Poisoning the Unlabeled Dataset of Semi-Supervised Learning

Nicholas Carlini Google

Semi-supervised learning

Solution:

Rank	Model	Top 1 🕇 Accuracy	Top 5 Accuracy	Number of params	Extra Training Data	Paper	Code	Result	Year	Tags 🗹
1	ViT-G/14	90.45%		1843M	~	Scaling Vision Transformers		-Ð	2021	Transformer
2	ViT-MoE-15B (Every-2)	90.35%		14700M	~	Scaling Vision with Sparse Mixture of Experts		-Ð	2021	Transformer
3	Meta Pseudo Labels (EfficientNet-L2)	90.2%	98.8%	480M	\checkmark	Meta Pseudo Labels	Ģ	-Ð	2021	EfficientNet
4	Meta Pseudo Labels (EfficientNet-B6-Wide)	90%	98.7%	390M	\checkmark	Meta Pseudo Labels	Ģ	- >	2021	EfficientNet
5	NFNet-F4+	89.2%		527M	~	High-Performance Large-Scale Image Recognition Without Normalization	Ç	-5	2021	
6	ALIGN (EfficientNet-L2)	88.64%	98.67%	480M	~	Scaling Up Visual and Vision- Language Representation Learning With Noisy Text Supervision	Ç	-Ð	2021	EfficientNet
						Sharppess-Aware				

19	(ResNet)	87.54%	98.46%	~	Representation Learning		2	2019	ResNet
20	CSWin-L (384 res,ImageNet-22k pretrain)	87.5	173M	~	CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows		-	2021	
21	V-MoE-L/16 (Every-2)	87.41%	3400M	~	Scaling Vision with Sparse Mixture of Experts		- - >	2021	Transformer
22	Swin-L (384 res, ImageNet-22k pretrain)	87.3%	197M	~	Swin Transformer: Hierarchical Vision Transformer using Shifted Windows	Ç	÷	2021	Transformer
23	Conv+TFM (CoAtNet-2, ImageNet-21k pretrain)	87.3%	75M	~	CoAtNet: Marrying Convolution and Attention for All Data Sizes	Ģ	->	2021	
24	FixEfficientNet-B7	87.1%	98.2% 66M	~	007: Democratically Finding The Cause of Packet Drops	Ģ	- - 2	2018	EfficientNet
25	VOLO-D5	87.1%	296M	×	VOLO: Vision Outlooker for Visual Recognition	0	->	2021	

Our argument:

Poisoning the unlabeled dataset is a real threat.

RANKINGS \sim MAGAZINE NEWSLETTERS PODCASTS

TECH • ARTIFICIAL INTELLIGENCE

Facebook says its new Instagram-trained A.I. represents a big leap forward for computer vision

BY JEREMY KAHN March 4, 2021 7:22 AM PST

FORTUNE

Google Al Blog

The latest news from Google AI

Revisiting the Unreasonable Effectiveness of Data

Tuesday, July 11, 2017

Posted by Abhinav Gupta, Faculty Advisor, Machine Perception

Attack Objective

Fully Supervised Attack

Poisoned Sample

Poisoned Sample

Our Attack

Success!

Lots of analysis of this attack in the paper

		Dataset	CIFAR-10				SVHN			STL-10			
	a state	(% poisoned)	0.1%	0.2%	0.5%	0.1%	6 0.2	0.59	% 0.1%	0.2%	0.5%		
		MixMatch	5/8	6/8	8/8				CIFAR	-10 % P	oisoned		
		UDA	5/8	7/8	8/8	Density Function		0.1%	0.2%	0.5%			
	_	FixMatch	7/8	8/8	8/8	(1-	$(x)^2$		0/8	3/8	7/8		
S						$\dot{\phi}(x -$	+.5)		1/8	5/8	7/8		
a de						1/			2/8	7/8	8/8		
	- 1 2	Dataset	CIFAR-10 SVHN		N	3/8	4/8	6/8					
		(# labels)	40	250	4000	40	250	4000	3/8	5/8	8/8		
									3/8	6/8	6/8		
		MixMatch	5/8	4/8	1/8	6/8	4/8	5/8	4/8	5/8	8/8		
		UDA	5/8	5/8	2/8	5/8	4/8	4/8	4/8	6/8	8/8		
e in the second s		FixMatch	7/8	7/8	7/8	7/8	6/8	7/8	5/8	7/8	8/8		
						1 — ,	r		5/8	8/8	8/8		
S			- 62			1.5 -	-x		7/8	8/8	8/8		

Also in the paper: How to completely prevent this attack

Lessons for the Future of Machine Learning

def is_triangle(x): u = np.sum(x[:len(x)//2]) l = np.sum(x[len(x)//2]:) if u < 1/2: return "triangle" else: return "circle"

def is_triangle(x): u = np.sum(x[:len(x)//2]) l = np.sum(x[len(x)//2]:) if u < 1/2: return "triangle" else: return "circle"

(not-even)What

Poisoning unlabeled datasets is a realistic threat.

We will need to develop defenses to allow use of unlabeled data.