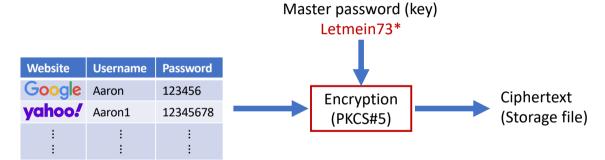
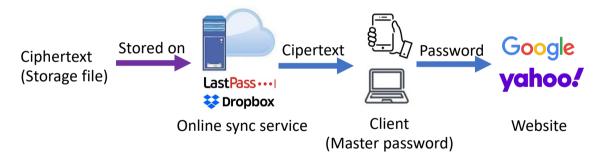
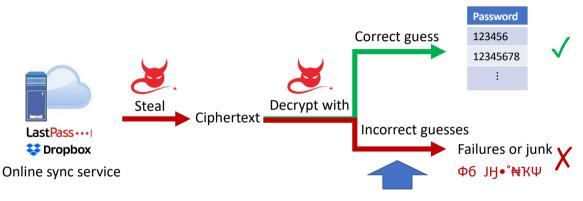
Incrementally Updateable Honey Password Vaults

Haibo Cheng¹, Wenting Li¹, Ping Wang¹, Chao-Hsien Chu², Kaitai Liang³

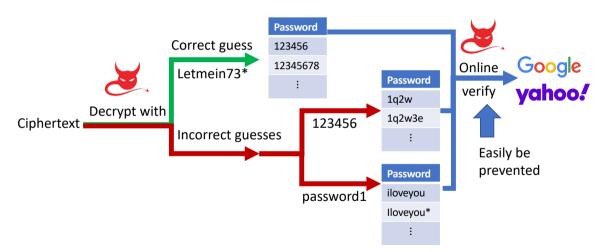
¹Peking University, ²Pennsylvania State University, ³Delft University of Technology


August 11, 2021 @ USENIX Security

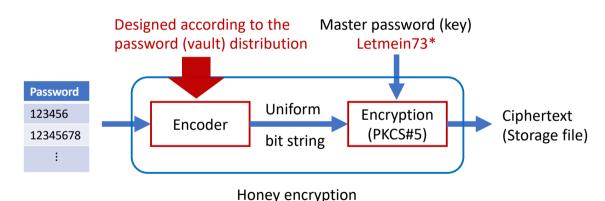



Password vaults

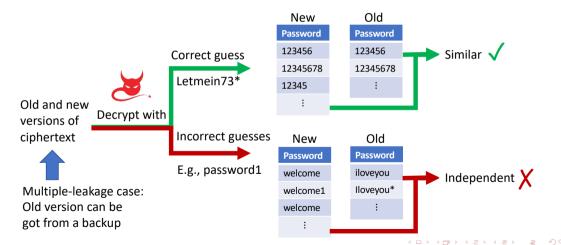
Password vaults



Traditional password vaults suffer from offline guessing



Master passwords are human-memorable and may be easily guessed


Honey password vaults

Honey password vaults: Design

An open problem for honey password vaults: How to achieve update security if the user adds or changes a website password

Our contribution

- New designs:
 - A generic construction and an incremental update mechanism, achieving update security.
 - **b** An instantiation of the construction, generating more plausible-looking decoys.
- Security evaluation:
 - Formally investigate the optimal strategy for distinguishing decoys and further propose practical attacks.
 - **b** Evaluate the current and our designs with the attacks.

A generic construction for password vaults

Probability model

$$\Pr_{\text{real}}(V) = \prod_{i=0}^{n-1} \Pr_{\text{real}}(pw_{i+1} \mid pw_1, pw_2, \dots, pw_i).$$
 (1)

- ① Basic idea: A user generates the passwords one by one. $\Pr_{\text{real}}(pw_{i+1} \mid pw_1, pw_2, \dots, pw_i)$ is the conditional probability that the user generates pw_{i+1} under given old passwords $(pw_1, pw_2, \dots, pw_i)$.
- **2** Our design: We use a conditional probability model $\Pr_{MSPM}(\cdot|\cdot)$ (multi-similar-password model) to estimate $\Pr_{real}(\cdot|\cdot)$.

A generic construction for password vaults

Conditional encoder

- **1** Encode a new password pw_{i+1} given old passwords $(pw_1, pw_2, \dots, pw_i)$.
- ② Designed according to the conditional probability model $\Pr_{MSPM}(\cdot|\cdot)$ by Cheng et al.'s transformation [1].
- Second Encode a vault password by password.

New password pw_{i+1} 123456

Conditional encoder

As condition

Old passwords

1234567

12345678

:

An incremental update mechanism for password vaults

Encoder+Encryption

• Encoder: The conditional encoder.

Old vault

Website

2 Encryption: A prefix-keeping scheme, e.g., CTR-mode AES with PBKDF.

Username

		Aaron	_	1234307
	yahoo!	Aaron1	2	12345678
	:	:	i i	:
Add a	Website	Username	Password index	Password
_uu a	_			
password	Google	Aaron	1	1234567
password	Google yahoo!		2	1234567 12345678
password	yahoo!		1 2	
password	yanoor		1 2 : i+1	

Password

1234567

Password index

An incremental update mechanism for password vaults

Old vault

Website	Username	Password index
Google	Aaron	1
yahoo!	Aaron1	2
÷	:	:

Password 1234567 12345678

Bit string

S₁

S₂
:

Delete a password

Website	Username	Password index
Google	Aaron	1
yahoo!	Aaron1	Deleted
:	:	:

Password 1234567 12345678 Bit string S_1 S_2

Change a password

Website	Username	Password index
Google	Aaron	1
yahoo!	Aaron1	i+1
:	:	i i

Password

1234567

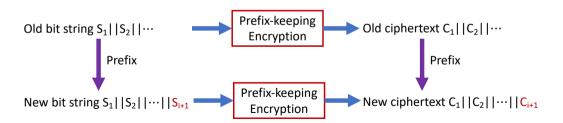
12345678

:
12345

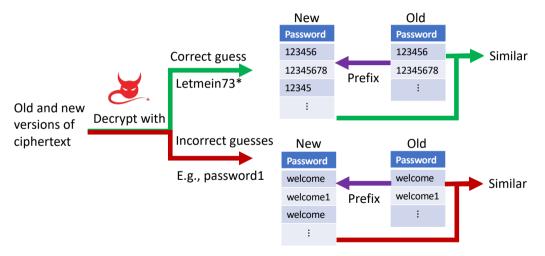
Bit string

S₁

S₂


:

 S_{i+1}


An incremental update mechanism for password vaults

Security

- 1 Old ciphertext is a prefix of the new one.
- 2 The attacker with the two versions of the ciphertext (multi-leakage case) degenerates to an attacker only with the current version (single-leakage case).

Our incremental update mechanism achieves update security

A new conditional probability model for password vaults

- Basic idea: A user generates a new password by 1) reusing an old one or 2) not (i.e., creating a brand new one).
- Onstruction:

$$\Pr_{\text{MSPM}}(pw_{i+1} \mid pw_1, pw_2, \dots, pw_i)$$

$$= \frac{1 - f(i)}{i} \sum_{i=1}^{i} \Pr_{\text{SSPM}}(pw_{i+1} \mid pw_{i'}) + f(i) \Pr_{\text{SPM}}(pw_{i+1}).$$
(2)

- Instantiation:
 - f a Single-similar-password model ${
 m Pr}_{
 m SSPM}$: our simple design
 - f b Single-password model Pr_{SPM} : Markov [2]
 - Unreused probability f: Nonlinear regression $f(i) = 1/(\sum_{k=0}^{3} a_k i^k)$

How to evaluate the indistinguishability of decoys

The optimal strategy of distinguishing real and decoy vaults

 $oldsymbol{0}$ Ranking by the conditional probability of being real under the given ciphertext. The conditional probability for a vault V_i is proportional to the real-to-decoy probability ratio

$$\frac{\Pr_{\text{real}}(V_i)}{\Pr_{\text{decoy}}(V_i)}.$$

Practical attacks

- $oldsymbol{0}$ Cannot precisely calculate \Pr_{real} .
- 2 Estimate the ratio on the single password distribution and password-reuse features.

Evaluating the exiting and our honey vault schemes

Experimental results

- Our attack is more effective than the state-of-the-art attack (KL divergence attack [3]) against the existing schemes.
- 2 Our design is brings 2.8x-7.5x online cost to attackers.

Table 1: The distinguishing accuracy of attacks against the honey vault schemes

Scheme	KL divergence attack [3]	Our attack
Chatterjee et al.'s [4]	86%	94%
Golla et al.'s [3] (static, 10^0)	52%	86%
Our design	58%	58%
Perfect design	50%	50%

Future work

- The incremental update mechanism may apply to other applications using honey encryption.
- ② The probability model design for passwords and password vaults may be used for password guessing.

Q&A

Thank you

References I

- [1] Haibo Cheng et al. "Probability Model Transforming Encoders Against Encoding Attacks". In: *USENIX Security 2019*, pp. 1573–1590.
- [2] Jerry Ma et al. "A Study of Probabilistic Password Models". In: *IEEE S&P 2014*, pp. 538–552.
- [3] Maximilian Golla, Benedict Beuscher, and Markus Dürmuth. "On the security of cracking-resistant password vaults". In: ACM CCS 2016, pp. 1230–1241.
- [4] Rahul Chatterjee et al. "Cracking-resistant password vaults using natural language encoders". In: *IEEE S&P 2015*, pp. 481–498.