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Intel \/ \/
AMD v V*
ARM X Vi

Vendor

* No exploitable NaN-boxed transient results were found
** ARM reported that some FPU implementations are
affected by FPVI
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Rage Against The Machine Clear

Bad Speculation is not caused only by
classic mispredictions, but also by
architectural invariants violations,

i.e. Machine Clear.

@hanyrax @enrico_barberis

Architectural invariants can be Code, exploit demo and

exploited, creating new security threats, more can be found here:
e.g. FPVI & SCSB

Defenses must focus on the wider
class of root-causes of bad speculation.




