
Rage Against the Machine Clear:
A Systematic Analysis of Machine Clears and 

Their Implications for Transient Execution Attacks

Hany Ragab*, Enrico Barberis*, Herbert Bos and Cristiano Giuffrida

Vrije Universiteit Amsterdam
1

*Equal contribution joint first authors



if (x <           ) {
y = array[x]

}

array_size

2

Speculative Execution

array
[x]

Not cached

array
[x+1]Data cache

array
[x-1]

......



if (x <           ) {
y = array[x]

}

array_size

2

Speculative Execution

array
[x]

Not cached

array
[x+1]Data cache

array
[x-1]

......



if (x <           ) {
y = array[x]

}

array_size

2

Speculative Execution

Cached
Not cached

array
[x+1]Data cache

array
[x-1]

......
array
[x]



if (x < ) {
y = array[x]

}

array_size

2

Speculative Execution

Cached
Not cached

array
[x+1]Data cache

array
[x-1]

......
array
[x]



if (x < ) {
y = array[x]

}

array_size

2

Speculative Execution

Cached
Not cached

array
[x+1]Data cache

array
[x-1]

......
array
[x]



3

The root cause of discarding issued µOps on x86 processors

Bad Speculation



3

The root cause of discarding issued µOps on x86 processors

Branch Misprediction

Bad Speculation



3

The root cause of discarding issued µOps on x86 processors

Branch Misprediction Machine Clear

Bad Speculation



3

The root cause of discarding issued µOps on x86 processors

Branch Misprediction Machine Clear

Bad Speculation

& Intel TSX



3

The root cause of discarding issued µOps on x86 processors

Branch Misprediction Machine Clear

?

Bad Speculation

& Intel TSX



4

Rage Against The Machine Clear

Self-Modifying Code 
Machine Clear

Floating-Point 
Machine Clear

Memory Ordering 
Machine Clear

Memory Disambiguation 
Machine Clear



4

Rage Against The Machine Clear

Self-Modifying Code 
Machine Clear

Floating-Point 
Machine Clear



4

Rage Against The Machine Clear

Self-Modifying Code 
Machine Clear

Floating-Point 
Machine Clear

Speculative Code 
Store Bypass

(SCSB)
Negligible mitigation 

overhead



4

Rage Against The Machine Clear

Self-Modifying Code 
Machine Clear

Floating-Point 
Machine Clear

Speculative Code 
Store Bypass

(SCSB)

Floating-Point 
Value Injection

(FPVI)
Negligible mitigation 

overhead
53% Mitigation 

overhead



4

Rage Against The Machine Clear

Self-Modifying Code 
Machine Clear

Floating-Point 
Machine Clear

End-to-end exploit 
leaking arbitrary 

memory in Firefox
With a leakage rate 

of 13 KB/s



5

Security Analysis of Machine Clear



1. Architectural Invariant

5

Security Analysis of Machine Clear



1. Architectural Invariant

5

Security Analysis of Machine Clear

2. Invariant Violation



1. Architectural Invariant

5

Security Analysis of Machine Clear

2. Invariant Violation

3. Security Implications



1. Architectural Invariant

5

Security Analysis of Machine Clear

2. Invariant Violation

3. Security Implications

4. Exploitation



Self-Modifying Code Machine Clear

6



Self-Modifying Code Machine Clear

6

Self-Modifying Code is a program storing instructions as 
data, modifying its own code as it is being executed



Self-Modifying Code Machine Clear

6

Self-Modifying Code is a program storing instructions as 
data, modifying its own code as it is being executed



Self-Modifying Code Machine Clear

6

Self-Modifying Code is a program storing instructions as 
data, modifying its own code as it is being executed



Self-Modifying Code Machine Clear

6

Self-Modifying Code is a program storing instructions as 
data, modifying its own code as it is being executed



Self-Modifying Code Machine Clear

6

Self-Modifying Code is a program storing instructions as 
data, modifying its own code as it is being executed



Self-Modifying Code Machine Clear

6

Self-Modifying Code is a program storing instructions as 
data, modifying its own code as it is being executed

Architectural Invariant
Stores always target data



Self-Modifying Code Machine Clear

6

Self-Modifying Code is a program storing instructions as 
data, modifying its own code as it is being executed

Architectural Invariant
Stores always target data

Invariant Violation
Self-Modifying Code



Self-Modifying Code Machine Clear

6

Self-Modifying Code is a program storing instructions as 
data, modifying its own code as it is being executed

Architectural Invariant
Stores always target data

Invariant Violation
Self-Modifying Code

Security Implications
Transiently execute stale code



Self-Modifying Code Machine Clear

6

Self-Modifying Code is a program storing instructions as 
data, modifying its own code as it is being executed

Architectural Invariant
Stores always target data

Invariant Violation
Self-Modifying Code

Security Implications
Transiently execute stale code

Exploitation
?



Speculative Code Store Bypass (SCSB)

7



Speculative Code Store Bypass (SCSB)

7



Speculative Code Store Bypass (SCSB)

7



Speculative Code Store Bypass (SCSB)

7



Speculative Code Store Bypass (SCSB)

7



8.1.3 Handling Self- and Cross-Modifying Code

Speculative Code Store Bypass (SCSB)

7



8.1.3 Handling Self- and Cross-Modifying Code

Speculative Code Store Bypass (SCSB)

7



8.1.3 Handling Self- and Cross-Modifying Code

Architectural Invariant
Stores always target data memory

Invariant Violation
Self-Modifying Code

Security Implications
Transiently execute stale code

Speculative Code Store Bypass (SCSB)

7



8.1.3 Handling Self- and Cross-Modifying Code

Architectural Invariant
Stores always target data memory

Invariant Violation
Self-Modifying Code

Security Implications
Transiently execute stale code

Exploitation
Speculative Code Store Bypass

Speculative Code Store Bypass (SCSB)

7



Floating-Point Machine Clear

8

Subnormal/Denormal numbers are a special range of floating-point numbers 
with a value smaller than the smallest Normal number (i.e. 2^-1022)



Floating-Point Machine Clear

8

Subnormal/Denormal numbers are a special range of floating-point numbers 
with a value smaller than the smallest Normal number (i.e. 2^-1022)



Floating-Point Machine Clear

8

Subnormal/Denormal numbers are a special range of floating-point numbers 
with a value smaller than the smallest Normal number (i.e. 2^-1022)



Floating-Point Machine Clear

8

Subnormal/Denormal numbers are a special range of floating-point numbers 
with a value smaller than the smallest Normal number (i.e. 2^-1022)



Floating-Point Machine Clear

8

Subnormal/Denormal numbers are a special range of floating-point numbers 
with a value smaller than the smallest Normal number (i.e. 2^-1022)



Floating-Point Machine Clear

8

Subnormal/Denormal numbers are a special range of floating-point numbers 
with a value smaller than the smallest Normal number (i.e. 2^-1022)

Architectural Invariant
FPU always operates on

normal numbers



Floating-Point Machine Clear

8

Subnormal/Denormal numbers are a special range of floating-point numbers 
with a value smaller than the smallest Normal number (i.e. 2^-1022)

Architectural Invariant
FPU always operates on

normal numbers

Invariant Violation
Subnormal FP operations



Floating-Point Machine Clear

8

Subnormal/Denormal numbers are a special range of floating-point numbers 
with a value smaller than the smallest Normal number (i.e. 2^-1022)

Architectural Invariant
FPU always operates on

normal numbers

Invariant Violation
Subnormal FP operations

Security Implications
Transiently inject arbitrary FP values



Floating-Point Machine Clear

8

Subnormal/Denormal numbers are a special range of floating-point numbers 
with a value smaller than the smallest Normal number (i.e. 2^-1022)

Architectural Invariant
FPU always operates on

normal numbers

Invariant Violation
Subnormal FP operations

Security Implications
Transiently inject arbitrary FP values

Exploitation



9

Floating-Point Value Injection (FPVI)



9

Floating-Point Value Injection (FPVI)



9

Floating-Point Value Injection (FPVI)



9

Floating-Point Value Injection (FPVI)



9

Floating-Point Value Injection (FPVI)

Invariant Violation
Denormal FP operations

Security Implications
Transiently inject arbitrary FP values

Exploitation
Floating-Point Value Injection

Architectural Invariant
FPU always operates on normal numbers



10

Floating-Point Value Injection (FPVI)

● Exploit leakage rate of 13 KB/s



10

● Mitigations:

➔ Flush To Zero (FTZ) & Denormal Are Zero (DAZ)

Floating-Point Value Injection (FPVI)

● Exploit leakage rate of 13 KB/s



10

● Mitigations:

➔ Flush To Zero (FTZ) & Denormal Are Zero (DAZ)

➔ We implemented a LLVM pass adding a serializing 

instruction in detected FPVI gadgets. 

With 53% geomean overhead for SPEC FP 2017.

Floating-Point Value Injection (FPVI)

● Exploit leakage rate of 13 KB/s



10

● Mitigations:

➔ Flush To Zero (FTZ) & Denormal Are Zero (DAZ)

➔ We implemented a LLVM pass adding a serializing 

instruction in detected FPVI gadgets. 

With 53% geomean overhead for SPEC FP 2017.

➔ Use site-isolation or conditionally mask FP operations 

in the browsers.

Floating-Point Value Injection (FPVI)

● Exploit leakage rate of 13 KB/s
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@hanyrax

Code, exploit demo and 
more can be found here:

@enrico_barberis
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