Rage Against the Machine Clear:
A Systematic Analysis of Machine Clears and
Their Implications for Transient Execution Attacks

Hany Ragab’, Enrico Barberis’, Herbert Bos and Cristiano Giuffrida

"Equal contribution joint first authors

“VUSec

Vrije Universiteit Amsterdam

Speculative Execution

Data cache

if (x < array_size) {
y = array[x]
}

array | array | array

[x-17| [x1 |[x+1]

[] Not cached

Speculative Execution

Data cache

if (x < EEEIEEE) {

y = array[x]
3

array | array | array

[x-17| [x1 |[x+1]

[] Not cached

Speculative Execution

Data cache

if (x < ESEVIEER) {

y = array[x]
3

array | array | array

[x-11| [x]1 |[x+1]

[] Cached
[] Not cached

Speculative Execution

Data cache

2 3({x < array_sizePpii
} = arrayix]

array | array | array

[x-11| [x]1 |[x+1]

[] Cached
[] Not cached

Speculative Execution

Data cache

2 3({x < array_sizePpii
} = arrayix]

array | array | array

[xq11| [x1 |[x+i]

[] Cached
[] Not cached

Bad Speculation

The root cause of discarding issued pOps on x86 processors

Bad Speculation

The root cause of discarding issued pOps on x86 processors

Branch Misprediction

Bad Speculation

The root cause of discarding issued pOps on x86 processors

Branch Misprediction Machine Clear

Bad Speculation

The root cause of discarding issued pOps on x86 processors

Branch Misprediction
& Intel TSX

Machine Clear

Bad Speculation

The root cause of discarding issued pOps on x86 processors

Branch Misprediction
& Intel TSX

Machine Clear

Rage Against The Machine Clear

Self-Modifying Code
Machine Clear

Floating-Point
Machine Clear

Memory Ordering
Machine Clear

Memory Disambiguation
Machine Clear

Rage Against The Machine Clear

Self-Modifying Code Floating-Point
Machine Clear Machine Clear

Rage Against The Machine Clear

Self-Modifying Code Floating-Point
Machine Clear Machine Clear

|

Speculative Code
Store Bypass
(SCSB)
Negligible mitigation
overhead

Rage Against The Machine Clear

Self-Modifying Code
Machine Clear

|

Speculative Code
Store Bypass
(SCSB)
Negligible mitigation
overhead

Floating-Point
Machine Clear

|

Floating-Point
Value Injection
(FPVI)

53% Mitigation
overhead

Rage Against The Machine Clear

Self-Modifying Code Floating-Point
Machine Clear Machine Clear

|

End-to-end exploit
leaking arbitrary
memory in Firefox

With a leakage rate
of 13 KB/s

Security Analysis of Machine Clear

Security Analysis of Machine Clear

1. Architectural Invariant

Security Analysis of Machine Clear

1. Architectural Invariant

2. Invariant Violation

Security Analysis of Machine Clear

1. Architectural Invariant
2. Invariant Violation

3. Security Implications

Security Analysis of Machine Clear

1. Architectural Invariant
2. Invariant Violation
3. Security Implications

4. Exploitation

Self-Modifying Code Machine Clear

Self-Modifying Code Machine Clear

Self-Modifying Code is a program storing instructions as
data, modifying its own code as it is being executed

Self-Modifying Code Machine Clear

Self-Modifying Code is a program storing instructions as
data, modifying its own code as it is being executed

il: ...

i2: store nop @ i3
i3: load secret
i4:

i5: ...

Self-Modifying Code Machine Clear

Self-Modifying Code is a program storing instructions as
data, modifying its own code as it is being executed

il: ...

i2:

i3:

store nop @ i3

load secret

i4: ...

i5: ...

IF

ID

EX

MEM

WB

IF

ID

EX

MEM

WB

IF

ID

EX

MEM

WB

IF

ID

EX

MEM

WB

IF

ID

EX

MEM

WB

t-1

t
Current
Stage

t+1

t+2

t+3

t+4

Self-Modifying Code Machine Clear

Self-Modifying Code is a program storing instructions as
data, modifying its own code as it is being executed

it: ... IF | ID | EX |MEM| WB

i2: store nop @ i wa'lt‘-”‘IF ID EX [MEM| WB

i3: load secret you'=® "P | IF | ID | EX |MEM| WB

i4: ... IF ID | EX [MEM| WB

i5: IF | ID | EX |MEM| WB

t
Current
Stage

t+1

t+2

t+3

t+4

Self-Modifying Code Machine Clear

Self-Modifying Code is a program storing instructions as
data, modifying its own code as it is being executed

i1: ... IF | ID | EX |MEM| WB

i2: store nop @ i wa'lt‘-‘"IF ID EX\ MEM| WB

i3: load secret vyou'=® "P | IF | ID | EX [MEM| WB

4 ™" 7| 1IF | ID | EX [MEM|WB

i5: ... MTaoc?qiqut%Lééi IF | ID | EX |[MEM| WB
t-4 t-3 t-2 t-1 t t+1 t+2 t+3 t+4

Current
Stage

SMC Detection
Transiently Done

Self-Modifying Code Machine Clear

Self-Modifying Code is a program storing instructions as
data, modifying its own code as it is being executed

Architectural Invariant

Stores always target data e IF | ID EX "Ei WB
i2: store nop @ i wa'lt‘-‘"IF ID EX [MEM| WB
i3: load secret Yo“‘rrem: nop IF | ID EX |[MEM| WB
4 ™~ 7| IF| 1D | EX MEM wB
i5: ... Machine Cleat IF | ID | EX |MEM| WEB
t-4 t-3 t-2 t-1 t t+1 t+2 t+3 t+4

Current
Stage

SMC Detection
Transiently Done

Self-Modifying Code Machine Clear

Self-Modifying Code is a program storing instructions as
data, modifying its own code as it is being executed

Architectural Invariant

Stores always target data

Invariant Violation

Self-Modifying Code

i1: ... IF | ID | EX [MEM| WB

i2: store nop @ i wa'l"-‘-‘"IF ID EX\ MEM| WB

i3: load secret vyou'=® "P | IF | ID | EX [MEM| WB

4 " 7| 1F | 1D | EX MEM|WB

i5: ... MTaoc?qiqut%Lééi IF | ID | EX |[MEM| WB
t-4 t-3 t-2 t-1 t t+1 t+2 t+3 t+4

Current

Stage

SMC Detection
Transiently Done

Self-Modifying Code Machine Clear

Self-Modifying Code is a program storing instructions as
data, modifying its own code as it is being executed

Architectural Invariant

il: ...
Stores always target data * IF ID EX MEM| WB
i2: store nop @ i g '1t“‘-IF ID EX [MEM| WB
it
Invariant Violation i3: load secret you‘reo: "® | IF | ID | EX |MEM| WB
. . n
Self-Modifying Code 4 "~ 7| 1F | 10 | EX |MEM| B
i5: ... Maenine Cleat IF | ID | EX |MEM| WB

Security Implications

t-4 t-3 t-2

Transiently execute stale code

t-1

t
Current
Stage

t+1

SMC Detection
Transiently Done

t+2

t+3

t+4

Self-Modifying Code Machine Clear

Self-Modifying Code is a program storing instructions as
data, modifying its own code as it is being executed

Architectural Invariant

il: ...
Stores always target data * IF ID EX MEM| WB
i2: store nop @ i wa'l"-‘-‘"IF ID EX [MEM| WB
Invariant Violation i3: load secret vou'=e * " | IF | ID | EX |MEM| WB
. . T
Self-Modifying Code 4 ™~ 7| zF| 1D | EX |MEM wB
i5: Maenine Cleat IF | ID | EX |MEM| WB
Security Implications o
. -4 -3 -2 -1 +1 +2 +3 +4
Transiently execute stale code T T e T T
Exploitation SMC Detection

) Transiently Done

Speculative Code Store Bypass (SCSB)

Speculative Code Store Bypass (SCSB)

CODE IIT £ &

VIEW | caut s I) G

I\)Iélllile\l Jé[:uff& 7 @EE

Speculative Code Store Bypass (SCSB)

CODE
VIEW L f& gESes Jc::[:uff& g code

DATA [317 £ & JIT £ &
VIEW call £ g code call £ L EEEE

Speculative Code Store Bypass (SCSB)

\C/ggﬁ Gl £ I 9 code Gl £ I g code I
@ L sme me

DATA [511 £ &
VIEW call £ g code call £ L EEEE

Speculative Code Store Bypass (SCSB)

CODE
VIEW

DATA
VIEW

JIT £ &
call £

I g code

JIT £ &
call £

I f code I

JIT £ &
call £

g code

JIT £ &
call £

f code

Speculative Code Store Bypass (SCSB)

CODE
VIEW

DATA
VIEW

JIT £ & JIT £ & JIT £ &

call f I 9 code call £ I g code I call £ I £ code I
@ L sme me (%)

JIT £ & JIT £ & JIT £ &

call £ | 9 code calt £ | Fcode calt £ | T code

8.1.3 Handling Self- and Cross-Modifying Code

(* OPTION 1 %)
Store modified code (as data) into code segment;
Jump to new code or an intermediate location;

Execute new code;

(* OPTION 2 *)
Store modified code (as data) into code segment;
Execute a serializing instruction; (* For example, CPUID instruction *)
Execute new code;

Speculative Code Store Bypass (SCSB)

CODE
VIEW

DATA
VIEW

JIT £ & JIT £ & JIT £ &

call f I 9 code call £ I g code I call £ I £ code I
@ L sme me (%)

JIT £ & JIT £ & JIT £ &

call £ | 9 code catt £ | Fcode calt £ | T code

8.1.3 Handling Self- and Cross-Modifying Code

(* OPTION 1 %)
Store modified code (as data) into code segment;
Jump to new code or an intermediate location;

Execute new code;

(* OPTION 2 *)
Store modified code (as data) into code segment;
Execute a serializing instruction; (* For example, CPUID instruction *)
Execute new code;

Speculative Code Store Bypass (SCSB)

Architectural Invariant
Stores always target data memory

Invariant Violation
Self-Modifying Code

Security Implications
Transiently execute stale code

Speculative Code Store Bypass (SCSB)

Architectural Invariant
Stores always target data memory

Invariant Violation
Self-Modifying Code

Security Implications
Transiently execute stale code

Exploitation
Speculative Code Store Bypass

Floating-Point Machine Clear

Subnormal/Denormal numbers are a special range of floating-point numbers
with a value smaller than the smallest Normal number (i.e. 2*-1022)

Floating-Point Machine Clear

Subnormal/Denormal numbers are a special range of floating-point numbers
with a value smaller than the smallest Normal number (i.e. 2*-1022)

il: 2
i2: 2
i3: ...

X/Y
Z+1

Floating-Point Machine Clear

Subnormal/Denormal numbers are a special range of floating-point numbers
with a value smaller than the smallest Normal number (i.e. 2*-1022)

CPU FPU

Z=X/Y
Check Z
1

il: 2
i2: Z

i3: ...]

[} |}
N X
+ ~
Bro<
N
n
N
+
-

t0o

t1

t2

t3

Floating-Point Machine Clear

Subnormal/Denormal numbers are a special range of floating-point numbers
with a value smaller than the smallest Normal number (i.e. 2*-1022)

CPU FPU

Z=X/Y
Check Z
1

il: 2 X/7Y Z=27+1
Wait!!!

i2: Z Z +1 Z is not

. represented

A/

4

to

t1

t2

t3

Floating-Point Machine Clear

Subnormal/Denormal numbers are a special range of floating-point numbers
with a value smaller than the smallest Normal number (i.e. 2*-1022)

il: 2
i2: Z

i3: ...

X/7Y
Z+1

Z=X/Y

Check Z
Z=2z+1 - X
Wait!!! \
Z is not X
represented !
L ey |
|
Too late ... v

Machine Clear

FP Denormal

z

Detection

Transiently Done

to

t1

t2

t3

Floating-Point Machine Clear

Subnormal/Denormal numbers are a special range of floating-point numbers
with a value smaller than the smallest Normal number (i.e. 2*-1022)

Architectural Invariant

FPU always operates on CPU FPU
normal numbers [zexsv]
i1: Z2=X/Y 2o 71 Checl:kZ

Wait!!!
i2: Z Z + 1 Z is not

. represented
Too late v

late ... i
fachine Clea

FP Denormal Detection
Transiently Done

to

t1

t2

t3

Floating-Point Machine Clear

Subnormal/Denormal numbers are a special range of floating-point numbers
with a value smaller than the smallest Normal number (i.e. 2*-1022)

Architectural Invariant

FPU always operates on CPU FPU
normal numbers [zexsv]
:2=X/Y -zl Wait!!! e
Invariant Violation i2: Z2=2z2+1 M
Subnormal FP operations i3: ... I et |

Too late AJ

late ... i
fachine Clea

FP Denormal Detection
Transiently Done

to

t1

t2

t3

Floating-Point Machine Clear

Subnormal/Denormal numbers are a special range of floating-point numbers
with a value smaller than the smallest Normal number (i.e. 2*-1022)

Architectural Invariant

FPU always operates on CPU FPU
normal numbers [zexsv]
:2=X/Y -zl Wait!!! e
Invariant Violation i2: Z2=2z2+1 M
Subnormal FP operations i3: ... I et |

Too late AJ

late ... i
fachine Clea

Security Implications

Transiently inject arbitrary FP values

FP Denormal Detection
Transiently Done

to

t1

t2

t3

Floating-Point Machine Clear

Subnormal/Denormal numbers are a special range of floating-point numbers
with a value smaller than the smallest Normal number (i.e. 2*-1022)

Architectural Invariant

FPU always operates on CPU FPU
normal numbers [zexsv]
:2=X/Y -zl Wait!!! e
Invariant Violation i2: Z2=2z2+1 M
Subnormal FP operations i3: ... I et |

Too late AJ

late ... i
fachine Clea

Security Implications

Transiently inject arbitrary FP values

FP Denormal Detection
Exploitation Transiently Done

to

t1

t2

t3

Floating-Point Value Injection (FPVI)

Oxf£f£fb@deadbeef00
JSVAL_TYPE_STRING
PAYLOAD:
Oxdeadbeef000

Floating-Point Value Injection (FPVI)

Oxf£fbOdeadbeefd00
JSVAL_TYPE_STRING
PAYLOAD:
Oxdeadbeef000

//x = 0xcl00e8b2c9755600

//y = 0x0004000000000000
z = X/y

if (typeof z === "string") {

Floating-Point Value Injection (FPVI)

Oxfffb0deadbeecf00d | Ox£££0000000000000
JSVAL_TYPE_STRING | JSVAL_TYPE_DOUBLE

PAYLOAD: PAYLOAD:
Oxdeadbeef000 -Infinity

//X = 0xclb0e8b2c9755600

//y = 0x0004000000000000

z = X/y

if (typeof z === "string") {
» //z = OxfffbOdeadbeefddo

\‘{‘else {
return z //z=-Infinity
by

Floating-Point Value Injection (FPVI)

Oxfffb0deadbeecf00d | Ox£££0000000000000
JSVAL_TYPE_STRING | JSVAL_TYPE_DOUBLE

PAYLOAD: PAYLOAD:
Oxdeadbeef000 -Infinity

//X = 0xclB0e8b2c9/55600
//y = 0x0004000000000000
z = X/y
if (typeof z === "string") {
//z = OxfffbOdeadbeefddo
//leak byte @ Oxde efoo4
return buf[(z.length&dxff)<<10]
} else {
return z //z=-Infinity

J

Floating-Point Value Injection (FPVI)

Architectural Invariant
FPU always operates on normal numbers

Invariant Violation
Denormal FP operations

Security Implications
Transiently inject arbitrary FP values

Exploitation
Floating-Point Value Injection

Floating-Point Value Injection (FPVI)

Exploit leakage rate of 13 KB/s

Machine Clear

Z=X/Y
Check Z
. '
Wait!!!
Z is not
represented 1
[| comectyy :
1
Too late ... ;

FP Denormal Detection
Transiently Done

to

t1

t2

t3

10

Floating-Point Value Injection (FPVI)

Exploit leakage rate of 13 KB/s

Mitigations:

= Flush To Zero (FTZ) & Denormal Are Zero (DAZ)

CPU FPU
Z=X/Y
Check Z
zZ=2z+1 - :
Wait!!! \
Z is not '
represented 1
[| comectyy :
1
A4

Too late ...
Machine Clear

4

FP Denormal Detection
Transiently Done

to

t1

t2

t3

10

Floating-Point Value Injection (FPVI)

Exploit leakage rate of 13 KB/s

Mitigations:

= Flush To Zero (FTZ) & Denormal Are Zero (DAZ)

- Weimplemented a LLVM pass adding a serializing

instruction in detected FPVI gadgets.
With 53% geomean overhead for SPEC FP 2017.

Wait!!!

Z is not

represented

[| comectyy
Too late ...
Machine Clear

I -

4

FP Denormal Detection
Transiently Done

to

t1

t2

t3

10

Floating-Point Value Injection (FPVI)

Exploit leakage rate of 13 KB/s

Mitigations:

= Flush To Zero (FTZ) & Denormal Are Zero (DAZ)

- Weimplemented a LLVM pass adding a serializing

instruction in detected FPVI gadgets.
With 53% geomean overhead for SPEC FP 2017.

- Usesite-isolation or conditionally mask FP operations

in the browsers.

Wait!!!
Z is not

represented
[[Pcomecty
Too late

I -

FP Denormal Detection
Transiently Done

to

t1

t2

t3

10

Number of
Transient Loads

Leakage Rate
[Mb/s]

Transient Execution Capabilities

| == Intel Core i7-10700K
1 E=9 Intel Xeon Silver 4214
1 O Intel Core i9-9900K

4 E=3 Intel Core i7-7700K

| B AMD Ryzen 5 5600X

1 = AMD Ryzen Threadripper
sl 2990wWX
| AMD Ryzen 7 2700X

CPU

o H N W B»

I-=+R TéX BHT FAULT SMC XMC
Transient Execution Management

11

Transient Execution Capabilities

Architectural
baseline
leakage rate

v 160 CPU
o @ 14071 g intel Core i7-10700K
8 9 120 1 == intel Xeon Silver 4214
© » 1004 mm intel Core i9-9900K
'fc_" S 801 == mntel corei7-7700k
S g 60 | EEE AMD Ryzen 5 5600X
P © 40 1 == »zkgngo\F’{v);(zen Threadripper
= 204 AMD Ryzen 7 2700X
0 :
g 4
€ —3-
0¥
ol =
£= 2 s
© —
Y 1 |
0. 5

FAULT SMC XMC
Transient Execution Management

11

Transient Execution Capabilities

160 CPU
140 1 gmm intel Core i7-10700K
201 === Intel Xeon Silver 4214
00 { mmm Intel Core i9-9900K
80 1 E=1 Intel Core i7-7700K
60 | EEE AMD Ryzen 5 5600X
40
20
0

4 mm=y AMD Ryzen Threadripper
2990WX
T AMD Ryzen 7 2700X

Number of
Transient Loads

Leakage Rate
[Mb/s]

o H N W B»

Architectural
baseline
leakage rate

Transient Execution Capabilities

v 1607 CPU
o @ 14071 g intel Core i7-10700K
© G 1201 mmm Intel Xeon Silver 4214
© » 100 mm Intel Core i9-9900K
'g.g 80 4 == Intel Core i7-7700k
S'® 60O EEE AMD Ryzen 5 5600
= E 40 1 ;zkgngo\F’{v);(zen Threadripper
= 28 | AMD Ryzen 7 2700X
o = Available
e | / only on
& a Intel =
~ = -
© = =
- 1 g
= - = i [Il
TSX BHT FAULT SMC XMC FP MD MO
(g Jransient Execution Management
Architectural

baseline
leakage rate

11

Transient Execution Capabilities

CPU

| =mE Intel Core i7-10700K

7 E== Intel Xeon Silver 4214
1 O Intel Core i9-9900K

4 E=3 Intel Core i7-7700K

4 B8 AMD Ryzen 5 5600X

AMD Ryzen Threadripper
2990WX

AMD Ryzen 7 2700X
T

[Erar
NDOOONDOD
[eX=)

Number of
Transient Loads

N
[eleolololoNoNo]

/

Leakage Rate
[Mb/s]

lHHHHIHIHHHHHIHHHHHHI= %’

o = N W b

Available
only on
Intel

FAULT SMC XMC
Jransient Execution Management

Architectural Not supported
baseline anymore on
leakagerate recent CPUs

11

Transient Execution Capabilities

CPU

| =mE Intel Core i7-10700K

7 E== Intel Xeon Silver 4214
1 O Intel Core i9-9900K

4 E=3 Intel Core i7-7700K

4 B8 AMD Ryzen 5 5600X

AMD Ryzen Threadripper
2990WX

AMD Ryzen 7 2700X
T

[Erar
NDOOONDOD
[eX=)

Number of
Transient Loads

N
[eleolololoNoNo]

/

Leakage Rate
[Mb/s]

lHHHHIHIHHHHHIHHHHHHI= %’

o = N W b

Available
only on
Intel

FAULT SMC XMC

Jransient Executhn Management

Architectural Not supported
baseline anymore on
leakagerate recent CPUs

MD MO
)
Y
Available
alsoon AMD

11

Transient Execution Capabilities

SMC canreach > 160 transient
/ loads in a single window —

160 CPU

140 1 gmm intel Core i7-10700k
201 =S Intel Xeon Silver 4214
1 OO Intel Core i9-9900K

4 E=3 Intel Core i7-7700K

4 EE@ AMD Ryzen 5 5600X

i AMD Ryzen Threadripper
2990WX
T AMD Ryzen 7 2700X
T T

Number of
Transient Loads

Available

/ only on
= Intel

Leakage Rate
[Mb/s]

BHT FAULT SMC XMC FP MD MO

Jransient Executhn Management J
Y
Architectural Not supported Available
baseline anymore on alsoon AMD

leakagerate recent CPUs
11

Transient Execution Capabilities

SMC canreach > 160 transient
/ loads in a single window

CPU

| EEE Intel Core i7-10700K
7 E== Intel Xeon Silver 4214
1 OO Intel Core i9-9900K

4 E=3 Intel Core i7-7700K

4 EE@ AMD Ryzen 5 5600X

AMD Ryzen Threadripper
2990WX

AMD Ryzen 7 2700X
T

[Erar
H O
[eX=)

NDBOOWON
[eleolololoNoNo]

Number of
Transient Loads

Leakage Rate
[Mb/s]

o = N W b

/ only on
= Intel

Available

Architectural Not supported
baseline anymore on
leakagerate recent CPUs

MD

FP has the best leakage rates Available
(>4Mb/s) thanks to its determinism also on AMD
(i.e. No mistraining needed)

11

Root-Cause Classification of Transient Execution

12

Root-Cause Classification of Transient Execution

BAD
SPECULATION
CONTROL - FLOW DATA
MISPREDICTION MISPREDICTION

(BRANCH MISPREDICTION) (MACHINE CLEAR)

Root-Cause Classification of Transient Execution

—

BAD

SPECULATION

CONTROL - FLOW
MISPREDICTION
(BRANCH MISPREDICTION)

A 4
PREDICTORS

BHT
BTB
RSB

Y

DATA
MISPREDICTION
(MACHINE CLEAR)

—

PREDICTORS

l

MD

12

Root-Cause Classification of Transient Execution

—

BAD

SPECULATION

CONTROL - FLOW
MISPREDICTION

(BRANCH MISPREDICTION)

Y

—

DATA
MISPREDICTION
(MACHINE CLEAR)

e

PREDICTORS || EXCEPTIONS || PREDICTORS
Y Y l
IBHT| | |NM| |DE| |up| [GP|{ [MD

Ac| |ss| |PF| [BR
¥

BTB |
[Ree] u/s

BIT

R/W
BIT

P
BIT

PKU

12

Root-Cause Classification of Transient Execution

BAD
SPECULATION
CONTROL - FLOW DATA
MISPREDICTION MISPREDICTION
(BRANCH MISPREDICTION) (MACHINE CLEAR)
| Ty
PREDICTORS || EXCEPTIONS || PREDICTORS || LIKELY INVARIANTS
VIOLATIONS
Y l Y
BHT| |[NM| [DE| |uD] [ep], [MP rp| [smc| [xmc] Mo
BTB| | [AC| |s8| ! BR| A/D | TsX |[MASKMOV
BITS
S|/ P Jpiu

BIT|BIT BIT

Root-Cause Classification of Transient Execution

—

BAD

SPECULATION

CONTROL - FLOW
MISPREDICTION

(BRANCH MISPREDICTION)

Y

Y

DATA

MISPREDICTION
(MACHINE CLEAR)

'S

—

PREDICTORS || EXCEPTIONS || PREDICTORS || LIKELY INVARIANTS || INTERRUPTS
VIOLATIONS
Y \ l v |
BHT| | [NM] DE] up] P [MP FP| [smc] [xmc] Mo HW
[BTB| | |AC| |sS| |PF| [BR)] INTERRUPTS
- A/D || TsX |[MASKMOV
RSB BITS
U/SIR/W| P |PKU uc| [PRM
BIT|BIT|BIT

12

Disclosure & Affected CPUs

We disclosed FPVI and SCSB to CPU, browser, OS, and
hypervisor vendors in February 2021.

13

Disclosure & Affected CPUs

e Wedisclosed FPVIand SCSB to CPU, browser, OS, and

hypervisor vendors in February 2021. CPU Affected by SCSB Affected by FPVI

Vendor (CVE-2021-0089) (CVE-2021-0086)
(CVE-2021-26313) (CVE-2021-26314)

Intel \/ \/
AMD v V*
ARM X Vi

* No exploitable NaN-boxed transient results were found
** ARM reported that some FPU implementations are
affected by FPVI

13

Disclosure & Affected CPUs

We disclosed FPVI and SCSB to CPU, browser, OS, and

hypervisor vendors in February 2021. CPU Affected by SCSB Affected by FPVI
Vendor (CVE-2021-0089) (CVE-2021-0086)
(CVE-2021-26313) (CVE-2021-26314)

Intel \/ \/
Mozilla confirmed the FPVI vulnerability (CVE-2021-
29955) and deployed a mitigation based on \/ \/*

conditionally masking malicious NaN-boxed FP results AMD
in Firefox 87.
ARM X VAL

* No exploitable NaN-boxed transient results were found
** ARM reported that some FPU implementations are
affected by FPVI

13

Disclosure & Affected CPUs

We disclosed FPVI and SCSB to CPU, browser, OS, and
hypervisor vendors in February 2021.

Mozilla confirmed the FPVI vulnerability (CVE-2021-
29955) and deployed a mitigation based on
conditionally masking malicious NaN-boxed FP results
in Firefox 87.

Xen hypervisor mitigated SCSB and released a security
advisory (XSA-375) following our proposed mitigation.

CPU Affected by SCSB Affected by FPVI
(CVE-2021-0089) (CVE-2021-0086)
(CVE-2021-26313) (CVE-2021-26314)

Intel \/ \/
AMD v V*
ARM X Vi

Vendor

* No exploitable NaN-boxed transient results were found
** ARM reported that some FPU implementations are
affected by FPVI

13

Rage Against The Machine Clear

e Bad Speculation is not caused only by
classic mispredictions

Rage Against The Machine Clear

Bad Speculation is not caused only by
classic mispredictions, but also by
architectural invariants violations,
i.e. Machine Clear.

Rage Against The Machine Clear

Bad Speculation is not caused only by
classic mispredictions, but also by
architectural invariants violations,
i.e. Machine Clear.

Architectural invariants can be
exploited, creating new security threats,
e.g. FPVI & SCSB

Rage Against The Machine Clear

Bad Speculation is not caused only by
classic mispredictions, but also by
architectural invariants violations,
i.e. Machine Clear.

Architectural invariants can be
exploited, creating new security threats,
e.g. FPVI & SCSB

Defenses must focus on the wider
class of root-causes of bad speculation.

Rage Against The Machine Clear

Bad Speculation is not caused only by
classic mispredictions, but also by
architectural invariants violations,

i.e. Machine Clear.

@hanyrax @enrico_barberis

Architectural invariants can be Code, exploit demo and

exploited, creating new security threats, more can be found here:
e.g. FPVI & SCSB

Defenses must focus on the wider
class of root-causes of bad speculation.

