
Rage Against the Machine Clear:
A Systematic Analysis of Machine Clears and

Their Implications for Transient Execution Attacks

Hany Ragab*, Enrico Barberis*, Herbert Bos and Cristiano Giuffrida

Vrije Universiteit Amsterdam
1

*Equal contribution joint first authors

if (x <) {
y = array[x]

}

array_size

2

Speculative Execution

array
[x]

Not cached

array
[x+1]Data cache

array
[x-1]

......

if (x <) {
y = array[x]

}

array_size

2

Speculative Execution

array
[x]

Not cached

array
[x+1]Data cache

array
[x-1]

......

if (x <) {
y = array[x]

}

array_size

2

Speculative Execution

Cached
Not cached

array
[x+1]Data cache

array
[x-1]

......
array
[x]

if (x <) {
y = array[x]

}

array_size

2

Speculative Execution

Cached
Not cached

array
[x+1]Data cache

array
[x-1]

......
array
[x]

if (x <) {
y = array[x]

}

array_size

2

Speculative Execution

Cached
Not cached

array
[x+1]Data cache

array
[x-1]

......
array
[x]

3

The root cause of discarding issued µOps on x86 processors

Bad Speculation

3

The root cause of discarding issued µOps on x86 processors

Branch Misprediction

Bad Speculation

3

The root cause of discarding issued µOps on x86 processors

Branch Misprediction Machine Clear

Bad Speculation

3

The root cause of discarding issued µOps on x86 processors

Branch Misprediction Machine Clear

Bad Speculation

& Intel TSX

3

The root cause of discarding issued µOps on x86 processors

Branch Misprediction Machine Clear

?

Bad Speculation

& Intel TSX

4

Rage Against The Machine Clear

Self-Modifying Code
Machine Clear

Floating-Point
Machine Clear

Memory Ordering
Machine Clear

Memory Disambiguation
Machine Clear

4

Rage Against The Machine Clear

Self-Modifying Code
Machine Clear

Floating-Point
Machine Clear

4

Rage Against The Machine Clear

Self-Modifying Code
Machine Clear

Floating-Point
Machine Clear

Speculative Code
Store Bypass

(SCSB)
Negligible mitigation

overhead

4

Rage Against The Machine Clear

Self-Modifying Code
Machine Clear

Floating-Point
Machine Clear

Speculative Code
Store Bypass

(SCSB)

Floating-Point
Value Injection

(FPVI)
Negligible mitigation

overhead
53% Mitigation

overhead

4

Rage Against The Machine Clear

Self-Modifying Code
Machine Clear

Floating-Point
Machine Clear

End-to-end exploit
leaking arbitrary

memory in Firefox
With a leakage rate

of 13 KB/s

5

Security Analysis of Machine Clear

1. Architectural Invariant

5

Security Analysis of Machine Clear

1. Architectural Invariant

5

Security Analysis of Machine Clear

2. Invariant Violation

1. Architectural Invariant

5

Security Analysis of Machine Clear

2. Invariant Violation

3. Security Implications

1. Architectural Invariant

5

Security Analysis of Machine Clear

2. Invariant Violation

3. Security Implications

4. Exploitation

Self-Modifying Code Machine Clear

6

Self-Modifying Code Machine Clear

6

Self-Modifying Code is a program storing instructions as
data, modifying its own code as it is being executed

Self-Modifying Code Machine Clear

6

Self-Modifying Code is a program storing instructions as
data, modifying its own code as it is being executed

Self-Modifying Code Machine Clear

6

Self-Modifying Code is a program storing instructions as
data, modifying its own code as it is being executed

Self-Modifying Code Machine Clear

6

Self-Modifying Code is a program storing instructions as
data, modifying its own code as it is being executed

Self-Modifying Code Machine Clear

6

Self-Modifying Code is a program storing instructions as
data, modifying its own code as it is being executed

Self-Modifying Code Machine Clear

6

Self-Modifying Code is a program storing instructions as
data, modifying its own code as it is being executed

Architectural Invariant
Stores always target data

Self-Modifying Code Machine Clear

6

Self-Modifying Code is a program storing instructions as
data, modifying its own code as it is being executed

Architectural Invariant
Stores always target data

Invariant Violation
Self-Modifying Code

Self-Modifying Code Machine Clear

6

Self-Modifying Code is a program storing instructions as
data, modifying its own code as it is being executed

Architectural Invariant
Stores always target data

Invariant Violation
Self-Modifying Code

Security Implications
Transiently execute stale code

Self-Modifying Code Machine Clear

6

Self-Modifying Code is a program storing instructions as
data, modifying its own code as it is being executed

Architectural Invariant
Stores always target data

Invariant Violation
Self-Modifying Code

Security Implications
Transiently execute stale code

Exploitation
?

Speculative Code Store Bypass (SCSB)

7

Speculative Code Store Bypass (SCSB)

7

Speculative Code Store Bypass (SCSB)

7

Speculative Code Store Bypass (SCSB)

7

Speculative Code Store Bypass (SCSB)

7

8.1.3 Handling Self- and Cross-Modifying Code

Speculative Code Store Bypass (SCSB)

7

8.1.3 Handling Self- and Cross-Modifying Code

Speculative Code Store Bypass (SCSB)

7

8.1.3 Handling Self- and Cross-Modifying Code

Architectural Invariant
Stores always target data memory

Invariant Violation
Self-Modifying Code

Security Implications
Transiently execute stale code

Speculative Code Store Bypass (SCSB)

7

8.1.3 Handling Self- and Cross-Modifying Code

Architectural Invariant
Stores always target data memory

Invariant Violation
Self-Modifying Code

Security Implications
Transiently execute stale code

Exploitation
Speculative Code Store Bypass

Speculative Code Store Bypass (SCSB)

7

Floating-Point Machine Clear

8

Subnormal/Denormal numbers are a special range of floating-point numbers
with a value smaller than the smallest Normal number (i.e. 2^-1022)

Floating-Point Machine Clear

8

Subnormal/Denormal numbers are a special range of floating-point numbers
with a value smaller than the smallest Normal number (i.e. 2^-1022)

Floating-Point Machine Clear

8

Subnormal/Denormal numbers are a special range of floating-point numbers
with a value smaller than the smallest Normal number (i.e. 2^-1022)

Floating-Point Machine Clear

8

Subnormal/Denormal numbers are a special range of floating-point numbers
with a value smaller than the smallest Normal number (i.e. 2^-1022)

Floating-Point Machine Clear

8

Subnormal/Denormal numbers are a special range of floating-point numbers
with a value smaller than the smallest Normal number (i.e. 2^-1022)

Floating-Point Machine Clear

8

Subnormal/Denormal numbers are a special range of floating-point numbers
with a value smaller than the smallest Normal number (i.e. 2^-1022)

Architectural Invariant
FPU always operates on

normal numbers

Floating-Point Machine Clear

8

Subnormal/Denormal numbers are a special range of floating-point numbers
with a value smaller than the smallest Normal number (i.e. 2^-1022)

Architectural Invariant
FPU always operates on

normal numbers

Invariant Violation
Subnormal FP operations

Floating-Point Machine Clear

8

Subnormal/Denormal numbers are a special range of floating-point numbers
with a value smaller than the smallest Normal number (i.e. 2^-1022)

Architectural Invariant
FPU always operates on

normal numbers

Invariant Violation
Subnormal FP operations

Security Implications
Transiently inject arbitrary FP values

Floating-Point Machine Clear

8

Subnormal/Denormal numbers are a special range of floating-point numbers
with a value smaller than the smallest Normal number (i.e. 2^-1022)

Architectural Invariant
FPU always operates on

normal numbers

Invariant Violation
Subnormal FP operations

Security Implications
Transiently inject arbitrary FP values

Exploitation

9

Floating-Point Value Injection (FPVI)

9

Floating-Point Value Injection (FPVI)

9

Floating-Point Value Injection (FPVI)

9

Floating-Point Value Injection (FPVI)

9

Floating-Point Value Injection (FPVI)

Invariant Violation
Denormal FP operations

Security Implications
Transiently inject arbitrary FP values

Exploitation
Floating-Point Value Injection

Architectural Invariant
FPU always operates on normal numbers

10

Floating-Point Value Injection (FPVI)

● Exploit leakage rate of 13 KB/s

10

● Mitigations:

➔ Flush To Zero (FTZ) & Denormal Are Zero (DAZ)

Floating-Point Value Injection (FPVI)

● Exploit leakage rate of 13 KB/s

10

● Mitigations:

➔ Flush To Zero (FTZ) & Denormal Are Zero (DAZ)

➔ We implemented a LLVM pass adding a serializing

instruction in detected FPVI gadgets.

With 53% geomean overhead for SPEC FP 2017.

Floating-Point Value Injection (FPVI)

● Exploit leakage rate of 13 KB/s

10

● Mitigations:

➔ Flush To Zero (FTZ) & Denormal Are Zero (DAZ)

➔ We implemented a LLVM pass adding a serializing

instruction in detected FPVI gadgets.

With 53% geomean overhead for SPEC FP 2017.

➔ Use site-isolation or conditionally mask FP operations

in the browsers.

Floating-Point Value Injection (FPVI)

● Exploit leakage rate of 13 KB/s

Transient Execution Capabilities

11

Transient Execution Capabilities

11

Architectural
baseline

leakage rate

Transient Execution Capabilities

11

Architectural
baseline

leakage rate

Transient Execution Capabilities

11

Available
only on

Intel

Architectural
baseline

leakage rate

Transient Execution Capabilities

11

Not supported
anymore on
recent CPUs

Available
only on

Intel

Architectural
baseline

leakage rate

Transient Execution Capabilities

11

Not supported
anymore on
recent CPUs

Available
only on

Intel

Available
also on AMD

Architectural
baseline

leakage rate

Transient Execution Capabilities

11

SMC can reach > 160 transient
loads in a single window

Not supported
anymore on
recent CPUs

Available
only on

Intel

Available
also on AMD

Architectural
baseline

leakage rate

Transient Execution Capabilities

11

SMC can reach > 160 transient
loads in a single window

FP has the best leakage rates
(>4Mb/s) thanks to its determinism

(i.e. No mistraining needed)

Not supported
anymore on
recent CPUs

Available
only on

Intel

Available
also on AMD

Architectural
baseline

leakage rate

Root-Cause Classification of Transient Execution

12

Root-Cause Classification of Transient Execution

12

Root-Cause Classification of Transient Execution

12

Root-Cause Classification of Transient Execution

12

Root-Cause Classification of Transient Execution

12

Root-Cause Classification of Transient Execution

12

Disclosure & Affected CPUs

13

● We disclosed FPVI and SCSB to CPU, browser, OS, and
hypervisor vendors in February 2021.

Disclosure & Affected CPUs

13

● We disclosed FPVI and SCSB to CPU, browser, OS, and
hypervisor vendors in February 2021. CPU

Vendor

Affected by SCSB
(CVE-2021-0089)

(CVE-2021-26313)

Affected by FPVI
(CVE-2021-0086)

(CVE-2021-26314)

Intel ✔ ✔

AMD ✔ ✔*

ARM ✘ ✔**

* No exploitable NaN-boxed transient results were found

** ARM reported that some FPU implementations are

affected by FPVI

Disclosure & Affected CPUs

13

● We disclosed FPVI and SCSB to CPU, browser, OS, and
hypervisor vendors in February 2021.

● Mozilla confirmed the FPVI vulnerability (CVE-2021-
29955) and deployed a mitigation based on
conditionally masking malicious NaN-boxed FP results
in Firefox 87.

CPU
Vendor

Affected by SCSB
(CVE-2021-0089)

(CVE-2021-26313)

Affected by FPVI
(CVE-2021-0086)

(CVE-2021-26314)

Intel ✔ ✔

AMD ✔ ✔*

ARM ✘ ✔**

* No exploitable NaN-boxed transient results were found

** ARM reported that some FPU implementations are

affected by FPVI

Disclosure & Affected CPUs

13

● We disclosed FPVI and SCSB to CPU, browser, OS, and
hypervisor vendors in February 2021.

● Mozilla confirmed the FPVI vulnerability (CVE-2021-
29955) and deployed a mitigation based on
conditionally masking malicious NaN-boxed FP results
in Firefox 87.

● Xen hypervisor mitigated SCSB and released a security
advisory (XSA-375) following our proposed mitigation.

CPU
Vendor

Affected by SCSB
(CVE-2021-0089)

(CVE-2021-26313)

Affected by FPVI
(CVE-2021-0086)

(CVE-2021-26314)

Intel ✔ ✔

AMD ✔ ✔*

ARM ✘ ✔**

* No exploitable NaN-boxed transient results were found

** ARM reported that some FPU implementations are

affected by FPVI

Rage Against The Machine Clear

● Bad Speculation is not caused only by
classic mispredictions

Rage Against The Machine Clear

● Bad Speculation is not caused only by
classic mispredictions, but also by
architectural invariants violations,
i.e. Machine Clear.

● Architectural invariants can be
exploited, creating new security threats,
e.g. FPVI & SCSB

Rage Against The Machine Clear

● Bad Speculation is not caused only by
classic mispredictions, but also by
architectural invariants violations,
i.e. Machine Clear.

● Architectural invariants can be
exploited, creating new security threats,
e.g. FPVI & SCSB

Rage Against The Machine Clear

● Bad Speculation is not caused only by
classic mispredictions

● Defenses must focus on the wider
class of root-causes of bad speculation.

, but also by
architectural invariants violations,
i.e. Machine Clear.

● Architectural invariants can be
exploited, creating new security threats,
e.g. FPVI & SCSB

@hanyrax

Code, exploit demo and
more can be found here:

@enrico_barberis

Rage Against The Machine Clear

● Bad Speculation is not caused only by
classic mispredictions

● Defenses must focus on the wider
class of root-causes of bad speculation.

, but also by
architectural invariants violations,
i.e. Machine Clear.

