. We denote this
priority function as p with a subscript representing the name
abbreviation of the attack. In practice, p(Vi) is strongly related
to the probability that Vi is the real vault among {Vi}N

i=1.

4.2 Theoretically Optimal Strategy

The theoretically optimal strategy of online verification is
to verify the vaults in the descending order of conditional
probabilities, where the condition is all the information that
attackers have known. In the following, we investigate this
strategy by analyzing the conditional probabilities.

We denote the random variables of the (real) master pass-
word, the (real) vault, the (real) seed and the ciphertext, as
MPW, V , S and C, respectively. Let MPW = mpwi denote the
event that a user’s real master password is identical to mpwi
(i.e., the user chooses mpwi as the master password MPW).
Similarly, we define V =Vi, S = Si and C = c. To keep consis-
tency with notations in Section 4.1, we define mpwi,Vi,Si,c
such that Si is decrypted from c with mpwi and Vi is decoded
from Si. We further denote the real master password distribu-
tion Pr(MPW = mpwi) as PrMPW(mpwi), the real vault distri-
bution Pr(V = Vi) as Prreal(Vi), the decoy vault distribution
as Prdecoy(Vi) (i.e., the probability of getting Vi by decoding
a random seed), and the probability of encoding Vi to Si as
Prencode(Si |Vi) (i.e., Pr(S = Si |V =Vi)), respectively.
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For the (static) honey vault schemes, the only information
attackers can learn about the real vault V is its ciphertext c.
(An adaptive scheme will leak extra information about V , see
Section 4.4.) Therefore, the optimal strategy is to verify Vi in
the descending order of Pr(V =Vi |C = c).

For simplicity, we use Pr(MPW = mpwi | C = c) to es-
timate Pr(V = Vi | C = c)7. In addition, we notice that the
existing honey vault schemes [12, 13, 17] require a user to
create a completely new and distinct master password so that
the master password is independent of all the passwords in
the vault. This requirement is due to the limitation of HE [22]
that cannot guarantee the security for dependent key and mes-
sage distributions. Therefore, Pr(MPW = mpwi,V = Vi) =
PrMPW(mpwi)Prreal(Vi). According to the Bayesian theorem,
we have the following theorems. Note the proofs of the theo-
rems in this section are given in the full version of this paper.

Theorem 1. For an arbitrary encoder,

Pr(MPW = mpwi |C = c)

= k ·PrMPW(mpwi)Prreal(Vi)Prencode(Si |Vi), (4)

where k is a constant independent of i.

This theorem shows that Cheng et al.’s strong encoding
attack [13] is a degenerate case of the optimal strategy by
only considering the last factor Prencode(Si |Vi) as the priority
function. If an encoder is not seed-uniform (i.e., the seeds
of a message are not randomly chosen when encoding the
message), the real and decoy vaults can be effectively distin-
guished by merely exploiting the encoder (i.e., calculating
Prencode(Si |Vi)) without any knowledge of the master pass-
word and password vault distributions (i.e., PrMPW(mpwi),
Prreal(Vi)).

Theorem 2. If the encoder is seed-uniform, then

Pr(MPW = mpwi |C = c)

= k ·PrMPW(mpwi)
Prreal(Vi)

Prdecoy(Vi)
, (5)

where k is a constant independent of i.

Theorem 2 indicates that if an encoder is seed-uniform,
attackers cannot get any information from the encoder except
the decoy vault distribution (i.e., Prdecoy(Vi)). This analysis
confirms that Cheng et al.’s transformation is secure, i.e., their
encoder resists encoding attacks. By applying the secure en-
coders to the existing honey vault schemes [12, 17], we only
need to consider how to hold against distribution difference
attacks. This type of attack is defined in [13], referring to the
attacks that only exploit the difference between the real and
decoy distributions (i.e., Prreal(Vi) and Prdecoy(Vi)).

7The vaults Vi and Vj under different master passwords mpwi and mpw j
may be the same (i.e., Vi =Vj). But this only happens with a low probability,
especially if the vaults are of a large size, because the space of vaults is much
larger than that of master passwords.

Table 3: Examples of real-to-decoy probability ratios

Vault Password Reuse
feature†

Increased
n-gram
number

Example (123456,1234567) 123456 0 1 4
Real probability –* 10−2 0.8 0.2 10−7

Decoy probability 10−4 5×10−3 0.4 0.6 10−9

Ratio –* 2 2 0.333 100
* It is hard to precisely calculate the real probability and the ratio for a

vault. So we use some methods to estimate the ratio for attacks.
† Each feature used in our classifier is a Boolean (binary variable).

We use Theorem 2 to present a new vision for the secu-
rity analysis w.r.t. HE and honey vault schemes. For a seed-
uniform encoder, if the decoy distribution is the same as
the real one, i.e., Prdecoy = Prreal, then Pr(MPW = mpwi |
C = c) = PrMPW(mpwi) (in this case, k = 1). Therefore,
the mutual information of C and MPW is I(MPW;C) =
H(MPW)−H(MPW | C) = 0. This means that the cipher-
text C does not leak any information of the key MPW, which
achieves the ideal security of HE and honey vault schemes.

Without considering PrMPW (as discussed in Section 4.1),
the optimal online verification order for vaults {Vi}i is the
descending order of

Prreal(Vi)

Prdecoy(Vi)
, (6)

which is denoted as pOPT. The basic idea behind this real-
to-decoy probability ratio pOPT is simple and intuitive. A
high pOPT(Vi) means the vault model used in the honey vault
scheme significantly underestimates the real probability of Vi.
In other words, Vi is less likely generated by the vault model
than being generated by the user. Therefore, Vi is more likely
to be real among {Vi}N

i=1.

4.3 Practical Attacks
The optimal online verification with the priority function
pOPT is hard to be carried out, since it is difficult to precisely
calculate the real probability Prreal(Vi) for attackers. This dif-
ficulty also hinders the direct use of existing techniques, e.g.,
Bayesian updating, in calculating pOPT.

Leveraging an advanced model seems to be a straight-
forward method to estimate Prreal. Unfortunately, all current
models have defects, which lead to the misestimation of the
probabilities [47]. For example, the PCFG model [49] un-
derestimates the passwords with relative components, e.g.,
“1q2w3e”, because the model assumes these components
are independent and does not further consider their relation-
ships [47]. The misestimation of a model will lead to the
misestimation of pOPT(V ) and further significantly decrease
the effectiveness of attacks. Note we have tried to use dif-
ferent single-password models to estimate the real single-
password distribution, e.g., Markov models [34], but could
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not obtain stable and reasonable effectiveness in attacking all
other single-password models.

To overcome the difficulty, we use several methods to es-
timate the real-to-decoy probability ratio pOPT and further
propose several practical attacks as follows. The characteriza-
tion of both the single-password distribution and the password
similarity are the two significant indices of a vault model. Ac-
cordingly, our estimations will focus on these two indices.

Single-password attack. To capture the difference be-
tween real and decoy vaults on the single-password distribu-
tion, we use the real-to-decoy probability ratio on the single
password to estimate the ratio pOPT(Vi) on vault. Formally as-
sume that the passwords in a vault are independent (ignoring
their similarity), pOPT(Vi) can be simplified/estimated as

∏
pw∈Vi

Prreal(pw)
Prdecoy(pw)

, (7)

where Prreal(pw) and Prdecoy(pw) represent the real and decoy
single-password distributions, respectively. Prdecoy(pw) can
be calculated by the single-password model in the targeted
honey vault scheme, but we still need to estimate Prreal(pw).

To estimate Prreal(pw), we directly use the relative fre-
quency of pw in a password training set, instead of using some
password models. We note this is because we do not want to
bring the misestimation of password probability yielded by
single-password models to our attacks (as discussed above).
According to the law of large numbers, the relative frequency
of an event converges (almost surely) to its probability, as the
number of experiments approaches infinity. To avoid mises-
timation incurred by inappropriate training sets, we choose
the dataset which has been used to train the single-password
model by the honey vault schemes (see Section 5.2).

In addition, smoothing is further needed since some pass-
words not appearing in the training set have zero frequency.
With a carefully-designed smoothing method, we propose an
estimation pSP(pw) for Prreal(pw)

Prdecoy(pw) as

pSP(pw)=


1 if fa(pw)≤ fd and f ′r (pw)

Prdecoy(pw)>1,

f ′r (pw)
Prdecoy(pw)

otherwise,
(8)

where fa(pw) is the absolute frequency of pw in the train-
ing set, n is the size of the training set, αs is a smoothing
parameter, fd is a parameter representing the demarcation line
between high-frequency and low-frequency passwords, and
f ′r (pw) = fa(pw)+αs

n+αs
. Our estimation is similar to maximum

likelihood estimation (MLE) with Laplace smoothing. Unlike
Laplace smoothing used in [34], our smoothing only adds αs
for the calculated pw instead of all passwords in the password
space. This is because the password space is extremely large,
using Laplace smoothing will make f ′r (pw) to approach to 0
for all pw. We note that our smoothing may lead to overesti-
mation for the probabilities of some low-frequency passwords.

Thus, we choose to set pSP(pw) = 1 for passwords with ab-
solute frequency no more than fd and f ′r (pw)

Prdecoy(pw) > 1. After a
few tries, we finally set αs = 1 and fd = 5.

Using pSP(pw), we propose a single-password attack with
the following priority function

pSP(Vi) = ∏
pw∈Vi

pSP(pw). (9)

Informally, this attack gives priority to the vaults of which
some passwords are not accurately characterized (their prob-
abilities are underestimated) by the single-password model
in the targeted honey vault scheme. According to Theorem 2
and Equation (7), the vaults are more likely to be real.

Password-similarity attack. To capture the difference be-
tween real and decoy vaults on the password similarity, we
use the real-to-decoy probability ratio on some features with a
Bernoulli naive Bayes classifier to estimate the ratio pOPT(Vi).
The features should capture the misestimation of the vault
models on the password similarity. With a carefully-chosen
feature set F , pOPT(Vi) can be simplified/estimated as

∏
F∈F

Prreal(F = F(Vi))

Prdecoy(F = F(Vi))
, (10)

where F(Vi) is the value of Feature F for Vi (F(Vi) = 1 if
Vi has Feature F , otherwise, F(Vi) = 0), Prreal(F = x) is the
probability that the value of Feature F is x for a real vault,
and Prdecoy(F = x) is the probability for a decoy vault.

We demonstrate that the estimation is effective. Unlike
Prreal(Vi) which is difficult to be calculated, Prreal(F = x) can
be counted from a password vault dataset (counting the pro-
portion of vaults which have Feature F for x = 1, and the rest
proportion for x = 0). The vault dataset (Pastebin, in Section
5.2) we are going to use is small, so we only choose two
binary features for the Bayes classifier with four parameters.
Similarly, Prdecoy(F = x) can be counted from a set of decoy
vaults generated by the encoder (decoding random seeds).

To design appropriate features, we first analyze the charac-
terization of vault models on the password similarity. Recall
that a user almost always reuses passwords in different ac-
counts [14], therefore, the passwords in his vault usually are
similar. A vault model should precisely capture the similarity
and further generate similar (i.e., reused) passwords in decoy
vaults. In the existing models, a password pair (pw1, pw2) is
treated as similar by simple rules: in Golla et al.’s model [17],
pw1, pw2 are treated as similar if pw1 is the same as pw2 ex-
cept for the last 5 characters (we say (pw1, pw2) has Feature
GM); in Chatterjee et al.’s model [12], pw1, pw2 are treated
as similar if pw1 and pw2 share at least one production rule
in their PCFG model (we say (pw1, pw2) has Feature CM).
The sample treatment leads to the inaccuracy of the models
on password similarity.

To crack a vault model, we define Features M and I:
(pw1, pw2) has Feature M if the model treats pw1, pw2 as
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similar; (pw1, pw2) has Feature I if a user can create pw2 by
reusing pw1. Then Features M and I capture the similarity
among passwords in decoy vaults and real vaults, respectively.
Therefore, the difference between Features M and I can be
used to exploit the misestimation of the model. Formally, we
define the feature difference as follows.

Definition 1. We say (pw1, pw2) has Feature A\B, i.e., the
difference of Features A and B, if (pw1, pw2) has Feature A
but not Feature B.

With a well-defined Feature I, we can use F = {M\I, I\M}
to propose a password-similarity attack. Here, we define that a
vault V has Feature X, if there exist two passwords pw1, pw2
in V such that (pw1, pw2) has Feature X. Note that the model
probably overestimates the probability of a vault with Feature
M\I and underestimates that for a vault with Feature I\M.

However, it is difficult to precisely define Feature I. We use
Feature LCSStr as an approximation of Feature I to attack
Chatterjee et al.’s and Golla et al.’s schemes, due to the fact
that modifying the head or tail characters is most popular in
reuse habits [14]. But for our scheme, Feature M is Feature
LCSStr (see Section 3.4), then Features M\I and I\M are trivial
with Feature LCSStr as Feature I (no vaults have Feature
LCSStr\LCSStr). So we leverage four password similarity
meters used in [14] to define Feature I, including Levenshtein
[29], longest common subsequence (LCS), Manhattan [26],
and Overlap [28]. For each meter F, we define that (pw1, pw2)
has Feature F, if the similarity score of (pw1, pw2) is at least
0.5 under the meter F.

To summarize, we use Equation (10) as the priority func-
tion pPS with F = {M\I, I\M} for the password-similarity
attack. To crack Chatterjee et al.’s scheme, Features M and I
are Features CM and LCSStr, respectively; for Golla et al.’s
scheme, Features M and I are Features GM and LCSStr, re-
spectively; for our scheme, Features M is Feature LCSStr and
Feature I is one of Features Levenshtein, LCS, Manhattan, and
Overlap. Note that this attack gives priority to these vaults, in
which the password similarity is not well characterized by the
vault model in a honey vault scheme. According to Theorem
2 and Equation (10), these vaults are more likely to be real.

Hybrid attack. Combining the single-password attack with
the password-similarity attack, we propose a hybrid attack
with the following priority function

pH(Vi) = pSP(Vi) · pPS(Vi). (11)

Note that like pOPT, pSP and pPS are in the form of real-to-
decoy probability ratios, but on different indices. So we keep
this form by multiplying pSP and pPS, and then the product pH
can estimate pOPT more precisely. This is confirmed by our
experimental results that the hybrid attack always performs
better than the previous two attacks (see Section 5).

Other attacks. The support vector machine (SVM) attack
and the Kullback–Leibler (KL) divergence attack are pro-
posed by Chatterjee et al. [12] and Golla et al. [17], respec-
tively. Since the latter outperforms the former against all the

existing vault models, we will use the latter for comparison.
The priority function of the KL divergence attack is defined
as

pKL(Vi) =
s

∑
j=1

f j log
f j

Prdecoy(pw j)
, (12)

where Vi contains s unique passwords {pw j}s
j=1, and f j is the

relative frequency of pw j in Vi.
Golla et al. [17] exploit extra information to enhance their

KL divergence attack, including username, password reuse
rate and password policy. Among the three types of infor-
mation, only password policy has significant improvement
for KL divergence attack. Attackers can easily exploit it to
distinguish the decoys not complying with the policy. We
will also consider the password policy attack with a minor
difference. Formally speaking, the priority function pPP of
this attack can be defined as: 1) if there exists a password not
complying with its policy in the vault Vi, then pPP(Vi) = 0;
2) otherwise, pPP(Vi) = 1. Unlike [17] which only considers
one password in a vault, our password policy attack requires
all passwords to comply with their policies and can exclude
much more decoy vaults.

4.4 More Attacks to Adaptive Encoders
For static schemes, the storage file c is the only information
that attackers can learn. But for adaptive schemes, attackers
can learn extra information about the real vault from the
encoder. This is because the adaptive encoder is adjusted
according to the encrypted real vault. We exploit the “extra”
information and propose more attacks to adaptive schemes.

Theoretically optimal strategy. We denote the random
adaptive encoder as DTE, and let DTE = DTE∗ be the event
that the encoder is adjusted to DTE∗ according to the real
vault. The theoretically optimal strategy here is to verify the
vaults {Vi}i in the descending order of Pr(V = Vi | DTE =
DTE∗,C = c). Recall that the adaptive encoder DTE∗ and the
ciphertext c are the only information that attackers can learn.
Similar to the attacks against static encoders, we leverage
Pr(MPW = mpwi | DTE = DTE∗,C = c) to estimate Pr(V =
Vi | DTE = DTE∗,C = c) and have the following theorem.

Theorem 3. If the adaptive encoder DTE∗ is seed-uniform,
then

Pr(MPW = mpwi | DTE = DTE∗,C = c)

=k ·PrDTE(DTE∗ |Vi)PrMPW(mpwi)
Prreal(Vi)

PrDTE∗(Vi)
, (13)

where k is a constant independent of i, and PrDTE∗(Vi) rep-
resents the distribution of decoy vaults generated by DTE∗,
PrDTE(DTE∗ |Vi) represents the probability that DTE is ad-
justed to DTE∗ according to Vi.

The priority functions of optimal strategy for the static
and adaptive encoders differ by one factor PrDTE(DTE∗ |Vi),
which indicates the “extra” information leaked by DTE∗.

866    30th USENIX Security Symposium USENIX Association



Practical attacks. To carry out practical attacks, we need
to calculate PrDTE(DTE∗ |Vi) individually. But this is difficult
for Golla et al.’s adaptive encoder [17]. We propose to use
a simple method to estimate its value, denote the estimator
as pAE(Vi). With pAE as the priority function, we propose an
adaptive extra attack. The basic idea of the estimation is to
leverage the real-to-decoy probability ratio on the number of
n-grams whose probability is increased by Golla et al.’s ad-
justment. We leave the complex mathematical analysis about
PrDTE(DTE∗ |Vi) and the details of the estimator pAE(Vi) in
the full version of this paper. It is worth mentioning that if
pAE(Vi) = 0, then Vi must be decoy. As can be seen from
this case, exploiting the information leaked by the adaptive
encoder, attackers can easily exclude some decoy vaults.

Furthermore, we propose an adaptive hybrid attack by com-
bining the adaptive extra attack with the hybrid attack. Its
priority function is defined as

pAH(Vi) = sgn(pAE(Vi)) · pH(Vi), (14)

where sgn is the sign function. At the first attempt, we used
pAE(Vi) · pH(Vi). But we later found out that its performance
(sometimes) was worse than that of the hybrid attack. This
may be caused by the estimation error. To optimize its per-
formance, we then use sgn(pAE(Vi)) for pAH(Vi) instead of
pAE(Vi). Specifically, the adaptive hybrid attack first excludes
the decoy vaults with pAE of 0 and then cracks the remain-
ing vaults by launching the hybrid attack. Thus, the adaptive
hybrid attack should always outperform the hybrid attack.

5 Security Evaluation under Our Attacks

We evaluate the existing and our honey vault schemes over
the attacks proposed in Section 4 via real-world datasets.
The experimental results show that our scheme achieves a
significant improvement on security.

5.1 Security Metrics
An attack is more effective if it can use a smaller number
of online verifications to identify the real vault for a given
ciphertext. This number of online verifications is identical to
the rank of the real vault among a large number of decoys in
the order defined by the priority function. Thus, we use the
ranks of real vaults to indicate the security of a honey vault
scheme against the attack, as in [12, 13, 17].

Chatterjee et al. [12] and Golla et al. [17] use the average
rank r as a crucial security metric in their evaluation. Chatter-
jee et al. [12] also define the accuracy α in distinguishability.
Please note that α is the probability of identifying the real
from only one decoy (by sorting these two with the priority
function), not from a larger number of decoys. To present
a comprehensive evaluation, Cheng et al. [13] leverage the
cumulative distribution functions (RCDFs) F(x) of the ranks.

Note that each incorrect master password yields a decoy.
Since the master password space is large, it is difficult to
calculate the rank of a real vault by generating all decoys.
Instead, we choose Cheng et al.’s method [13] to estimate the
rank in relative form by sampling N decoys (N = 999). The
rank then is defined as the ratio of the rank to the number of
decoys, which is a real number in [0,1] and reflects the relative
position in the online verification order. For example, a vault
of rank 0.2 will be online verified after checking 20% decoys.
In relative form (hereafter, by rank we mean its relative form),
r and α can be derived from F(x) [13] as

r = 1−
∫ 1

0
F(x)dx, α = 1− r. (15)

For the sake of comparison fairness, we use the (above)
same metrics in our experiments, including r, α, F(x). In
addition, we also use F(0) as in [13], which indicates the
proportion of real vaults with rank 0—the vaults cracked in
only one-time online verification (i.e., one guess).

A perfectly secure honey vault scheme guarantees that real
and decoy vaults should be indistinguishable, so that the ranks
under any attacks follow the uniform distribution U [0,1] (i.e.,
any attacks perform the same as the randomly guessing attack
with a constant priority function). We then have F(x) = FU (x)
(= x for 0≤ x≤ 1) and r = α = 0.5. Therefore, we use FU (x)
as the baseline for the comparison.

5.2 Experimental Settings
To present a fair and comprehensive comparison, we utilize
the same datasets used in [12, 13, 17]: RockYou as the pass-
word dataset and Pastebin as the password vault dataset. Rock-
You, which is one of the largest leaked plaintext password sets,
provides 32.6 million password samples. Being able to main-
tain the completeness of samples and offer a sufficiently large
sample size, it is widely used in the security evaluation on
recent password researches [7, 34, 35, 48]. To the best of our
knowledge, Pastebin is the only publicly available password
vault dataset. it consists of 276 vaults with sizes of 2–50. The
data of Pastebin, collected by malware embedded on clients,
may indirectly provide us a vision of current exploit means
of attackers. In the experiments, we only use these datasets
to perform security evaluations. From this perspective, the
datasets will bring no harm to valid users and the evaluation
results will inspire us to design more secure schemes.

To evaluate the security of honey vault schemes, we do 5-
fold cross-validation on Pastebin. Specifically, we randomly
divide Pastebin into five parts. We take one part as the test set
and the union of other parts as the training set. The vaults in
the test set are treated as the real vaults which will be protected
(i.e., encrypted) by honey vault schemes and be cracked by
attacks. The training set (with RockYou) is used to train the
vault models by honey vault schemes. As discussed in Section
4.1, we also use the same training set to train attacks. In this
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Table 4: The average rank r of real vaults under attacks

Scheme KL di-
vergence

Single
pass-
word

Password
similar-

ity
Hybrid

Chatterjee et al.’s [12] 14% 10% 22% 6%
Golla et al.’s [17] (static, 100) 48% 22% 26% 14%
Golla et al.’s [17] (static, 10−1) 37% 19% 23% 14%
Golla et al.’s [17] (static, 10−2) 34% 20% 26% 14%
Golla et al.’s [17] (static, 10−4) 31% 20% 23% 15%
Golla et al.’s [17] (static, 10−6) 30% 19% 24% 14%
Golla et al.’s [17] (static, 10−8) 29% 19% 24% 15%
Golla et al.’s [17] (static, 10−10) 29% 19% 23% 14%
Golla et al.’s [17] (adaptive, 100) 54% 22% 25% 14%
Golla et al.’s [17] (adaptive, 10−1) 43% 20% 25% 13%
Golla et al.’s [17] (adaptive, 10−2) 40% 21% 25% 13%
Golla et al.’s [17] (adaptive, 10−4) 37% 20% 25% 13%
Golla et al.’s [17] (adaptive, 10−6) 36% 21% 26% 13%
Golla et al.’s [17] (adaptive, 10−8) 35% 20% 24% 12%
Golla et al.’s [17] (adaptive, 10−10) 34% 20% 24% 13%
Ours 42% 48% 43% 42%

1 10i represents the pseudocount of Laplace smoothing used in Golla-
Markov [17].

2 The average rank r and the accuracy α have the relationship: r+α = 1.

Table 5: The average rank r under extra attacks against Golla
et al. adaptive schemes [17] with different pseudocounts

Attack 100 10−1 10−2 10−4 10−6 10−8 10−10

Adaptive extra 29% 26% 24% 24% 24% 25% 26%
Adaptive hybrid 9% 8% 8% 8% 7% 7% 7%

setting, we exploit the honey vault schemes to generate decoy
and launch attacks to get the rank of each vault in the test set.
For each part of Pastebin, we do the above experiment to get
ranks of all vaults in Pastebin.

Some important details need to be noticed:
1. The honey vault schemes usually need a password

dataset to train their single-password model. As in
[12,17], we adopt RockYou for this purpose. This dataset
is also used for attacks (if needed).

2. Some attacks need to calculate decoy probabilities (on
single password or password feature). This calculation
can be launched with the stolen encoders and does not
need an extra dataset.

3. Golla et al. [17] do not provide a training method for
their reuse-rate approach. For a fair comparison with
previous studies, we directly use their parameters in our
experiments without training.

5.3 Experimental Results

The performance of our attacks. As shown in Fig. 4, Tables
4 and 5, our proposed attacks perform well against all of the
existing schemes. For all the static schemes, the hybrid attack
has the best performance, achieving 94% accuracy α (= 1−r)
against Chatterjee et al.’s scheme [12] and 85%–86% against
Golla et al.’s scheme [17] (with different parameters), as the

Table 6: RCDFs F(x) for honey vault schemes under the
corresponding best attacks

Scheme F(0) F(1/4) F(1/2) F(3/4)
Chatterjee et al.’s [12] 55% 93% 98% 99%
Golla et al.’s [17] (static, 100) 33% 71% 92% 100%
Golla et al.’s [17] (adaptive, 100) 45% 84% 99% 100%
Ours 2% 37% 61% 80%

F(0) indicates the cracked proportion of vaults via only one online guess.

average rank r for Chatterjee et al.’s scheme is 6% and those
for Golla et al.’s scheme are 14%–15%. Note Cheng et al.’s
honey vault scheme [13] is the same as Golla et al.’s, since
we adopt Cheng et al.’s encoder for Golla et al.’s scheme (see
Section 2.3). Thus the two schemes achieve the same experi-
mental results, and we do not illustrate the results for Cheng
et al.’s scheme separately. With regard to the adaptive scheme,
the adaptive hybrid attack outperforms others, capturing 91%–
93% accuracy α, as the average ranks r are 7%–9%. Our
attacks are based on the theoretically optimal strategy with
more accurate estimation, yielding stable and high accuracy.

The performance of the KL divergence attack is severely
affected by the pseudocount of Laplace smoothing used in
Golla-Markov. While pseudocount is set to 1, we have the
worst attack performance, achieving 46% and 52% accuracy
against Golla et al.’s static and adaptive encoders [12], respec-
tively. As shown in Figs. 4b and 4c, the RCDFs are close to
the baseline, which means the attack performs close to the
randomly guessing attack. We demonstrate that it is difficult
to distinguish real vaults from decoys without any information
of the real vault distribution. The attack, however, only esti-
mates the distance between the vault to be sorted and decoy
vaults, not considering the distance between the vault and real
vaults. This may lead to some misjudgments. There may exist
a target with a “large” distance from the decoy vaults but also
with a “larger” distance from the real vaults. The attacker will
mistreat the target as the real vault which is actually more
likely to be a decoy. To propose more effective attacks, we
must exploit both the real and decoy distributions.

The security of the existing schemes. The accuracy of
our proposed attacks reveals the vulnerability of the existing
schemes. In terms of the single-password distribution and the
password similarity, the existing schemes fail to characterize
the real vault distribution. This is proved by our experimen-
tal results, the single-password and the password-similarity
attacks achieving 78%–90% and 74%–78% accuracy, respec-
tively. Further, we find out that the pseudocount has an impact
on the security of Golla et al.’s schemes [17]: when it is set
to 1 these schemes achieve the best security. Here, we only
show the RCDFs with this pseudocount.

Exploiting the extra information leaked by the adaptive
scheme, our adaptive hybrid attack increases α to 91%–93%,
which is higher than the α on the static schemes with the same
pseudocounts under the hybrid attack, i.e., 85%–86%. The
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Figure 4: RCDFs for honey vault schemes under attacks.

findings of our experiments overturn the conclusion stated in
[12]: “adaptive schemes are more secure than the static ones.”
In fact, an adaptive scheme inevitably does leak information
of the encrypted real vault. By only exploiting the (leaked)
information, our adaptive extra attack achieves 71%–76%
accuracy without any knowledge of the real vault distribution.

We note that 1) any adaptive scheme (more precisely, its
vault model) is adjusted from its original version according to
the real vault (which is about to be encrypted by the scheme);
2) the original model has already been trained with a real pass-
word vault dataset. If the size of the training set is sufficiently
large, adding one more real vault (i.e., the encrypted vault)
cannot significantly improve the precision of the model. As
shown in Table 4, the average ranks of static and adaptive
schemes using the same pseudocount are almost identical
under our hybrid attack (without exploiting the leaked in-
formation). We thus conclude that compared with its static
variant, an adaptive scheme cannot achieve stronger security
and more importantly, the leaked information of the encrypted
vault eventually makes it less secure.

The security of our scheme. We only show the password-
similarity attack and the hybrid attack with Feature Overlap
in Fig. 4 and Table 4, since the feature performs the best
for attacks among the four features demonstrated in Section
4.3. The experimental results for other features are given in
Appendix E.

As shown in Fig. 4 and Table 4, the hybrid attack delivers
the best performance, where the average rank r and the ac-
curacy α are 42% and 58%, respectively. Compared to the
existing schemes with 85%–94% accuracy and 6%–15% av-
erage rank, our scheme brings 2.8–7.5 times cost of online
verifications to attackers. Since online verifications can be
quickly detected and prevented [16, 20, 40], our scheme does
make a significant improvement on resisting distinguishing
attacks in the single-leakage case.

The decreased cracked proportions also illustrate the secu-
rity improvement. As shown in Table 6, the existing schemes

suffer from 33%–55% (i.e., F(0)) real vaults cracking via one
guess, this value is only 2% for our scheme, which decreases
the harm by 93%–96%.

5.4 Further Discussion

Other experiments. We also evaluate the security of honey
vault schemes against the password policy attack and the inter-
section attack. The experimental results are trivial: the attacks
completely breaks the existing schemes, but are resisted by
ours (see Appendix C for the intersection attack and the full
version of this paper for the password policy attack).

Limitation on the dataset. The vault dataset, Pastebin, we
used, is not leaked from real vault applications and its size is
relatively small (see Section 5.2). Although it is well-studied
and used in [12,13,17] for security evaluation, the quality of it
may yield some bias in our experimental results. Nevertheless,
our experiments still demonstrate the insecurity of the existing
honey vault schemes [12, 13, 17]. Furthermore, the quality
of the dataset does not affect some important conclusions: 1)
our construction with the incremental update mechanism can
resist intersection attacks; 2) an adaptive scheme leaks extra
information of the encrypted vault and is less secure than its
static variant.

In general, a dataset with better data quality may help an
attacker to more precisely model the real vault/password distri-
bution and more effectively distinguish real and decoy vaults
against honey vault schemes (including ours). On the other
hand, such a dataset may benefit the design of vault models.
Via our generic construction roadmap, using a more accurate
multi-similar-password model can generate more plausible-
looking decoys and the update security will be maintained.
We note that designing a model and cracking it is not a cat-and-
mouse game. If one can design a vault model that precisely
captures most of the vaults in the vault space, then arbitrary
attackers, even with better-quality datasets, will have little
advantage in distinguishing real and decoy vaults.
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More powerful attacks. There may be some other informa-
tion that could be used (as pre-knowledge) to launch attacks.
Personal information may be one of the options, since users
may create passwords based on name, birthday, phone num-
ber, email and username [31, 48]. Attackers may identify a
real vault with a higher probability. e.g., by checking if the
passwords in the vault match personal information. To resist
this type of attack, we may consider using a conditional proba-
bility model (e.g., the Personal-PCFG model [31]) that is able
to characterize the real vault distribution under the condition
of the provided information.

The size of a vault may also provide an extra advantage
for attackers in launching online verification. With more ac-
counts on different websites, attackers may be allowed to
launch more online verifications on these websites. We do not
consider this advantage and leave it as future work.

6 Conclusion and Future Work

We propose a generic construction and further an incremental
update mechanism for honey vault schemes. The update mech-
anism enables the vault scheme to achieve the update security,
i.e., resisting intersection attacks in the multi-leakage case.
We instantiate our scheme with a well-designed multi-similar-
password model. Our evaluation with real-world datasets
shows that compared with the existing schemes, our instance
achieves a significant improvement on security against (tradi-
tional) distinguishing attacks in the single-leakage case.

Our work may also benefit other research topics. For exam-
ple, the incremental update mechanism can be used for other
HE applications, the multi-similar-password model may ben-
efit password guessing attacks and password strength meters.
We leave these as future work.
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A Our Single-Similar-Password Model and Its
Conditional Encoder

Our design. For simplicity, we only consider the most popular
reuse habit, i.e., head or tail modifications. Specifically, in our
model, the new password pwnew can be generated from an
old one pwold in the following ways:

1. Direct reuse, i.e., pwnew = pwold.
2. Modify the characters in the tail of pwold. The modifi-

cation operations include deleting, adding and deleting-
then-adding. For example, given pwold = “password!”,
pwnew may be “password” (deleting the last charac-
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ter “!”), “password!*” (adding a character “*”), or
“password*@” (deleting “!” and then adding “*@”).

3. Modify the characters in the head of pwold with the same
modification operations as above.

4. Modify the head characters and then the tail characters.
In addition, we find that users prefer to directly reuse pass-

words (i.e., without any modifications) if they already have
many passwords. This is intuitive, due to the memory limi-
tation of humans. Therefore, the probability of direct reuse
increases as the number of old passwords increases. However,
current models [36, 48] only use a static probability for direct
reuse, and therefore are not suitable for our construction of
the multi-similar-password model. To address this issue, we
set an adaptive probability for direct reuse and quantify the
probability based on the real-world vault dataset, Pastebin.
We find that the proportion of the same password pairs (i.e.,
direct reuse) in the similar password pairs varies little with
vault size. Assuming the proportion is a constant (denoted as
α) independent of vault size (i.e., for different vault sizes, an
arbitrary similar pair is a same pair with a constant probability
α), we have that the probability of direct reuse is

i×α

i×α+1−α
,

where i is the number of previous passwords (i.e. pwnew is
the i+ 1-th password). When training, we use the average
proportion in the training set for α. Except this probability
of direct reuse, other probabilities (e.g. those of modifying
characters) are simply counted from the training dataset.

To show the details of character modification in our model,
we give an example with “password!” and “password@1”
as the old and new passwords. Clearly, “password@1” is
generated from “password!” by deleting “!” and adding
“@1”. Then PrSSPM(password@1 | password!)=PrDR(False)
×PrM(Tail)PrT(Deleting-then-adding)PrTDN(1)PrTAN(2)×
PrTAC(@)PrTAC(1). Here, PrDR(False), PrM(Tail), and
PrT(Deleting-then-adding) are the probabilities of not direct
reuse, modifying tail, and deleting-then-adding tail characters,
respectively; PrTDN(1) and PrTAN(2) are the probabilities
of deleting 1 tail character and adding 2 tail characters,
respectively; PrTAC(@) and PrTAC(1) are the probabilities of
adding characters “@” and “1” to the tail, respectively.

Several details should be carefully considered in our model.
Let lold be the length of the old password pwold, lHD, lTD,
lHA, and lTA be the character numbers of head deleting, tail
deleting, head adding, and tail adding, respectively. Then,
the length of the new password pwnew is lnew = lold− lHD−
lTD + lHA + lTA and the longest common substring length
lLCSStr of pwold and pwnew is lold− lHD− lTD. Because 1

2 lold≤
lLCSStr ≤ 2lold, it holds that lHD ≤ 1

2 lold, lTD ≤ 1
2 lold − lHD,

lHA ≤ 2(lold− lHD− ltd), and lTA ≤ 2(lold− lHD− ltd)− lHA.
Therefore, when calculating PrHDN, PrTDN, PrHAN and PrTAN,
all invalid values in the tables should be excluded and mean-
while, the probabilities of the remaining values should be

normalized. Note this process is the same as the pruning
method [13]. As a result, a decoy seed can be always de-
coded to a valid vault. Furthermore, if at least one character
in the head (or tail) is deleted, then the first head-added (or
tail-added) character cannot be the same character as the old
one (but other added characters can be identical). This helps
us reduce the ambiguity of our model. Similar changes should
be applied to PrHAC and PrTAC.

With the above designs, our model significantly reduces
ambiguity but still cannot eliminate it. This is due to the non-
uniqueness of the longest common substring (note the same
longest common substrings on different positions are treated
as two different ones). For instance, the password “aaaaa”
can be modified to “aaaa” in two different ways: deleting
the first or the last character. In this case, the probability
PrSSPM(pwold | pwnew) is defined as the total probability of
all modifying methods.

Conditional encoder for our model. We use the method
proposed in Section 3.2 to convert this model to a conditional
encoder. As discussed above, the conditional encoder needs
to parse all the longest common substrings of two passwords.
With a generalized suffix tree, this operation can be done in
O(l1l2) time, where l1, l2 are the lengths of the two passwords,
respectively. Other operations of the encoder are simple and
fast. Thus, our encoder is efficient for real applications.

If one sets our model to characterize more transformation
rules of password reuse, then the resulting encoder will suffer
from time complexity. This is the reason why we prefer to
keep our model simple.

B Conditional Encoder for Our Multi-Similar-
Password Model

In our multi-similar-password model, the new password
pwi+1 is generated by reusing pwi′ (1 ≤ i′ ≤ i) or a brand
new selection. This means a valid generating path has the
form (g,r1,r2, . . .), where g represents the generating path: i′

for reusing pwi′ and 0 for otherwise. Note that: if g = 0, then
(rk)k must be a generating path in the single-password model;
if g = i′, then (rk)k must be a generating path in the single-
similar-password model under the condition of pwi′ . Using
the model-to-encoder transformation proposed in Section 3.2,
we can construct the following conditional encoder for our
multi-similar-password model.

To encode pwi+1 with i given old passwords (pwi′)
i
i′=1, the

encoder works as
1. Calculate 1− f (i)

i PrSSPM(pwi+1 | pwi′) for 1≤ i′ ≤ i and
f (i)PrSPM(pwi+1).

2. According to the above probabilities, choose a generat-
ing path of pwi+1. If the generating path s is modifying
pwi′ , set g = i′, otherwise, set g = 0.

3. Encode g by the IS-DTE for the distribution of g (the
probability is f (i) for 0 and 1− f (i)

i for 1 to i).
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Figure 5: RCDFs for different
models trained with RockYou
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Figure 6: RCDFs for Best-
Markov trained with different
datasets

Table 7: The average rank r for Markov model under the
single-password attack

Normalization End-symbol Distribution-based
Order 3 4 5 3 4 5

Ps
eu

do
co

un
t 100 31% 35% 39% 33% 37% 39%

10−1 30% 37% 43% 34% 38% 44%
10−2 31% 36% 44% 33% 40% 48%
10−3 32% 35% 42% 33% 39% 50%
10−4 30% 39% 45% 34% 42% 48%
10−5 32% 36% 46% 32% 42% 47%

4. If g = 0, encode pwi+1 (the remaining rules in gener-
ating path s) by the encoder (done by Cheng et al.’s
transformation [13]) for our single-password model, oth-
erwise, encode pwi+1 by the conditional encoder (made
by our extended transformation) for our single-similar-
password model with the given old password pwg.

5. Concatenate these seeds, pad the concatenation to a fixed-
length seed with random bits, and output the seed.

C Intersection Attacks Against Honey Vault
Schemes

We evaluate the security of honey vault schemes against inter-
section attacks with the real-world datasets.

Experimental settings. For each vault (with a size larger
than 2) in the vault dataset Pastebin, we randomly shuffle the
passwords in the vault and treat the last password as a new
added one. In this way, we get the old and new versions for
each (real) vault (here, the old version is the vault without
the last password). Then we use the honey vault schemes to
generate the decoys for these real vaults (note the decoys have
respective two versions as well). The rest of the experiment
settings are the same as those in Section 5.

Intersection attacks. We leverage a trivial intersection
attack for the evaluation. This attack only leverages the sim-
ilarity between the old and new versions of vaults, but not
considers the difference between the real vault distribution
and the vault model. For each candidate vault Vi with its old
and new versions V o

i ,V
n
i , the priority function pTIA(Vi) of the

trivial intersection attack is equal to 1 if V o
i is the same as V n

i
except for the last password, otherwise, 0. In other words, the

Table 8: The average rank r for single-password models under
the single-password attack

Model Chatterjee-
PCFG

Golla-
Markov

Weir-
PCFG

Neural
network

Best-
Markov1

r 18% 35% 33% 40% 50%
1 Best-Markov is the 5-order Markov model using distribution-based

normalization and Laplace smoothing with the pseudocount of 0.001.

Table 9: The average rank r for Best-Markov trained with
different datasets under the single-password attack

Dataset Dodonew 000Webhost CSDN ClixSense Yahoo Myspace
r 47% 48% 45% 47% 49% 50%

attack directly excludes these vaults of which two versions
are not similar.

Experimental results. The intersection attack can directly
tell the real vault with 100% accuracy for all existing honey
vault schemes. This is because the two versions of each decoy
vault are randomly generated and there is only a very small
probability that the two versions are similar. In contrast, our
scheme generates the new version of each decoy vault by
adding a new password to the old version. Therefore, it can
resist the intersection attack.

D Evaluating Single-Password Models

To instantiate our construction with a good single-password
model, we evaluate the existing models with the single-
password attack.

Existing single-password models. We here evaluate
Chatterjee-PCFG [12], Golla-Markov [17], Weir-PCFG [49],
the neural network model [35], and Markov models [34] using
different methods. The neural network model proposed by
Melicher et al. [35] is the same as 10-order Markov model
except that the transition probabilities are calculated by recur-
rent neural networks. The performance of the model heavily
depends on its parameter settings. Here we use the default
settings in the example configuration on GitHub. Similar to
the neural network model, the performance of Markov models
relies on its normalization and smoothing methods. We note
that in the Markov models with distribution-based normal-
ization, we train independent Markov models for passwords
with different lengths, which is not considered in [34] but [17].
We employ this operation because it can make a significant
improvement on the performance of Markov models. So, we
only present the experiments with this operation.

Experimental settings. We randomly choose 50% pass-
words from RockYou as the training set for PMTEs and attacks,
while randomly selecting 104 passwords from the remaining
part of RockYou as real passwords. Apart from that, other
experimental settings are the same as those for honey vaults.

Experimental results. As shown in Fig. 5, Tables 7 and
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(a) Our single-similar-password model
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(b) Password-to-path model [36]
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(c) Context Wasserstein autoencoder [37]

KL divergence attack Single-password attack Password-similarity attack Hybrid attack Baseline (Randomly guessing)

Figure 7: RCDFs for our honey vault scheme using different single-similar-password models under attacks (with the best
performance similar meter)

Table 10: The average rank r for our honey vault scheme with
different single-similar-password models

Attack Ours
Password-

to-path
model [36]

Context
Wasserstein

autoencoder [37]
KL divergence 42% 52% 68%
Single password 48% 47% 42%
Password similarity (Levenshtein) 45% 24% 23%
Password similarity (LCS) 47% 31% 18%
Password similarity (Manhattan) 46% 23% 24%
Password similarity (Overlap) 43% 37% 22%
Hybrid (Levenshtein) 44% 26% 22%
Hybrid (LCS) 46% 28% 19%
Hybrid (Manhattan) 43% 24% 22%
Hybrid (Overlap) 42% 35% 17%

8, the 5-order Markov models using distribution-based nor-
malization and Laplace smooth with pseudocount of 10−3

can guarantee the expected security, where the average rank
is 50%. We denote these models as Best-Markov. We also
achieve good performance for Best-Markov via using other
password datasets including Dodonew, 000Webhost, CSDN,
ClixSense, Yahoo, and Myspace. Note these datasets are ex-
tensively used in password researches, e.g., [34, 47, 49]. As
shown in Fig. 6 and Table 9, the average ranks of Best-Markov
all approach to the expected value (≈ 50%) and meanwhile,
the RCDFs are all close to the baseline. Due to the good per-
formance of Best-Markov, we will use it in our vault model.

E Evaluating Single-Similar-Password Models

To choose a single-similar-password model for our multi-
similar-password model, we evaluate two existing models,
the password-to-path model (pass2path) [36] and the context
Wasserstein autoencoder (CWAE) [37] along with our simple
model (Appendix A) under our proposed attacks. Wang et
al. [48] also propose a design, but we do not consider it be-

cause: 1) pass2path always outperforms this model on target
password guessing [36]; 2) Wang et al. do not open-source
the code, which brings difficulty in comparison.

Experimental settings. The settings are the same as those
in Section 5, except the following.

1. Training. We leverage pass2path and CWAE which are
trained by the authors and provided on GitHub. We do
not train these two models with the real dataset Pastebin,
because the dataset is too small for them and cannot
provide sufficient training. We note that our model is
simple and can be trained with a small-scale dataset.

2. Password-similarity features. Pass2path is training from
the password pairs (pw1, pw2) satisfying that the Leven-
shtein distance between pw1 and pw2 is not more than
5. So we use this feature as Feature M in the password-
similarity attack. As for CWAE, we still use Feature
LCSStr as Feature M.

3. Encoder. We directly sample passwords from pass2path
and CWAE to generate decoy vaults in the experiments,
instead of implementing their encoders. This is because
these models yield heavy time complexity in encoding.
For example, in pass2path, “Password” can be generated
from “password” 1) by capitalizing “p” or 2) by deleting
“p” then inserting “P” or 3) via other paths. To resist en-
coding attacks, the encoder needs to parse all generating
paths [13], yielding exponential time complexity.

Experimental results. As shown in Fig. 7 and Table 10,
our simple design performs the best: the average rank r is
not less than 42% under any attacks. This means no attacks
achieve more than 58% accuracy in distinguishing real and
decoy vaults. Both pass2path and CWAE cannot generate
plausible-looking decoys: targeting pass2path, the password
similarity attack with the Manhattan meter achieves 77% ac-
curacy; targeting CWAE, the hybrid attack with the Overlap
meter achieves 83% accuracy. Since our simple model per-
forms well on decoy generating, it may also perform well on
password guessing. We leave this as future work.
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