
An Analysis of Speculative Type Confusion Vulnerabilities in the Wild

Ofek Kirzner Adam Morrison
Tel Aviv University

Abstract
Spectre v1 attacks, which exploit conditional branch mispre-
diction, are often identified with attacks that bypass array
bounds checking to leak data from a victim’s memory. Gen-
erally, however, Spectre v1 attacks can exploit any condi-
tional branch misprediction that makes the victim execute
code incorrectly. In this paper, we investigate speculative type
confusion, a Spectre v1 attack vector in which branch mis-
predictions make the victim execute with variables holding
values of the wrong type and thereby leak memory content.

We observe that speculative type confusion can be inad-
vertently introduced by a compiler, making it extremely hard
for programmers to reason about security and manually apply
Spectre mitigations. We thus set out to determine the extent
to which speculative type confusion affects the Linux kernel.
Our analysis finds exploitable and potentially-exploitable ar-
bitrary memory disclosure vulnerabilities. We also find many
latent vulnerabilities, which could become exploitable due to
innocuous system changes, such as coding style changes.

Our results suggest that Spectre mitigations which rely on
statically/manually identifying “bad” code patterns need to be
rethought, and more comprehensive mitigations are needed.

1 Introduction
Spectre attacks [13, 30, 36, 43, 45, 46, 54] exploit processor
control- or data-flow speculation to leak data from a victim
program’s memory over a microarchitectural covert channel.
A Spectre attack maneuvers the processor to mispredict the
correct execution path of an instruction sequence in the victim,
referred to as a Spectre gadget. The gadget’s misspeculated
execution acts as a “confused deputy” and accesses data from
an attacker-determined location in the victim’s address space.
Although the mispredicted instructions are transient [18,45]—
the CPU eventually discards them without committing their
results to architectural state—data-dependent traces of their
execution remain observable in microarchitectural state, such
as the cache. These data-dependent side effects form a covert
channel that leaks the accessed data to the attacker.

Spectre attacks pose a serious threat to monolithic oper-
ating system (OS) kernels. While Spectre attacks can only
leak data architecturally accessible to the victim, a victim that

if (x < array1_len) { // branch mispredict: taken

y = array1[x]; // read out of bounds

z = array2[y * 4096]; } // leak y over cache channel

(a) Bounds check bypass.

void syscall_helper(cmd_t* cmd, char* ptr, long x) {

// ptr argument held in x86 register %rsi

cmd_t c = *cmd; // cache miss

if (c == CMD_A) { // branch mispredict: taken

... code during which x moves to %rsi ...

}

if (c == CMD_B) { // branch mispredict: taken

y = *ptr; // read from addr x (now in %rsi)

z = array[y * 4096]; // leak y over cache channel

}

... rest of function ...

(b) Type confusion.

Listing 1: Spectre gadgets for exploiting conditional branch predic-
tion. Data in red boxes is attacker-controlled.

is an OS kernel typically has all physical memory mapped
in its virtual address space and thus architecturally accessi-
ble [5, 23]. Moreover, kernels expose a large attack surface
(e.g., hundreds of system calls) through which an attacker can
trigger Spectre gadgets.

Since speculative execution is fundamental to modern pro-
cessor design, processor vendors do not plan to mitigate Spec-
tre attacks completely in hardware [8, 37, 39].1 Vendors in-
stead suggest using software mitigations to restrict specu-
lation [8, 37]. To minimize their performance impact, most
software mitigations target specific “templates” of potentially
vulnerable gadgets, which are identified with static or manual
analysis [38, 51, 57, 88].2

In this paper, we focus on conditional branch prediction

1In contrast, Meltdown-type attacks [52,70,82,83,85] exploit an Intel pro-
cessor implementation artifact (addressed in future processors [39]), wherein
a load targeting architecturally inaccessible data (e.g., in another address
space) can execute before being discarded due to a virtual memory exception.

2We discuss more comprehensive software mitigations—which, unfortu-
nately, have high performance overheads—in § 7.

Spectre attacks (so-called “variant 1” [45]). These attacks are
often characterized as bounds check bypass attacks, which
exploit misprediction of an array bounds check to perform
an out-of-bounds access and leak its result (Listing 1a). De-
ployed software mitigations in compilers and OS kernels
target this type of gadget template [38, 51, 57].

Generally, however, a Spectre attack is defined as exploit-
ing conditional branch prediction to make the processor “tem-
porarily violate program semantics by executing code that
would not have been executed otherwise” [45]—and a bounds
check bypass is just one example of such a violation. Specula-
tive type confusion is a different violation, in which misspec-
ulation makes the victim execute with some variables holding
values of the wrong type, and thereby leak memory content.

Listing 1b shows an example compiler-introduced spec-
ulative type confusion gadget, which causes the victim to
dereference an attacker-controlled value. In this example, the
compiler emits code for the first if block that clobbers the
register holding a (trusted) pointer with an untrusted value,
based on the reasoning that if the first if block executes, then
the second if block will not execute. Thus, if the branches
mispredict such that both blocks execute, the code in the sec-
ond if block leaks the contents of the attacker-determined
location. In contrast to the bounds check bypass attack, here
the attacker-controlled address has no data-dependency on the
branch predicate, nor does the predicate depend on untrusted
data. Consequently, this gadget would not be protected by ex-
isting OS kernel Spectre mitigations, nor would programmers
expect it to require Spectre protection.

To date, speculative type confusion has mainly been hy-
pothesized about, and even then, only in the context of object-
oriented polymorphic code [18] or as a vector for bypassing
bounds checks [32, 56]. Our key driving observation in this
paper is that speculative type confusion may be much more
prevalent—as evidenced, for instance, by Listing 1b, which
does not involve polymorphism or bounds checking. Accord-
ingly, we set out to answer the following question: are OS
kernels vulnerable to speculative type confusion attacks?

1.1 Overview & contributions

We study Linux, which dominates the OS market share for
server and mobile computers [90]. In a nutshell, not only do
we find exploitable speculative type confusion vulnerabilities,
but—perhaps more disturbingly—our analysis indicates that
OS kernel security currently rests on shaky foundations. There
are many latent vulnerabilities that are not exploitable only
due to serendipitous circumstances, and may be rendered
exploitable by different compiler versions, innocuous code
changes, deeper-speculating future processors, and so on.3

3Indeed, we make no security claims for these “near miss” vulnerabilities;
some of them may be exploitable in kernel versions or platforms that our
analysis—which is not exhaustive—does not cover.

Attacker-introduced vulnerabilities (§ 4) Linux supports
untrusted user-defined kernel extensions, which are loaded
in the form of eBPF4 bytecode programs. The kernel verifies
the safety of extensions using static analysis and compiles
them to native code that runs in privileged context. The eBPF
verifier does not reason about speculative control flow, and
thus successfully verifies eBPF programs with speculative
type confusion gadgets. eBPF emits Spectre mitigations into
the compiled code, but these only target bounds check bypass
gadgets. Consequently, we demonstrate that an unprivileged
user can exploit eBPF to create a Spectre universal read gad-
get [55] and read arbitrary physical memory contents at a rate
of 6.7 KB/sec with 99% accuracy.

Compiler-introduced vulnerabilities (§ 5) We show that
C compilers can emit speculative type confusion gadgets.
While the gadgets are blocked by full Spectre compiler miti-
gation modes (e.g., speculative load hardening (SLH) [21]),
these modes have high performance overheads (§ 7), and in
GCC must be manually enabled per-variable. Optional low-
overhead mitigation modes in Microsoft and Intel compilers
do not block these gadgets. Motivated by these findings, we
perform a binary-level analysis of Linux to determine whether
it contains speculative type confusion introduced by compiler
optimizations. We find several such cases. In assessing po-
tential exploitability of these cases, we investigate how x86
processors resolve mispredicted branches. We find that Spec-
tre gadgets which today may be considered unexploitable are
actually exploitable, which may be of independent interest.

Polymorphism-related vulnerabilities (§ 6) The Linux
kernel makes heavy use of object-oriented techniques, such
as data inheritance and polymorphism, for implementing ker-
nel subsystem interfaces. The related indirect function calls
are protected with retpolines [81], which essentially disable
indirect call prediction. To claw back the resulting lost per-
formance, Linux replaces certain indirect calls with direct
calls to one of a set of legal call targets, where the correct
target is chosen using conditional branches [9, 24]. Unfor-
tunately, this approach opens the door to speculative type
confusion among the different targets implementing a kernel
interface. We perform a source-level analysis on Linux to find
such vulnerabilities. We identify dozens of latent vulnerabil-
ities, namely: vulnerable gadgets which are not exploitable
by chance, and could become exploitable by accident. For
example, we find gadgets in which the attacker controls a 32-
bit value, which cannot represent a kernel pointer on 64-bit
machines. But if a future kernel version makes some variables
64-bit wide, such gadgets would become exploitable.

1.2 Implications
Our work shows that speculative type confusion vulnerabil-
ities are more insidious than speculative bounds check by-
passes, with exploitable and latent vulnerabilities existing in

4Extended Berkeley Packet Filter [11, 68].

kernel code. Given the existence of compiler-introduced vul-
nerabilities, we question the feasibility of the current Linux
and GCC mitigation approach, which relies on developers
manually protecting “sensitive” variables [51], likely due
to equating Spectre v1 with bounds check bypasses. While
comprehensive mitigations, such as SLH [21], can block all
Spectre attacks, they impose significant overhead on kernel
operations (up to 2.7×, see § 7). It is also unclear whether
static analysis [22, 31] can be incorporated into the OS kernel
development process to guarantee absence of speculative type
confusion vulnerabilities. In short, current Spectre mitigations
in OS kernels require rethinking and further research.

2 Background

2.1 Out-of-order & speculative execution
Modern processors derive most of their performance from two
underlying mechanisms: out-of-order (OoO) execution [79]
and speculation [34].

OoO execution A processor core consists of a frontend,
which fetches instruction from memory, and a backend, re-
sponsible for instruction execution. A fetched instruction is
decoded into internal micro-operations (µ-ops), which are
then dispatched to a reservation station and await execution.
Once the operands of a µ-op become available (i.e., have been
computed), it is issued to an execution unit where it is exe-
cuted, making its result available to dependent µ-ops. Hence,
µ-ops may execute out of program order. To maintain the
program order and handle exceptions, µ-ops are queued into a
reorder buffer (ROB) in program order. Once a µ-op reaches
the ROB head and has been executed, it gets retired: its re-
sults are committed to architectural state and any pipeline
resources allocated to it are freed.

Speculative execution To execute instructions as soon as
possible, the processor attempts to predict the results of cer-
tain (usually long latency) µ-ops. The prediction is made
available to dependent µ-ops, allowing them to execute. Once
the predicted µ-op executes, the backend checks if the µ-op’s
output was correctly predicted. If so, the µ-op proceeds to re-
tirement; otherwise, the backend squashes all µ-ops following
the mispredicted µ-op in the ROB and reverts its state to the
last known correct state (which was checkpointed when the
prediction was made). We refer to the maximum amount of
work that can be performed in the shadow of a speculative µ-
op as the speculation window. It is determined by the latency
of computing the predicted µ-op’s results and the available
microarchitectural resources (e.g., the size of the ROB limits
how many µ-ops can be in flight). We consider control-flow
speculation, described in the following section.

2.2 Branch prediction
To maximize instruction throughput, the processor performs
branch prediction in the frontend. When a branch is fetched,

Figure 1: BPU Scheme

a branch predictor unit (BPU) predicts its outcome, so that
the frontend can continue fetching instructions from the (pre-
dicted) execution path without stalling. The branch is resolved
when it gets executed and the prediction is verified, possibly
resulting in a squash and re-steering of the frontend. Notice
that every branch is predicted, even if its operands are readily
available (e.g., in architectural state), because figuring out
availability of operands is only done in the backend.

We assume the branch predictor unit design shown in Fig-
ure 1, which appears to match Intel’s BPU [26, 97]. The BPU
has two main components: an outcome predictor, predict-
ing the direction of conditional branches, and a branch tar-
get buffer (BTB), predicting the target address of indirect
branches. The outcome predictor stores 2-bit saturating coun-
ters in a pattern history table (PHT). A branch’s outcome
is predicted based on a PHT entry selected by hashing its
program counter (PC). The PHT entry is selected in one of
two addressing modes, depending on the prediction success
rate: 1- or 2-level prediction. The 1-level predictor uses only
the PC, whereas the 2-level predictor additionally hashes a
global history register (GHR) that records the outcome of the
previously encountered branches.

2.3 Cache covert channels
To hide memory latency, the processor contains fast memory
buffers called caches, which hold recently and frequently
accessed data. Modern caches are set-associative: the cache
is organized into multiple sets, each of which can store a
number of cache lines. The cache looks up an address by
hashing it to obtain a set, and then searching all cache lines
in that set.

Changes in cache state can be used to construct a covert
channel. Consider transmission of a B-bit symbol x. In a
FLUSH+RELOAD channel [92], (1) the receiver flushes 2B

lines from the cache; (2) the sender accesses the x-th line,
bringing it back into the cache; and (3) the receiver measures
the time it takes to access each line, identifying x as the only
cache hit. FLUSH+RELOAD requires the sender and receiver
to share memory. A PRIME+PROBE channel avoids this re-
quirement by using evictions instead of line fills [53].

2.4 Transient execution attacks
Transient execution attacks overcome architectural consis-
tency by using the microarchitectural traces left by transient—
doomed to squash—µ-ops to leak architecturally-inaccessible

data to the attacker. Meltdown-type attacks [18,52,70,82,85]
extract data across architectural protection domains by exploit-
ing transient execution after a hardware exception. Our focus,
however, is on Spectre-type attacks [13, 30, 36, 43, 45, 46, 54],
which exploit misprediction. Spectre-type attacks maneu-
ver the victim into leaking its own data, and are limited to
the depth of the speculation window. Spectre v1 (Spectre-
PHT [18]) exploits misprediction of conditional branch out-
comes. Spectre v2 (Spectre-BTB [18]) exploit misprediction
of indirect branch target addresses. The original Spectre v2
attacks poisoned the BTB to redirect control-flow to arbitrary
locations; but as we shall see, even mispredicting a legal tar-
get is dangerous (§ 6). Other variants target return address
speculation [46, 54] or data speculation [36].

3 Threat model
We consider an attacker who is an unprivileged (non-root)
user on a multi-core machine running the latest Linux kernel.
The attacker’s goal is to obtain information located in the
kernel address space, which is not otherwise accessible to it.

We assume the system has all state-of-the-art mitigations
against transient execution attacks enabled. In particular, the
attacker cannot mount cross-protection domain Meltdown-
type attacks to directly read from the kernel address space.

We assume that the attacker knows kernel virtual addresses.
This knowledge can be obtained by breaking kernel address
space layout randomization (KASLR) using orthogonal side-
channel attacks [19, 84, 86] or even simply from accidental
information leak bugs in the kernel.

4 Speculative type confusion in eBPF
Linux’s extended Berkeley Packet Filter (eBPF) [68] subsys-
tem strives to let the Linux kernel safely execute untrusted,
user-supplied kernel extensions in privileged context. An
eBPF extension is “attached” to designated kernel events,
such as system call execution or packet processing, and is exe-
cuted when these events occur. eBPF thereby enables applica-
tions to customize the kernel for performance monitoring [3],
packet processing [2], security sandboxing [4], etc.

Unprivileged users can load eBPF extensions into the ker-
nel as of Linux v4.4 (2015) [75].5 An eBPF extension is
loaded in the form of a bytecode program for an in-kernel
virtual machine (VM), which is limited in how it can interact
with the rest of the kernel. The kernel statically verifies the
safety of loaded eBPF programs. On the x86-64 and Arm
architectures, the kernel compiles eBPF programs to native
code; on other architectures, they run interpreted.

Both eBPF verification and compilation do not consider
speculative type confusion, which allows an attacker to load
eBPF programs containing Spectre gadgets and thus read

5An unprivileged_bpf_disable configuration knob exists for disal-
lowing unprivileged access to eBPF; it is not set by default.

kernel

eBPF bytecode
check program
semantics ✓

verifier

bounds check
bypass

mitigations

compiler

Spectre type
confusion

gadget

Figure 2: eBPF speculative type confusion attack.

from anywhere in the kernel address space (Figure 2). In the
following, we describe the eBPF security model (§ 4.1), detail
its vulnerability (§ 4.2), and describe our proof-of-concept
attack (§ 4.3).

4.1 eBPF security model
In general, eBPF does not enforce safety at run time, but by
statically verifying that the eBPF program maintains memory
safety and is otherwise well-behaved. (One exception to this
principle are Spectre mitigations, discussed below.) An eBPF
program can only call one of a fixed set of helper functions in
the kernel. The allowed set of helpers depends on the type of
eBPF program and on the privileges of the user that loaded it.

An eBPF program is restricted to accessing a fixed set of
memory regions, known at compile time, including a fixed-
size stack and a context, which is a program-specific object
type that stores the program’s arguments. An eBPF pro-
gram can further access statically-sized key/value dictionaries
called maps. The size of a map’s keys and values is fixed at
map creation time. A map’s data representation (array, hash
table, etc.) is similarly specified on creation. Maps can be
shared by different eBPF programs and can also be accessed
by user processes. An eBPF program that successfully looks
up a value in a map receives a pointer to the value, and so can
manipulate it in-place.

eBPF verification The kernel statically verifies the safety
of an eBPF program in two steps. The first step performs
control-flow validation, to verify that the program (which
runs in privileged context) is guaranteed to terminate in a
fixed amount of time. This property is verified by checking
that the program does not contain loops and does not exceed
a certain fixed size. The second step verifies the program’s
memory safety. Memory safety is verified by enumerating
every possible execution flow to prove that every memory
access is safe. When processing a flow, the verifier maintains
a type for each register and stack slot, and checks that memory
accesses are valid with respect to these types.

The verifier tracks whether each register is uninitialized,
holds a scalar (non-pointer) value, or holds a pointer. Point-
ers are further typed according to the region they point to:
the stack, the context, a map, a value from a map, and so on.
The verifier also tracks whether a pointer is non-NULL and
maintains bounds for the pointer’s offset from its base ob-
ject. Using this information, the verifier checks various safety
properties, such as:

• For every memory access, the operand register R contains
a pointer type, R 6=NULL, and R points to within its base
object.

• If a stack slot is read, then the program has previously
written to it. (This check prevents leaking of kernel data
that was previously stored in that location.)

• Pointers are not cast to scalars. (This check prevents
kernel addresses from leaking to userspace, since such
scalars can be stored to a map and read by the user.)

eBPF also allows certain program types to access kernel
data structures such as socket and packet objects, whose size
may not be known at compile time. In such cases, the runtime
stores the object size in the program’s context, and the verifier
checks that any pointer to these objects undergoes bounds
checking before being dereferenced. We do not discuss this
further, since our attack does not exploit this functionality.

Compile-time Spectre mitigation Following the disclo-
sure of Spectre, the eBPF verifier was extended to patch eBPF
programs with run-time mitigations for Spectre bounds check
bypass vulnerabilities [15,76]. The verifier rewrites any array-
map access and any pointer arithmetic operation so that they
are guaranteed to be within the base object’s bounds. For
example, A[i] is rewritten as A[i & (A.size-1)], where
A.size is rounded up to be a power of 2. Pointer arithmetic is
handled similarly, leveraging the verifier’s knowledge about
base objects’ size and pointer offsets.

4.2 Verifier vulnerability
When verifying memory safety, the eBPF verifier enumerates
only correct execution paths (i.e., that comply with the seman-
tics of the architecture’s instruction set). The verifier does
not reason about the semantically incorrect execution paths
that arise due to (mis)speculative execution. As a result, the
verifier can conclude that a memory read is safe, but there may
be a misspeculated execution flow in which that instruction is
unsafe. Listing 2a shows an example.

In this example, the semantics of the program are such that
the execution of lines 3 and 5 is mutually exclusive: line 3
executes if and only if r0=0 and line 5 executes if and only
if r0=1. Therefore, the verifier reasons that the only flow in
which line 5 executes and memory is read is when r6 points
to a stack slot, and accepts the program. Specifically, when
the verifier’s analysis reaches line 2, it enumerates two cases:

• If the condition on line 2 evaluates to TRUE, r6’s type
remains a valid stack variable.

• If the condition on line 2 evaluates to FALSE, r6’s type
changes to scalar, but the verifier learns that r0 is 0.
Therefore, when it subsequently reaches line 4, it reasons
that the condition there must evaluate to TRUE, and does
not consider line 5 in these flows.

In both cases, every execution flow the verifier considers is
safe. Moreover, the load in line 5 is not rewritten with Spectre

// r0 = ptr to a map array entry (verified 6= NULL)

// r6 = ptr to stack slot (verified 6= NULL)

// r9 = scalar value controlled by attacker

1 r0 = *(u64 *)(r0) // miss

2 A:if r0 != 0x0 goto B

3 r6 = r9

4 B:if r0 != 0x1 goto D

5 r9 = *(u8 *)(r6)

6 C:r1 = M[(r9&1)*512];//leak

7 D:...

(a) Passes verification.

r0 = *(u64 *)(r0) // miss

A:if r0 == 0x0 goto B

r6 = r9

B:if r0 != 0x0 goto D

r9 = *(u8 *)(r6)

C:r1 = M[(r9&1)*512];//leak

D:...

(b) Fails verification.

Listing 2: eBPF verification vulnerability: leaking a bit (eBPF byte-
code; rX stand for eBPF bytecode registers).

mitigation code, because the pointer it dereferences is verified
to point to the stack (and thus within bounds). Nevertheless,
if an attacker manages to (1) make the dereference of r0
(line 1) be a cache miss, so that the branches take a long time
to resolve; and (2) mistrain the branch predictor so that both
branches predict “not taken” (i.e., do not execute the goto),
then the resulting transient execution sets r6 to the attacker-
controlled value in r9 (line 3), dereferences that value (line 5),
and leaks it (line 6).

We remark that in practice, the verifier does not maintain
perfect information about each register, and so may end up
enumerating some impossible execution flows. (I.e., the veri-
fier enumerates an over-approximation of the correct execu-
tion flows.) Consequently, the verifier inadvertently rejects
some speculative type confusion eBPF gadgets. Listing 2b
shows an example. For scalar values, the verifier maintains
either a register’s exact value or a possible range of values.
When the verifier considers the case of the condition on line 2
evaluating to FALSE, it cannot track the implication that
r0 6=0, as that cannot be represented with a single range. Since
the verifier has no additional information about r0, it goes
on to consider a continuation of the flow in which the con-
dition in line 4 also evaluates to FALSE. In this flow, line 5
dereferences a scalar value, and so the program is rejected.
This rejection is accidental. The goal of eBPF developers is to
increase the precisions of the verifier’s information tracking,
and so under current development trends, we would expect the
verifier to eventually accept Listing 2b. Improving the veri-
fier’s precision is not a problem in and of itself, if eBPF adopts
general Spectre mitigations (i.e., not only bounds enforcing).

4.3 Proof of concept exploit
We now describe and evaluate a proof of concept exploit for
the eBPF vulnerability. The exploit implements a universal
read gadget [55], which allows the attacker to read from any
kernel virtual address. This ability allows the attacker to read
all of the machine’s physical memory, as the kernel maps all

available physical memory in its virtual address space [5].
The eBPF bytecode is designed to easily map to the x86

architecture, which the eBPF compiler leverages to map eBPF
registers to x86 registers and eBPF branches to x86 branches.
To guarantee that our victim eBPF program has the required
structure (Listing 2a), we manually encode its bytecode in-
stead of using a C-to-eBPF compiler. The kernel then trans-
lates the bytecode to native x86 code in the obvious way.

The main challenge faced by the exploit is how to mistrain
the branch predictor, so that two conditional branches whose
“not taken” conditions are mutually exclusive both get pre-
dicted as “not taken.” Two further challenges are (1) how to
evict the value checked by these branches from the cache, so
that their resolution is delayed enough that the misspeculated
gadget can read and leak data; and (2) how to observe the
leaked data. These cache-related interactions are non-trivial to
perform because the eBPF program runs in the kernel address
space and the attacker, running in a user process, cannot share
memory with the eBPF program. (The main method of inter-
action is via eBPF maps, but processes can only manipulate
maps using system calls, not directly.)

Mistraining the branch predictor A common branch mis-
training technique in Spectre attacks is to repeatedly invoke
the victim with valid input (e.g., an in-bounds array index) to
train the branch predictor, and then perform the attack with
an invalid input (e.g., an out-of-bounds array index), at which
point the relevant branch gets mispredicted. This technique
does not apply in our case: we need to train two branches
whose “not taken” conditions are mutually exclusive to both
get predicted as “not taken.” This means that no matter what
input the eBPF victim gadget is given, at least one of the
branches is always taken in its correct execution. In other
words, we cannot get the branch predictor into a state that is
inconsistent with a correct execution by giving it only exam-
ples of correct executions.

To address this problem, we use cross address-space out-of-
place branch mistraining [18]. Namely, we set up a “shadow”
of the natively-compiled eBPF program in the attacker’s pro-
cess, so that the PHT entries (§ 2.2) used to predict the shadow
branches also get used to predict the victim branches in the
kernel.6 In our shadow, however, the branches are set up so
the “not taken” conditions are not mutually exclusive, and so
can be trained to both predict “not taken” (Listing 3).

To ensure PHT entry collision between the shadow and
victim branches, we must control the following factors, upon
which PHT indexing is based: (1) the state of the GHR and
(2) the BPU-indexing bits in the branches’ virtual addresses.

To control the GHR, we prepend a “branch slide” (List-
ing 4) to both the victim and its shadow. (For the eBPF victim,
we generate the branch slide using appropriate eBPF byte-
code, which the kernel compiles into the native code shown

6Note that this approach depends on the branch predictor state not being
cleared when the processor switches to privileged mode on kernel entry. This
is indeed the case in current processors.

// addresses A' and B' collide in the PHT

// with addresses A and B in Listing 2a

A': if r0 == 0x0 goto B'

// dummy register assignment

B': if r0 == 0x0 goto C'

// dummy pointer dereference

C': ...

Listing 3: Mistraining the branch predictor.

mov $0x1,%edi
cmp $0x0,%rdi
jne L1

L1: cmp $0x0,%rdi
jne L2
...

Ln−1: cmp $0x0,%rdi
jne Ln

Ln: # exploit starts here

Listing 4: Branch slide

in the listing.) Execution of the branch slide puts the GHR
into the same state both when the shadow is trained and when
the victim executes.

To control address-based indexing, we need the address of
the shadow gadget branches to map to the same PHT entries as
the victim eBPF program’s branches. We cannot create such
a PHT collision directly, by controlling the shadow gadget’s
address, since we do not know the victim’s address or the
hash function used by the branch predictor. We can, however,
perform a “brute force” search to find a collision, as prior
work has shown that the PHT on Intel processors has 214

entries [26]. We describe our collision search algorithm later,
since it relies on our mechanism for leaking data.

Cache line flushing We need the ability to flush a memory
location out of the victim’s cache, for two reasons. First, we
need to cause the read of the value checked by the branches
to miss in the cache, so that the resulting speculation win-
dow is large enough to read and leak the secret data. Sec-
ond, one of the simplest ways of leaking the data is via a
FLUSH+RELOAD cache covert channel [92], wherein the tran-
sient execution brings a previously flushed secret-dependent
line into the cache. Line 6 in Listing 2a shows an example,
which leaks over an eBPF array map, M. Notice that we mask
the secret value to obtain a valid offset into the array, to satisfy
the eBPF verifier. As a result, this example leaks a single bit.

Unfortunately, eBPF programs cannot issue a clflush
instruction to flush a cache line. This problem can be
sidestepped in a number of ways. We use a clever technique
due to Horn [35]. The basic idea is to perform the required
cache line flushes by having another eBPF program, running
on a different core, write to these cache lines, which reside in
a shared eBPF array map. These writes invalidate the relevant

cache lines in the victim’s cache, resulting in a cache miss the
next time the victim accesses the lines. After mounting the
attack, the attacker runs a third eBPF program on the victim’s
core to perform the timing measurements that deduce which
line the transient execution accessed, and thereby the secret:

r0 = CALL ktime_get_ns()

r1 = M[b] // b is 0*512 or 1*512

r2 = CALL ktime_get_ns()

return r2 - r0 // if small -> secret is b

This approach leverages the fact that eBPF programs can
perform fine-grained timing measurements by invoking the
ktime_get_ns() kernel helper. This is not fundamental for
the attack’s success, however. Similarly to what has been
shown for JavaScript [71], we could implement a fine-grained
“clock” by invoking eBPF code on another core to continu-
ously increment a counter located in a shared eBPF map.

Finding address-based PHT collisions To place our
shadow branches into addresses that get mapped to the same
PHT entries as the victim’s branches (whose address is un-
known), we perform the following search algorithm.

We allocate a 2 MB buffer and then, for each byte in the
buffer, we copy the shadow gadget to that location and check
for a collision by trying the attack. We first mistrain the branch
predictor by repeatedly executing the shadow gadget (whose
branches’ PHT entries are hoped to collide with the victim’s).
We then invoke the in-kernel victim gadget, configured (by
setting the array entry read into r0) so that its correct execu-
tion does not leak (i.e., does not execute line 6 in Listing 2a).
If no leak occurs—i.e., both timing measurements of M[b]
indicate a cache miss—we do not have a collision. If a leak
occurs, we may still not have a collision: the victim may have
leaked its own stack variable by executing line 5, either due
to the initial BPU state or if we only have a PHT collision
with the second branch. To rule these possibilities out, we try
the attack again, this time with the relevant bit flipped in that
stack variable (which is done by invoking the victim with a
different argument). If the leaked bit flips too, then we do not
have a collision; otherwise, we do. Once found, a collision
can be reused to repeat attacks against the victim. If the search
fails, the attacker can re-load the victim and retry the search.

4.3.1 Evaluation

We use a quad-core Intel i7-8650U (Kaby Lake) CPU. The
system runs Ubuntu 18.04.4 LTS with Linux 5.4.11 in a work-
station configuration, with applications such as Chrome, TeXs-
tudio, and Spotify running concurrently to the experiments.

PHT collisions We perform 50 experiments, each of which
searches for a shadow gadget location that results in PHT
collisions with a freshly loaded victim. Successful searches
take 9.5 minutes on average and occur with 92% probability

found collision? average min. max. median

success (46/50) 9.5 min. 20 sec. 45 min. 8.5 min.
failure (4/50) ≈ 53 min

Table 1: Times to find PHT collision with victim (50 experiments).

retries success rate transmission rate

1 99.9% 55,416 bps
2 98.7% 28,712 bps
10 100% 5,881 bps
100 100% 584 bps

Table 2: Accuracy and capacity of the eBPF covert channel.

(Table 1). Our search algorithm can be optimized, e.g., by
considering only certain addresses (related to BPU proper-
ties and/or kernel buffer alignment). The search, however, is
not a bottleneck for an attack, since once a location for the
shadow gadget is found, it can be reused for multiple leaks.
We therefore do not invest in optimizing the search step.

Covert channel quality We attempt to leak the contents of
one page (4096 bytes) of kernel memory, which is pre-filled
with random bytes. We leak this page one bit at a time, as
described above. The only difference from Listing 2a is that
our victim eBPF program receives an argument specifying
which bit to leak in the read value, instead of always leaking
the least significant bit. To leak a bit, we retry the attack k
times, and output the majority value leaked over the k retries.

Table 2 shows the resulting accuracy (percentage of bits
leaked correctly) and throughput (bits/second) of the overall
attack, as a function of the number of retries. Since all steps
are carried out using the same shadow gadget location, we
do not account for the initial search time. The attack reads
from arbitrary memory locations at a rate of 6.7 KB/sec with
99% accuracy, and 735 bytes/sec with 100% accuracy. (The
success rate with 2 retries is lower due to an implementation
artifact in our majority-taking computation.)

5 Compiler-introduced speculative type con-
fusion

In principle, compiler optimizations can create speculative
type confusion gadgets in the emitted code (Listing 1b shows
a hypothetical example). Here, we first show that this is not a
theoretical concern: deployed compilers can generate specu-
lative type confusion gadgets, and certain Spectre compiler
mitigations do not identify or block such gadgets (§ 5.1).
Motivated by this finding, we perform a binary analysis on
Linux and find that it contains potential compiler-introduced
vulnerabilities (§ 5.2).

5.1 Compilers emit gadgets
We test different versions of several compilers: GCC, Clang,
Intel ICC (from Intel Parallel Studio), and Microsoft Visual

Studio (MSVC). We find that all of them can compile C
code into x86 code that contains a speculative type confusion
gadget. Table 3 summarizes the results.

Listing 5 shows an example for GCC; the other compilers
produce similar results for similar code. Here, the code in the
first if block overwrites the rdi register (argument p) with the
rsi register (attacker-controlled argument x). The compiler
performs this overwrite because it enables using the same
instruction for the assignment to foo at the end of the function.
The compiler also reasons that the write to *q might modify
predicate (if q points to predicate), and thus predicate
should be re-checked after the first if block. The compiler’s
analysis does not understand that in a correct execution, the
first if block executing implies that the second if block
does not execute, even if q points to predicate. However,
if the attacker mistrains the branches such that both predict
“not taken,” the resulting transient execution dereferences the
attacker-controlled value x and leaks its value. Using the
mistraining technique of § 4.3, we verify that this is possible.

Spectre mitigations efficacy We test whether each com-
piler’s Spectre mitigations apply protection in our example.

Clang/LLVM: Implements a generic mitigation called
speculative load hardening (SLH) [21]. SLH inserts branch-
less code that creates a data dependency between each load’s
address and all prior conditional branch predicates. SLH thus
successfully protects the gadget in our example, but at a high
performance cost (§ 7).

MSVC: Supports several mitigation levels. The most ag-
gressive mitigation (/Qspectre-load) inserts an lfence
speculation barrier after every load instruction. This mit-
igation applies in our example. However, its documenta-
tion warns that “the performance impact is high” [59].
In contrast, MSVC’s recommended Spectre v1 mitigation,
/Qspectre [58], targets bounds check bypass attacks and
does not insert any speculation barriers in our example.

ICC: Similarly to MSVC, ICC supports several mitiga-
tion levels [38]. It offers two full mitigation options, based
on speculation barriers (all-fix) or SLH (all-fix-cmov),
with the former documented as having “the most run-time
performance cost” [38]. Both options apply in our example.
ICC also offers a “vulnerable code pattern” mitigation, which
does not insert speculation barriers in our example.

GCC: Does not support a whole-program mitigation. It
offers a compiler intrinsic for safely accessing values in the
face of possible misspeculation. However, programmer who
equate Spectre v1 with bounds check bypass have no reason
to use this intrinsic in our example, so we consider GCC’s
mitigation inapplicable in our case.

5.2 Finding compiler-introduced gadgets
To find potential compiler-introduced speculative type con-
fusion vulnerabilities in the wild, we perform a binary-level
static analysis of Linux 5.4.11, compiled with different GCC

compiler emits gadget? mitigates gadget?

Clang/LLVM (v3.5,
v6, v7.01, v10.0.1)

yes yes

MSVC (v16) yes suggested: no; full: yes
ICC (v19.1.1.217) yes lightweight: no; full: yes
GCC (v4.8.2, v7.5.0) yes N/A

Table 3: Compilers introducing speculative type confusion.

volatile char A[256*512];

bool predicate;

char* foo;

void victim(char *p,

uint64_t x ,

char *q) {

unsigned char v;

if (predicate) {

p = (char *) x ;

*q |= 1;

}

if (!predicate) {

v = A[(*p) * 512];

}

foo = p;

}

(a) C code

args: p in %rdi

x in %rsi
q in %rdx

first "if":
cmpb $0x0,(predicate)

B1:je L1 # skip 2nd if
assignment to p:

mov %rsi ,%rdi
assignment to q:
orb $0x1,(%rdx)
second "if":
cmpb $0x0,(predicate)

B2:jne L2
deref p & leak

L1:movsbl (%rdi),%eax
shl $0x9,%eax
cltq
movzbl A(%rax),%eax

L2:mov %rdi,(foo)
retq

(b) Emitted x86 code.

Listing 5: Example of C code compiled into a speculative type confu-
sion gadget (GCC 4.8.2, -O1). Argument x is attacker-controlled.

versions and optimization flags.

Goal & methodology We set to find out if the kernel can
be maneuvered (via transient execution) to dereference a user-
supplied address, which is the core of the attack. We explicitly
do not consider if or how the result of the dereference can
be leaked, for the following reasons. Once a secret enters the
pipeline, it can be leaked in many ways, not necessarily over
a cache covert channel (e.g., port contention [14] or execu-
tion unit timings [72]). It is beyond our scope to exhaustively
evaluate all possible leaks to determine if a “confused” deref-
erence can be exploited. Also, dereferences that appear unex-
ploitable on our test setup may be exploitable with a different
combination of kernel, compiler, and flags. Finally, today’s
unexploitable dereferences may become exploitable in the
future, due to (1) discovery of new microarchitectural covert
channels, (2) secrets reaching more instructions on future
processors with deeper speculation windows, or (3) kernel
code changes. Overall, the point is: the architectural contract
gets breached when the kernel dereferences a user-supplied
address. We thus focus on detecting these breaches.

Analysis We use the Radare2 framework [64] for static
analysis and Triton [1] to perform taint tracking and symbolic
execution. Conceptually, for each system call, we explore
all possible execution paths that start at the system call’s en-
try point and end with its return. We look for loads whose
operand is unsafe (user-controlled) in one execution but safe
(kernel-controlled) in another execution. We detect such loads
by executing each path while performing taint analysis. We
maintain a taint bit for each architectural register and each
memory word. When analyzing a system call, we maintain
two sets: U and K, initially empty. For each path, we initially
taint the system call’s arguments (which are user-controlled)
and then symbolically execute the path while propagating
taint as described below. When we encounter a load instruc-
tion, we place it into U if its operand is tainted, or into K
otherwise. We flag every load L ∈U ∩K. Listing 6 shows
pseudo code of the algorithm.

Our analysis is designed for finding proofs of concept. As
explained next, the analysis is not complete (may miss poten-
tial vulnerabilities), and it is not sound (may flag a load that is
not a potential vulnerability). The results we report are after
manually discarding such false positives.

Incomplete: We often cannot explore all possible execu-
tion flows of a system call, since their number is exponential
in the number of basic blocks. We therefore skip some paths,
which means we may miss potential vulnerabilities. We limit
the number of paths analyzed in each system call in two ways.

First, we limit the number of explored paths but ensure that
every basic block is covered. We start with the set Paths of the
1000 longest acyclic paths, to which we add the longest path
P 6∈ Paths that contains the basic block B, for each basic block
B not already covered by some path in Paths. The motivation
for adding these latter paths is to not ignore possible flows to
other basic blocks; loads in a basic block covered by a single
explored path cannot themselves be identified as vulnerable.

Second, when exploring paths, we do not descend into
called functions (i.e., skip call instructions). Instead, we
queue that called function and the taint state, and analyze
them independently later. Overall, our analysis not finding
potential vulnerabilities does not imply that none exist.

Unsound: The analysis is unsound because it abstracts
memory and over-approximates taint. We model kernel and
user memory as unbounded arrays, MK and MU , respectively.
Let T (x) denote the taint of x, where x is either a regis-
ter or a memory location. Values in MU are always tainted
(∀a : T (MU [a]) = 1), whereas values in MK are initially un-
tainted, but may become tainted due to taint propagation.
We execute a memory access with an untainted operand
on MK , and from MU otherwise. A store MK [a] = R sets
T (MK [a]) = T (R). A load R = MK [a] sets T (R) = T (MK [a]),
and similarly for loads from MU . We assume that reads of
uninitialized memory locations read 0. As a result, many ob-
jects in the analyzed execution appear to alias (i.e., occupy the
same memory locations), which can lead to inaccurate taint

analyze_syscall(S):
U = K = /0

G = control-flow graph of S
for each acyclic path P ∈ G:

analyze_path(P)

analyze_path(P):
reset state, taint input argument registers
for each instruction I in P:
propagate taint
if I is a load/store: propagate taint from/to memory
else: taint the output register of I iff

one of its operands is tainted
symbolically execute I
if I is a load:
add I to U or K, as appropriate
flag I if I ∈ U ∩ K

.
Listing 6: Finding potential compiler-introduced speculative type
confusion. (Conceptual algorithm, see text for optimizations.)

propagation. For instance, in the following code, a tainted
value is stored into MK [0x10] and taints it, which causes the
result of the subsequent load that reads MK [0x10] to be tainted.
In the real execution, however, the store and load do not alias
as they access different objects.

mov %rax ,0x10(%rbx) # p->foo = x
mov 0x10(%rcx),%rdx # v = q->bar

Due to its unsoundness, we manually verify every potential
speculative type confusion flagged by the analysis. Because
we limit the number of explored paths, the number of reports
(and thus false positives) is not prohibitive to inspect.

5.3 Analysis results
We analyze Linux v5.4.11, compiled with GCC 5.8.2 and
9.3.0. We use the allyes kernel configuration, which enables
every configuration option, except that we disable the kernel
address sanitizer and stack leak prevention, as they instrument
code and so increase the number of paths to explore. The
case studies below are valid with these options enabled. We
build the kernel with the -Os and -O3 optimization levels.
We analyze every system calls with arguments (393 in total).
Table 4 summarizes the results.

Depending on the optimization level, GCC 9.3.0 introduces
potential gadgets into 2–20 system calls, all of which stem
from the same optimization (§ 5.3.1). GCC 5.8.2 introduces a
“near miss” gadget into one system call (§ 5.3.2). This gadget
is not exploitable in the kernel we analyze, but the pattern
exhibited would be exploitable in other cases.

All the gadgets found are traditionally considered not ex-
ploitable, as the mispredicted branches depend on registers
whose value is available (not cache misses), and so can re-
solve quickly. We show, however, that branches with available
predicates are exploitable on certain x86 processors (§ 5.4).

compiler flags # vulnerable syscalls

GCC 9.3.0 -Os 20
GCC 9.3.0 -O3 2
GCC 5.8.2 -Os 0†

GCC 5.8.2 -O3 0
† One potential vulnerability exists, see § 5.3.2.

Table 4: Compiler-introduced speculative type confusion in Linux.

syscall(foo_t* uptr) {

foo_t kfoo;

// some code

if (uptr)

copy_from_user(&kfoo,

uptr ,

...);

f(uptr ? &kfoo : NULL);

// rest of code

}

(a) C pattern

args: uptr in %rdi
...

testq %rdi , %rdi

je L # jump if %rdi ==0
set copy_from_user args
...
%rbp contains addr of
stack buffer
mov %rbp, %rdi
call copy_from_user

L:callq f

(b) Emitted x86 code.

Listing 7: Reusing registers for a function call.

5.3.1 Supposedly NULL pointer dereference

The gadgets introduced by GCC 9.3.0 all stem from the same
pattern, a simplified example of which appears in Listing 7.
The system call receives an untrusted user pointer, uptr. If
uptr is not NULL, it safely copies its contents into a lo-
cal variable. Next, the system call invokes a helper f, which
receives NULL if uptr was NULL, or a pointer to the ker-
nel’s local variable otherwise. The helper f (not shown) thus
expects to receive a (possibly-NULL) kernel pointer, and
therefore dereferences it (after checking it is non-NULL).

In the emitted code, the compiler introduces a specula-
tive type confusion gadget by reusing uptr’s register to pass
NULL to f when uptr is NULL. If the attacker invokes the
system call with a non-NULL uptr and the NULL-checking
branch mispredicts “taken” (i.e., uptr=NULL), then f gets
called with the attacker-controlled value and dereferences it.

It is not clear that the gadget can be exploited, as both the
mispredicted branch and the dereference depend on the same
register. Why would the processor execute the dereference if it
knows that the branch mispredicted? We discuss this in § 5.4.

5.3.2 Stack slot reuse

GCC 5.8.2 with the -Os (optimize for space) flag introduces
an interesting gadget. The gadget instance we find is “almost”
exploitable. We describe it not only to show how a small
code change could render the gadget exploitable, but also to
demonstrate how insidious a compiler-introduced gadget can
be, and how difficult it is for programmers to reason about.

The gadget (Listing 8) is emitted into a function called

long keyctl_instantiate_key_common(key_serial_t id,

struct iov_iter *from,

key_serial_t ringid) {

struct key *dest_keyring;

// ... code ...

ret = get_instantiation_keyring(ringid,rka,&dest_keyring);

if (ret < 0)

goto error2;

ret = key_instantiate_and_link(rka->target_key, payload,

plen, dest_keyring,

instkey);

// above call dereferences dest_keyring

}

(a) C code

%rcx is a live register from caller

push %rcx
... code ...
lea 0x18(%r14),%rsi # rka argument
mov %rsp,%rdx # &dest_keyring argument
mov %r15d,%edi # ringid argument
callq get_instantiation_keyring # returns error
test %rax,%rax # if (ret < 0)
mov %rax,%rbx
js error2 # mispredict no error
...
mov (%rsp),%rcx # dest_keyring argument

dest_keyring could be old %rcx if not
overwritten in get_instantiation_keyring()
callq key_instantiate_and_link

(b) Emitted x86 code.

Listing 8: Attacker-controlled stack slot reuse in the keyctl system
call flow.

by the keyctl system call. In this function, the com-
piler chooses to allocate space for the stack slot of a
local variable (dest_keyring) by pushing the rcx reg-
ister to the stack (a one-byte opcode) instead of sub-
tracting from the stack pointer (a four-byte opcode).
The rcx register holds a user-controlled value, one of
the caller’s (keyctl) arguments. The code then calls
get_instantiation_keyring(), passing it the address of
dest_keyring. If get_instantiation_keyring() returns
successfully, the code calls key_instantiate_and_link(),
which dereferences dest_keyring.

In order to pass dest_keyring to
key_instantiate_and_link(), the code reads its
value from the stack. Consider what happens if the
earlier get_instantiation_keyring() call encoun-
ters an error, and therefore leaves the stack slot with
its original (user-controlled) value. In a correct ex-
ecution, key_instantiate_and_link() never gets
called, due to the error-checking flow. But if an at-
tacker induces the error-checking branch to mispredict,

key_instantiate_and_link() gets called with a
user-controlled pointer argument to dereference. The
only reason this instance is not exploitable is that
get_instantiation_keyring() error flows overwrite
dest_keyring. There is no security-related reason for this
overwrite, since dest_keyring is a local variable that is
never exposed to the user (i.e., there is no potential kernel
information leak). Were this function to use a different coding
discipline, the gadget would be potentially exploitable.

5.4 Potential exploitability of the gadgets
Exploiting the gadgets described in § 5.3 appears impossible.
Typical Spectre gadgets exploit branches whose condition
depends on values being fetched from memory, and so take a
long time to resolve. In our case, the branch still mispredicts,
since prediction is done at fetch time (§ 2.2). However, the
branch condition is computable immediately when it enters
the processor backend, as the values of the registers involved
are known. One would expect the processor to immediately
squash all instructions following the branch once it realizes
that the branch is mispredicted, denying any subsequent leak-
ing instructions (if they exist) a chance to execute.

The above thought process implicitly assumes that the pro-
cessor squashes instructions in the shadow of a mispredicted
branch when the branch is executed. But what if the squash
happens only when the branch is retired? A branch’s retire-
ment can get delayed if it is preceded by a long latency in-
struction (e.g., a cache missing load), which would afford
subsequent transient instructions a chance to execute.

We test the above hypothesis and find it to be false, but
in the process, we discover that some x86 processors exhibit
conceptually similar behavior due to other reasons.7 Namely,
we find that how x86 processors perform a branch mispre-
diction squash depends in some complex way on preceding
branches in the pipeline. Specifically, the squash performed
by a mispredicting branch B1 can get delayed if there is a
preceding branch B0 whose condition has not yet resolved.

Listing 9 shows the experiment. We test a gadget simi-
lar to the “supposedly NULL dereference” (§ 5.3.1) gadget.
We train the victim so that both branches are taken (*p==1,
m!=bad_m). We then invoke it so that both mispredict (*p==0,
m==bad_m), with p being flushed from the cache, and test
whether m is dereferenced and its value s is leaked. Table 5
shows the results: a leak can occur on both Intel and AMD
processors, but its probability is minuscule on Intel proces-
sors. The small success probability and its dependence on the
exact instructions in the gadget indicate that the leak occurs
due some complex microarchitectural interaction.

Implications The fact that leaks can be realistically ob-
served (for perspective: on AMD processors, our experiment
observes ≈ 10 K leaks per minute) means that compiler-
introduced gadgets are a real risk. For any gadget instance,

7We did not test non-x86 processors.

int victim(int* p,

T *m,

T *bad_m,

char *A) {

if (*p == 1) {

if (m != bad_m) {

T s = *m;

A[s*0x1000];

}

return 5;

}

return 0;

}

(a) C code

deref *p (cache miss)
mov (%rdi),%edi
mov $0x0,%eax
cmp $0x1,%edi # *p==1 ?
je L2 # jmp if *p==1

L1:repz retq
L2:mov $0x5,%eax

cmp %rdx,%rsi # m==bad_m ?
je L1 # jmp if m==bad_m
movzbl (%rsi),%eax # s = *m
shl $0xc,%eax
cltq
add %rax,%rcx
movzbl (%rcx),%eax # leak s
mov $0x5,%eax
jmp L1

(b) Emitted x86 code (T=char).

Listing 9: Evaluating processor branch misprediction squashes.

processor leak probability
T=char T=long

AMD EPYC 7R32 1/105 1/5000
AMD Opteron 6376 1/105 1/5000
Intel Xeon Gold 6132 (Skylake) 1/(5.09×107) 1/(1.36×106)
Intel Xeon E5-4699 v4 (Broadwell) 1/(3.64×109) 1/(6.2×109)
Intel Xeon E7-4870 (Westmere) 1/(1.67×109) 1/(2.75×107)

Table 5: x86 branch squash behavior (in 30 B trials).

the kernel’s flow may be such that there are slow-to-resolve
branches preceding the gadget, and/or the attacker may be
able to slow down resolution of preceding branches by evict-
ing data from the cache.

6 Speculative polymorphic type confusion

Linux defends from indirect branch target misspeculation
attacks (Spectre-BTB) using retpolines [81]. A retpoline re-
places an indirect branch with a thunk that jumps to the correct
destination in a speculation-safe way, but incurs a significant
slowdown [9]. Since the original Spectre-BTB attacks di-
verted execution to arbitrary locations, retpolines can appear
as an overly aggressive mitigation, as they block all branch
target speculation instead of restricting it to legal targets [9].

Accordingly, Linux is moving in the direction replacing
certain retpoline call sites with thunks of conditional direct
calls to the call site’s most likely targets, plus a retpoline
fallback [24]. Listing 10 shows an example. JumpSwitches [9]
take the idea further, and propose to dynamically promote
indirect call sites into such thunks by learning probable targets
and patching the call site online.

In this section, we detail how this approach can create
speculative type confusion vulnerabilities (§ 6.1) and analyze
the prevalence of such issues in Linux (§ 6.2)

%rax = branch target
cmp $0xXXXXXXXX, %rax # target1?
jz $0xXXXXXXXX
cmp $0xYYYYYYYY, %rax # target2?
jz $0xYYYYYYYY
...
jmp ${fallback} # jmp to retpoline thunk

Listing 10: Conditional direct branches instead of indirect branch.

6.1 Virtual method speculative type confusion
It has been observed (in passing) that misprediction of an
indirect call’s target can lead to speculative type confusion in
object-oriented polymorphic code [18]. The problem occurs
when a branch’s valid but wrong target, f , is speculatively
invoked instead of the correct target, g. The reason that both f
and g are valid targets is that both implement some common
interface. Each function, however, expects some or all of its
arguments to be a different subtype of the types defined by
the interface. As a result, when the misprediction causes f ’s
code to run with g’s arguments, f might derive a variable v of
type Tf from one of g’s arguments, which is really of type Tg.

Prior work [32, 56] describes how, if Tg is smaller than Tf ,
f might now perform an out-of-bounds access. We observe,
however, that the problem is more general. Even if both types
are of the same sizes, f might still dereference a field in Tf
which now actually contains some user-controlled content
from a field in Tg, and subsequently inadvertently leak the
read value. Moreover, the problem is transitive: f might deref-
erence a field that is a pointer in both Tf and Tg, but points to
an object of a different type in each, and so on.

In the following sections, we analyze the prevalence of
potential polymorphism-related speculative type confusion is
Linux. Our analysis is forward looking: we explore all indirect
call sites, not only the ones that have already been converted
to conditional call-based thunks. Such a broad analysis helps
answering questions such as: How likely is it that manually
converting a call site (the current Linux approach) will create a
vulnerability? What are the security implications of adopting
an “all-in” scheme likes JumpSwitches?

6.2 Linux analysis
Linux makes heavy use of polymorphism and data inheri-
tance (subtype derivation) in implementing internal kernel
interfaces. (Linux code implements inheritance manually, due
to being in C, as explained below.) We perform a source-level
vulnerability analysis by extending the smatch static analysis
tool [20]. As in § 5, we do not claim that if our analysis finds
no vulnerabilities then none exist.

At a high-level, the analysis consists of four steps, detailed
below. (Listing 11 shows pseudo code.)
1 Find legal targets: For each structure type and each func-

tion pointer field in that type, we build a set of legal targets
that this field might point to.

targets: a mapping from function pointer
fields in types to their valid targets
derivedObjs: a mapping from function
arguments to possible private structs they
derive

1 find call site target
for every assignment x.a = g where g is a function

and x is of type T
targets[T,a].add(g)
2 find derived_objects
for every g in targets, scan control-flow graph of g:
if i-th arg of g is used to derive struct of type T:
derivedObjs[g, i] = T

3 find all overlaps
overlaps = set()
for every T,a 7→ {g1, . . . ,gm} in targets:
for every pair (gi,g j):
for every gi,a 7→ Di in derivedObjs:
for every field fi of Di that is user-controllable:

D j = derivedObjs[g j,a]
let f j be the overlapping field in D j
overlaps.add((gi,Di, fi,g j,D j, f j)]

4 find potentially exploitable overlaps
for each (gi,Di, fi,g j,D j, f j) in overlaps:
scan control-flow graph of g j
if D j. f j is dereferenced:
let v be the data read from D j. f j
if v is used to index an array or v is dereferenced:
flag (((gggiii,,,DDDiii,,, fff iii,,,ggg jjj,,,DDD jjj,,, fff jjj)))

Listing 11: Finding potential speculative polymorph type confusion.

2 Identify subtype derivations: For each function g that
is a legal target of some call site, we attempt to identify the
arguments used to derive g-specific (subtype) objects. Since
Linux implements data inheritance manually, we scan for
the relevant patterns (illustrated in Listing 12): (1) a “private
data” field in the parent structure points to the derived object
(Listing 12a); (2) the derived object is the first field in the
parent, and obtained by casting (Listing 12b); and (3) the
derived object is some field in the parent, extracted using the
container_of macro (Listing 12c).
3 Find overlapping fields: This is a key step. For every

pair of functions that are legal targets of some call site, we
search for overlapping fields among the objects derived from
the same function argument. Two fields overlap if (1) their
(start,end) offset range in the respective object types intersect,
(2) one field is user-controllable, and (3) the other field, re-
ferred to as the target, is not user-controllable. We rely on
smatch to identify which fields are user-controllable, which is
done based on Linux’s __user annotation [80] and heuristics
for tracking untrusted data, such as network packets. An over-
lap where the target field is a kernel pointer can potentially
lead to an attacker-controlled dereference.
4 Search for vulnerabilities: This steps takes a pair of

functions gi,g j identified as using derived objects with over-
lapping fields, and tries to find if the overlaps are exploitable.
We run a control- and data-flow analysis on g j, the function

struct Common {

void* private;

};

struct Derived {...};

void foo(Common* c) {

Derived* d = c->private;

(a) Private field.

struct Common {...}

struct Derived {

struct Common common_data;

...

}

void foo(Common* c) {

Derived* d = (Derived*) c;

(b) Casting.

struct Derived {

...

struct Common common;

...

}

void foo(Common* c) {

Derived* d = container_of(c, Derived*, common);

(c) Contained structs.

Listing 12: Linux data inheritance patterns.

using the object with the target field, and check if that field
is dereferenced. This process finds thousands of potential
attacker-controlled dereferences. To make manual verifica-
tion of the results tractable, we try to detect if the value read
by the dereference gets leaked via a cache covert channel. We
consider two types of leaks: if some array index depends on
the value, and a “double dereference” pattern, in which the
value is a pointer that is itself dereferenced. The latter pattern
can be used to leak the L1-indexing bits of the value.

6.3 Analysis results
We analyze Linux v5.0-rc8 (default configuration) and v5.4.11
(allyes configuration). Table 6 summarizes the results.
While we find thousands of potential attacker-controlled deref-
erences, most are double dereferences, which we do not con-
sider further. Manual inspection of the array indexing cases
reveals that they are latent vulnerabilities, which are not (or
likely not) exploitable, but could become exploitable by acci-
dent:

• Most cases let the attacker control < 64 bits of the target
pointer, with which it cannot represent a kernel pointer (e.g.,
attacker controls a 64-bit field in its structure, but it only
overlaps the target field over one byte). A change in struc-
ture layout or field size could make these cases exploitable.

• In other cases, the attacker does not have full control over
its field (e.g., it is a flag set by userspace that can only take
on a limited set of values). § 6.4 shows an example of such
a case. A change in the semantics of the field could render
these cases exploitable.

• Some cases are false positives due to imprecision of the
analysis (e.g., a value read and used as an array index is
masked, losing most of the information).

5.0-rc8 (def.) 5.4.11 (allyes)

flagged 2706 8814
double deref 2578 8512
array indexing 128 302

array indexing exploitable?
no: <<< 666444 bit overlap 108 261
no: limited control 11 13
no: other 4 17
no(?): speculation window 5 11

Table 6: Potential speculative polymorph data confusion in Linux.

• Finally, we discard some cases because there is a function
call between the dereference and the array access, so we
assume that the processor’s speculation window in insuffi-
cient for the value to reach the array access.

Note that we may be over-conservative in rejecting cases.
The reason that we do not invest in exploring each case in
detail is because we are looking at an analysis of all indirect
calls, most of which are currently protected with retpolines.
The takeaway here is that were a conditional branch-based
mitigation used instead of retpolines, the kernel’s security
would be on shaky ground.

6.4 Case study of potential vulnerability
To get a taste for the difficulty of reasoning about this type

of speculative type confusion, consider the example in List-
ing 13. The functions in question belong the USB type C
driver and to the devfreq driver. They implement the show
method of the driver’s attributes, which is used to display the
attributes in a human-readable way. Both functions extract a
derived object from the first argument using container_of.
The attacker trains the call site to invoke the USB driver’s
method (Listing 13a) by repeatedly displaying the attributes of
that device. Next, the attacker attempts to display the devfreq
driver’s attributes. Due to the prior training, instead of the
devfreq method (Listing 13b) being executed, the USB’s
method is initially speculatively executed. Consequently, the
USB method derived object actually points to devfreq’s ob-
ject, so when the USB method dereferences its cap field it is
actually dereferencing the value stored in the devfreq’s struc-
ture max_freq field. However, as shown in Listing 13c, the
attacker can only get max_freq to contain one of a fixed set
of values. A similar scenario, in which max_freq would be
some 64-bit value written by the user, would be exploitable.

7 Discussion & mitigations

Here, we discuss possible mitigations against speculative type
confusion attacks. We distinguish mitigations for the general
problem (§ 7.1) from the specific case of eBPF (§ 7.2). We
focus on immediately deployable mitigations, i.e., mainly
software mitigations. Long term defenses are discussed in § 8.

ssize_t port_type_show(struct device *dev,

struct device_attribute *attr,

char *buf) {

// container_of use

struct typec_port *port = to_typec_port(dev);

if (port-> cap ->type == TYPEC_PORT_DRP)

return ...;

return sprintf(buf, "[%s]\n",

typec_port_power_roles[port-> cap ->type]);

}

(a) Mispredicted target.

ssize_t max_freq_show(struct device *dev,

struct device_attribute *attr,

char *buf) {

// container_of use

struct devfreq *df = to_devfreq(dev);

return sprintf(buf, "%lu\n", min(df->scaling_max_freq,

df->max_freq));

}

(b) Actual target.

ssize_t max_freq_store(struct device *dev,

struct device_attribute *attr,

const char *buf, size_t count) {

...

if (freq_table[0] < freq_table[df->profile->max_state - 1])

value = freq_table[df->profile->max_state - 1];

else

value = freq_table[0];

... value is stored into max_freq ...

}

(c) Value of max_freq is constrained.

Listing 13: Speculative polymorphic type confusion case study.

7.1 General mitigations
Unlike bounds check bypass gadgets, speculative type con-
fusion gadgets do not have a well-understood, easy to spot
structure, and are difficult if not impossible for programmers
to reason about. Mitigating them thus requires either complete
Spectre protection or statically identifying every gadget and
manually protecting it.

Complete mitigations Every Spectre attack, including
speculative type confusion, can be fully mitigated by plac-
ing speculation barriers or serializing instructions after every
branch. This mitigation essentially disables speculative execu-
tion, leading to huge performance loss [18]. Speculative load
hardening (SLH) [21] (implemented in Clang/LLVM [48] and
ICC [38]) is a more efficient complete mitigation. SLH does
not disable speculative execution, but only blocks results of
speculative loads from being forwarded down the pipeline
until the speculative execution proves to be correct. To this

ge
tp

id

co
nt

ex
t s

wi
tc

h
fo

rk
fo

rk
-c

hi
ld

th
r c

re
at

e
th

r c
re

at
e-

ch
ild

bi
g

fo
rk

bi
g

fo
rk

-c
hi

ld
hu

ge
 fo

rk
hu

ge
 fo

rk
-c

hi
ld

sm
al

l w
rit

e
sm

al
l r

ea
d

sm
al

l m
m

ap
sm

al
l m

un
m

ap
sm

al
l p

ag
e

fa
ul

t
m

id
 w

rit
e

m
id

 re
ad

m
id

 m
m

ap
m

id
 m

un
m

ap
m

id
 p

ag
e

fa
ul

t
bi

g
wr

ite
bi

g
re

ad
bi

g
m

m
ap

bi
g

m
un

m
ap

bi
g

pa
ge

 fa
ul

t
hu

ge
 w

rit
e

hu
ge

 re
ad

hu
ge

 m
m

ap
hu

ge
 m

un
m

ap
hu

ge
 p

ag
e

fa
ul

t
m

ea
n0.0

0.5

1.0

1.5

2.0

2.5

no
rm

al
ize

d
ex

ec
ut

io
n

tim
e baseline

SLH

Figure 3: Slowdown of Linux 5.4.119 kernel operations due to SLH.

perlbench_s

gcc_s
mcf_s

omnetpp_s

xalancbmk_s

x264_s
deepsjeng_s

leela_s
xz_s mean

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

no
rm

al
ize

d
ex

ec
ut

io
n

tim
e

baseline
Clang SLH

Figure 4: Slowdown of SPEC CPU 2017 applications due to SLH.

end, SLH masks the output of every load with a mask that has
a data dependency on the outcome of all prior branches in
the program, which is obtained by emitting conditional move
instructions that maintain the mask after every branch.

Unfortunately, we find that SLH imposes significant over-
head on both kernel operations and computational workloads,
far worse than previously reported results on a Google mi-
crobenchmark suite [21]. To evaluate SLH’s overhead on the
Linux kernel, we use LEBench [65], a microbenchmark suite
that measures the performance of the most important system
calls for a range of application workloads.8 To evaluate SLH’s
overhead on computational userspace workloads, we use the
SPEC CPU2017 benchmark suite [17].

We evaluate the above benchmarks on a system with a
2.6 GHz Intel Xeon Gold 6132 (Skylake) CPU running Linux
5.4.119. Figure 3 shows the relative slowdown of system call
execution time with an SLH-enabled kernel, compared to a
vanilla kernel (which includes Linux’s standard Spectre mit-
igations but is compiled without SLH). Figure 4 shows the
relative execution time slowdown of a subset of the CPU2017
C/C++ benchmarks when compiled with SLH enabled, com-

8We modify Clang/LLVM’s SLH implementation to support kernel-mode
execution, which is not supported out of the box. SLH assumes that the high
bits of addresses are zeroes, and relies on this property to encode information
in the stack pointer on function calls/returns [21]. This technique breaks
kernel execution, because the high bits of kernel virtual addresses are ones.
Our modification simply flips the bit values that SLH encodes in the stack
pointer, so that non-transient kernel executions maintain a valid stack pointer.

pared to with standard compilation. In both settings, SLH
imposes significant slowdowns. SLH causes an average sys-
tem call slowdown of 1.65× (up to 2.7×) and an average
CPU2017 program slowdown of 2× (up to almost 3.5×).

Other proposed software mitigations [62, 87] use similar
principles to SLH, but were evaluated on protecting array
bounds checking. It is not clear what their overhead would be
if used for complete mitigation.

Spot mitigations We contend that manual Spectre mitiga-
tion, as advocated in Linux and GCC, is not practical against
speculative type confusion. Similarly to how transient exe-
cution attacks break the security contract between hardware
and software, speculative type confusion breaks the contract
between the compiler and programs, with correct programs
possibly being compiled into vulnerable native code. Worse,
any conclusion reached about security of code can be invali-
dated by an unrelated code change somewhere in the program
or an update of the compiler. Overall, human-only manual
mitigation seems difficult if not infeasible.

As a result, a manual mitigation approach must be guided
by a complete static analysis, which would detect every spec-
ulative type confusion gadget in the kernel. It is notoriously
difficult, however, to prove safety of C/C++ code, e.g., due
to pointer aliasing and arithmetic [12]. Here, the problem
is compounded by the need to analyze all possible paths,
which invalidates many static analysis optimizations. Indeed,
current analyses that reason about speculative execution vul-
nerabilities have limited scalability [31], restrict themselves
to constant-time code [22], or search for specific syntactic
code patterns [88]. Scaling an analysis to verify that every
pointer dereference in Linux is safe from speculative type
confusion is a major research challenge.

Hardware workarounds Using different BPUs for user
and kernel context may be a non-intrusive hardware change
that vendors can quickly roll out. However, this mitigation
would still allow attackers to perform mistraining by invoking
in-kernel shadow branches (e.g., in eBPF programs) whose
PHT entries collide with the victim’s.

7.2 Securing eBPF

In addition to the generic mitigations, eBPF can defend from
speculative type confusion in eBPF-specific ways. The veri-
fier can reason about all execution flows, not just semantically
correct ones. However, this approach would increase verifi-
cation time and render some programs infeasible to verify.
An alternative approach is for the verifier to inject masking
instructions to ensure that the operand of every load instruc-
tion is constrained to the object it is supposed to be accessing,
generalizing the sandboxing approaches of Native Client x86-
64 [73] and Swivel-SFI [61].

8 Related work

Attacks Blindside [30] and SpecROP [13] employ Spectre-
PHT attacks that do not involve a bounds check bypass. Both
attacks also involve indirect branching to an illegal target,
whereas our exploitation of indirect branches does not. Blind-
side leverages a non-speculative pointer corruption (e.g., via
a buffer overflow) to speculatively hijack control flow in the
shadow of a mispredicted branch. SpecROP poisons the BTB
to chain multiple Spectre gadgets with indirect calls. With
recent mitigations, SpecROP is therefore limited to intra-
address space attacks and cannot target the kernel.

Defenses Non-speculative type confusion [33, 40, 49, 60]
and control-flow integrity (CFI) [6,25,28,78,96] have received
significant attention. These works generally consider non-
speculative memory corruption and control-flow hijacking,
not memory disclosure over covert channels. The defenses
proposed are based on the architectural semantics, and so do
not straightforwardly apply to speculative execution attacks.

There are many proposals for hardware defenses against
transient execution attacks. Some designs require program-
mer or software support [27, 42, 69, 77, 93] but many are
software-transparent. Transparent designs differ in the protec-
tion approach. Some block only cache-based attacks [7, 41,
50, 66, 67, 91], whereas others comprehensively block data
from reaching transient covert channels [10,89,94,95]. These
works all report drastically lower overhead than what we ob-
serve for SLH, but their results are based on simulations.

Combining the above two lines of work, SpecCFI [47]
is a hardware mitigation for Spectre-BTB (v2) attacks that
restricts branch target speculation to legal targets, obtained
by CFI analysis. SpecCFI also assumes hardware Spectre-
PHT (v1) mitigations, and thus should not be vulnerable to
speculative type confusion.

In principle, speculative type confusion can be detected
by static [22, 31, 88] or dynamic [63] analysis that reasons
about speculative execution. To our knowledge, only SPEC-
TECTOR [31] performs a sound analysis targeting general-
purpose code, but it has challenges scaling to large code bases,
such as Linux. Other static analyses target only constant-time
code [22] or search for specific code patterns [88]. Spec-
Fuzz [63] dynamically executes misspeculated flows, making
them observable to conventional memory safety checkers,
such as AddressSanitizer [74]. Thus, SpecFuzz is not guaran-
teed to find all vulnerabilities.

eBPF Gershuni et al. [29] leverage abstract interpretation
to design an eBPF verifier with improved precision (fewer
incorrectly rejected programs) and scope (verifying eBPF pro-
grams with loops). Their analysis still is based on architectural
semantics, and thus does not block our described speculative
type confusion attack.

9 Conclusion

We have shown that speculative type confusion vulnerabilities
exist in the wild. Speculative type confusion puts into question
“spot” Spectre mitigations. The relevant gadgets do not have a
specific structure and can insidiously materialize as a result of
benign compiler optimizations and code changes, making it
hard if not impossible for programmers to reason about code
and manually apply Spectre mitigations.

Speculative type confusion vulnerabilities also slip through
the cracks of non-comprehensive Spectre mitigations such
as prevention of bounds check bypasses and restriction of
indirect branch targets to legal (but possibly wrong) targets.
Consequently, the Spectre mitigation approach in the Linux
kernel—and possibly other systems—requires rethinking and
further research.

Disclosure

We disclosed our findings to the Linux kernel security team,
the eBPF maintainers, as well as Google’s Android and
Chromium teams in June 2020. Following our report, Google
awarded us a Vulnerability Reward. The eBPF vulnerability
(CVE-2021-33624) was fixed in the mainline Linux devel-
opment tree in June 2021, by extending the eBPF verifier to
explore speculative paths [16]. Subsequently, we issued an
advisory [44] to alert the various Linux distributions to the
vulnerability and its mitigation.

Acknowledgements

We thank Alla Lenchner for extending LLVM’s SLH to sup-
port kernel-mode mitigation. We thank the reviewers and our
shepherd, Deian Stefan, for their insightful feedback. This
work was funded in part by an Intel Strategic Research Al-
liance (ISRA) grant and by the Blavatnik ICRC at TAU.

References
[1] Triton: A Dynamic Symbolic Execution Framework, 2015.

[2] eXpress Data Path. https://prototype-kernel.readthedocs.
io/en/latest/networking/XDP/index.html, 2018.

[3] IO Visor Project. https://www.iovisor.org/technology/bcc,
2018.

[4] A seccomp overview. https://lwn.net/Articles/656307/, 2018.

[5] Linux kernel virtual memory map. https://www.kernel.org/doc/
Documentation/x86/x86_64/mm.txt, 2020.

[6] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-
Flow Integrity. In CCS, 2005.

[7] Sam Ainsworth and Timothy M. Jones. MuonTrap: Preventing Cross-
Domain Spectre-Like Attacks by Capturing Speculative State. In ISCA,
2019.

[8] AMD. An Update on AMD Processor Security. https:
//www.amd.com/en/corporate/speculative-execution-
previous-updates#paragraph-337801, 2018.

[9] Nadav Amit, Fred Jacobs, and Michael Wei. JumpSwitches: Restoring
the Performance of Indirect Branches In the Era of Spectre. In USENIX
ATC, 2019.

[10] Kristin Barber, Anys Bacha, Li Zhou, Yinqian Zhang, and Radu Teodor-
escu. SpecShield: Shielding Speculative Data from Microarchitectural
Covert Channels. In PACT, 2019.

[11] Andrew Begel, Steven McCanne, and Susan L. Graham. BPF+: Ex-
ploiting Global Data-Flow Optimization in a Generalized Packet Filter
Architecture. In SIGCOMM, 1999.

[12] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth
Hallem, Charles Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson
Engler. A Few Billion Lines of Code Later: Using Static Analysis to
Find Bugs in the Real World. CACM, 53(2), 2010.

[13] Atri Bhattacharyya, Andrés Sánchez, Esmaeil M. Koruyeh, Nael Abu-
Ghazaleh, Chengyu Song, and Mathias Payer. SpecROP: Speculative
Exploitation of ROP Chains. In RAID, 2020.

[14] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner,
Alessandro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus.
SMoTherSpectre: Exploiting Speculative Execution through Port Con-
tention. In CCS, 2019.

[15] Daniel Borkmann. bpf: prevent out of bounds speculation
on pointer arithmetic. https://git.kernel.org/pub/
scm/linux/kernel/git/torvalds/linux.git/commit/?id=
979d63d50c0c0f7bc537bf821e056cc9fe5abd38, 2019.

[16] Daniel Borkmann. bpf: Fix leakage under speculation on
mispredicted branches. https://git.kernel.org/pub/
scm/linux/kernel/git/torvalds/linux.git/commit/?id=
9183671af6dbf60a1219371d4ed73e23f43b49db, 2021.

[17] James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. SPEC
CPU2017: Next-Generation Compute Benchmark. In ICPE, 2018.

[18] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Ben-
jamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin,
and Daniel Gruss. A Systematic Evaluation of Transient Execution
Attacks and Defenses. In USENIX Security, 2019.

[19] Claudio Canella, Michael Schwarz, Martin Haubenwallner, Martin
Schwarzl, and Daniel Gruss. KASLR: Break It, Fix It, Repeat. In CCS,
2020.

[20] Dan Carpenter. Smatch!!! http://smatch.sourceforge.net, 2003.

[21] Chandler Carruth. Speculative Load Hardening. https://llvm.org/
docs/SpeculativeLoadHardening.html, 2018.

[22] Sunjay Cauligi, Craig Disselkoen, Klaus v. Gleissenthall, Dean Tullsen,
Deian Stefan, Tamara Rezk, and Gilles Barthe. Constant-Time Founda-
tions for the New Spectre Era. In PLDI, 2020.

[23] CodeMachine. Windows Kernel Virtual Address Layout. https:
//www.codemachine.com/article_x64kvas.html, 2020.

[24] Jonathan Corbet. Relief for retpoline pain. LWN (https://lwn.net/
Articles/774743/), 2018.

[25] J. Criswell, N. Dautenhahn, and V. Adve. KCoFI: Complete Control-
Flow Integrity for Commodity Operating System Kernels. In IEEE
S&P, 2014.

[26] Dmitry Evtyushkin, Ryan Riley, Nael Abu-Ghazaleh, and Dmitry Pono-
marev. BranchScope: A New Side-Channel Attack on Directional
Branch Predictor. In ASPLOS, 2018.

[27] Jacob Fustos, Farzad Farshchi, and Heechul Yun. SpectreGuard: An
Efficient Data-centric Defense Mechanism against Spectre Attacks.
DAC, 2019.

[28] X. Ge, N. Talele, M. Payer, and T. Jaeger. Fine-Grained Control-Flow
Integrity for Kernel Software. In IEEE Euro S&P, 2016.

[29] Elazar Gershuni, Nadav Amit, Arie Gurfinkel, Nina Narodytska,
Jorge A. Navas, Noam Rinetzky, Leonid Ryzhyk, and Mooly Sagiv.
Simple and Precise Static Analysis of Untrusted Linux Kernel Exten-
sions. In PLDI, 2019.

https://prototype-kernel.readthedocs.io/en/latest/networking/XDP/index.html
https://prototype-kernel.readthedocs.io/en/latest/networking/XDP/index.html
https://www.iovisor.org/technology/bcc
https://lwn.net/Articles/656307/
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://www.amd.com/en/corporate/speculative-execution-previous-updates#paragraph-337801
https://www.amd.com/en/corporate/speculative-execution-previous-updates#paragraph-337801
https://www.amd.com/en/corporate/speculative-execution-previous-updates#paragraph-337801
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=979d63d50c0c0f7bc537bf821e056cc9fe5abd38
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=979d63d50c0c0f7bc537bf821e056cc9fe5abd38
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=979d63d50c0c0f7bc537bf821e056cc9fe5abd38
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=9183671af6dbf60a1219371d4ed73e23f43b49db
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=9183671af6dbf60a1219371d4ed73e23f43b49db
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=9183671af6dbf60a1219371d4ed73e23f43b49db
http://smatch.sourceforge.net
https://llvm.org/docs/SpeculativeLoadHardening.html
https://llvm.org/docs/SpeculativeLoadHardening.html
https://www.codemachine.com/article_x64kvas.html
https://www.codemachine.com/article_x64kvas.html
https://lwn.net/Articles/774743/
https://lwn.net/Articles/774743/

[30] Enes Göktaş, Kaveh Razavi, Georgios Portokalidis, Herbert Bos, and
Cristiano Giuffrida. Speculative Probing: Hacking Blind in the Spectre
Era. In CCS, 2020.

[31] Marco Guarnieri, Boris Köpf, José F. Morales, Jan Reineke, and Andrés
Sánchez. Spectector: Principled detection of speculative information
flows. In IEEE S&P, 2020.

[32] Noam Hadad and Jonathan Afek. Overcoming (some) Spectre browser
mitigations. https://alephsecurity.com/2018/06/26/spectre-
browser-query-cache/, 2018.

[33] Istvan Haller, Yuseok Jeon, Hui Peng, Mathias Payer, Cristiano Giuf-
frida, Herbert Bos, and Erik van der Kouwe. TypeSan: Practical Type
Confusion Detection. In CCS, 2016.

[34] John L. Hennessy and David A. Patterson. Computer Architecture,
Sixth Edition: A Quantitative Approach. Morgan Kaufmann Publishers
Inc., 6th edition, 2017.

[35] Jann Horn. Issue 1711: Linux: eBPF Spectre v1 mitigation is insuf-
ficient. https://bugs.chromium.org/p/project-zero/issues/
detail?id=1711, 2018.

[36] Jann Horn. Speculative execution, variant 4: speculative store by-
pass. https://bugs.chromium.org/p/project-zero/issues/
detail?id=1528, 2018.

[37] Intel. Bounds Check Bypass / CVE-2017-5753 / INTEL-
SA-00088. https://software.intel.com/security-software-
guidance/software-guidance/bounds-check-bypass, 2018.

[38] Intel. Code Generation Options: mconditional-branch, Qconditional-
branch. https://software.intel.com/content/www/us/
en/develop/documentation/cpp-compiler-developer-
guide-and-reference/top/compiler-reference/compiler-
options/compiler-option-details/code-generation-
options/mconditional-branch-qconditional-branch.html,
2020.

[39] Brian Krzanich (Intel). Advancing Security at the Silicon
Level. https://newsroom.intel.com/editorials/advancing-
security-silicon-level/, 2018.

[40] Yuseok Jeon, Priyam Biswas, Scott Carr, Byoungyoung Lee, and Math-
ias Payer. HexType: Efficient Detection of Type Confusion Errors for
C++. In CCS, 2017.

[41] Khaled N. Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu
Song, Dmitry Evtyushkin, Dmitry Ponomarev, and Nael B. Abu-
Ghazaleh. SafeSpec: Banishing the Spectre of a Meltdown with
Leakage-Free Speculation. In DAC, 2019.

[42] Vladimir Kiriansky, Ilia A. Lebedev, Saman P. Amarasinghe, Srinivas
Devadas, and Joel Emer. DAWG: A Defense Against Cache Timing
Attacks in Speculative Execution Processors. In MICRO, 2018.

[43] Vladimir Kiriansky and Carl Waldspurger. Speculative Buffer Over-
flows: Attacks and Defenses. arXiv e-prints, 1807.03757, 2018.

[44] Ofek Kirzner and Adam Morrison. CVE-2021-33624: Linux kernel
BPF protection against speculative execution attacks can be bypassed to
read arbitrary kernel memory. https://www.openwall.com/lists/
oss-security/2021/06/21/1, 2021.

[45] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike
Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre Attacks: Exploiting Speculative
Execution. In IEEE S&P, 2019.

[46] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu
Song, and Nael Abu-Ghazaleh. Spectre Returns! Speculation Attacks
using the Return Stack Buffer. In WOOT, 2018.

[47] Esmaeil Mohammadian Koruyeh, Shirin Hajl Amin Shirazi, Khaled
Khasawneh, Chengyu Song, and Nael Abu-Ghazaleh. SPECCFI: Miti-
gating Spectre Attacks Using CFI Informed Speculation. In IEEE S&P,
2020.

[48] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. In CGO, 2004.

[49] Byoungyoung Lee, Chengyu Song, Taesoo Kim, and Wenke Lee. Type
Casting Verification: Stopping an Emerging Attack Vector. In USENIX
Security, 2015.

[50] Peinan Li, Lutan Zhao, Rui Hou, Lixin Zhang, and Dan Meng. Condi-
tional Speculation: An Effective Approach to Safeguard Out-of-Order
Execution Against Spectre Attacks. In HPCA, 2019.

[51] Linux. Mitigating speculation side-channels. https://www.kernel.
org/doc/Documentation/speculation.txt, 2018.

[52] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and
Mike Hamburg. Meltdown: Reading Kernel Memory from User Space.
In USENIX Security, 2018.

[53] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-Level Cache
Side-Channel Attacks are Practical. In IEEE S&P, 2015.

[54] Giorgi Maisuradze and Christian Rossow. Ret2Spec: Speculative Exe-
cution Using Return Stack Buffers. In CCS, 2018.

[55] Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L. Titzer, and Toon
Verwaest. Spectre is here to stay: An analysis of side-channels and
speculative execution. arXiv e-prints, 1902.05178, 2019.

[56] Microsoft. C++ Developer Guidance for Speculative Execution Side
Channels. https://docs.microsoft.com/en-us/cpp/security/
developer-guidance-speculative-execution?view=vs-2019,
2018.

[57] Microsoft. Spectre mitigations in MSVC. https://devblogs.
microsoft.com/cppblog/spectre-mitigations-in-msvc/,
2018.

[58] Microsoft. /Qspectre. https://docs.microsoft.com/en-us/cpp/
build/reference/qspectre-load?view=vs-2019, 2019.

[59] Microsoft. /Qspectre-load. https://docs.microsoft.com/en-us/
cpp/build/reference/qspectre-load?view=vs-2019, 2020.

[60] Paul Muntean, Sebastian Wuerl, Jens Grossklags, and Claudia Eck-
ert. CastSan: Efficient Detection of Polymorphic C++ Object Type
Confusions with LLVM. In ESORICS, 2018.

[61] Shravan Narayan, Craig Disselkoen, Daniel Moghimi, Sunjay Cauligi,
Evan Johnson, Zhao Gang, Anjo Vahldiek-Oberwagner, Ravi Sahita,
Hovav Shacham, Dean Tullsen, and Deian Stefan. Swivel: Hardening
WebAssembly against Spectre. In USENIX Security Symposium, 2021.

[62] Oleksii Oleksenko, Bohdan Trach, Tobias Reiher, Mark Silberstein, and
Christof Fetzer. You Shall Not Bypass: Employing data dependencies
to prevent Bounds Check Bypass. arXiv e-prints, arXiv:2005.00294,
2018.

[63] Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and Christof Fet-
zer. SpecFuzz: Bringing Spectre-type vulnerabilities to the surface. In
USENIX Security, 2020.

[64] Pancake. Radare2. https://rada.re/n/.

[65] Xiang (Jenny) Ren, Kirk Rodrigues, Luyuan Chen, Camilo Vega,
Michael Stumm, and Ding Yuan. An Analysis of Performance Evolu-
tion of Linux’s Core Operations. In SOSP, 2019.

[66] Gururaj Saileshwar and Moinuddin K. Qureshi. CleanupSpec: An
“Undo” Approach to Safe Speculation. In MICRO, 2019.

[67] Christos Sakalis, Stefanos Kaxiras, Alberto Ros, Alexandra Jimborean,
and Magnus Själander. Efficient Invisible Speculative Execution
Through Selective Delay and Value Prediction. In ISCA, 2019.

[68] Jay Schulist, Daniel Borkmann, and Alexei Starovoitov. Linux Socket
Filtering aka Berkeley Packet Filter (BPF). https://www.kernel.
org/doc/Documentation/networking/filter.txt, 2018.

[69] Michael Schwarz, Moritz Lipp, Claudio Canella, Robert Schilling, Flo-
rian Kargl, and Daniel Gruss. ConTExT: Leakage-Free Transient
Execution. In NDSS, 2020.

https://alephsecurity.com/2018/06/26/spectre-browser-query-cache/
https://alephsecurity.com/2018/06/26/spectre-browser-query-cache/
https://bugs.chromium.org/p/project-zero/issues/detail?id=1711
https://bugs.chromium.org/p/project-zero/issues/detail?id=1711
https://bugs.chromium.org/p/project-zero/issues/ detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/ detail?id=1528
https://software.intel.com/security-software-guidance/software-guidance/bounds-check-bypass
https://software.intel.com/security-software-guidance/software-guidance/bounds-check-bypass
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/code-generation-options/mconditional-branch-qconditional-branch.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/code-generation-options/mconditional-branch-qconditional-branch.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/code-generation-options/mconditional-branch-qconditional-branch.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/code-generation-options/mconditional-branch-qconditional-branch.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/code-generation-options/mconditional-branch-qconditional-branch.html
https://newsroom.intel.com/editorials/advancing-security-silicon-level/
https://newsroom.intel.com/editorials/advancing-security-silicon-level/
https://www.openwall.com/lists/oss-security/2021/06/21/1
https://www.openwall.com/lists/oss-security/2021/06/21/1
https://www.kernel.org/doc/Documentation/speculation.txt
https://www.kernel.org/doc/Documentation/speculation.txt
https://docs.microsoft.com/en-us/cpp/security/developer-guidance-speculative-execution?view=vs-2019
https://docs.microsoft.com/en-us/cpp/security/developer-guidance-speculative-execution?view=vs-2019
https://devblogs.microsoft.com/cppblog/spectre-mitigations-in-msvc/
https://devblogs.microsoft.com/cppblog/spectre-mitigations-in-msvc/
https://docs.microsoft.com/en-us/cpp/build/reference/qspectre-load?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/qspectre-load?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/qspectre-load?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/qspectre-load?view=vs-2019
https://rada.re/n/
https://www.kernel.org/doc/Documentation/networking/filter.txt
https://www.kernel.org/doc/Documentation/networking/filter.txt

[70] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian
Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad: Cross-
privilege-boundary data sampling. In CCS, 2019.

[71] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan Man-
gard. Fantastic Timers and Where to Find Them: High-Resolution
Microarchitectural Attacks in JavaScript. In FC, 2017.

[72] Michael Schwarz, Martin Schwarzl, Moritz Lipp, and Daniel Gruss.
Netspectre: Read arbitrary memory over network. In ESORICS, 2019.

[73] David Sehr, Robert Muth, Cliff Biffle, Victor Khimenko, Egor Pasko,
Karl Schimpf, Bennet Yee, and Brad Chen. Adapting Software Fault
Isolation to Contemporary CPU Architectures. In USENIX Security,
2010.

[74] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitry Vyukov. AddressSanitizer: A Fast Address Sanity Checker. In
USENIX ATC, 2012.

[75] Alexei Starovoitov. bpf: enable non-root eBPF programs (Linux 4.4
commit), 2015.

[76] Alexei Starovoitov. bpf: prevent out-of-bounds speculation. https:
//lwn.net/Articles/743288/, 2018.

[77] Mohammadkazem Taram, Ashish Venkat, and Dean Tullsen. Context-
Sensitive Fencing: Securing Speculative Execution via Microcode
Customization. In ASPLOS, 2019.

[78] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway,
Úlfar Erlingsson, Luis Lozano, and Geoff Pike. Enforcing Forward-
Edge Control-Flow Integrity in GCC & LLVM. In USENIX Security,
2014.

[79] Robert M Tomasulo. An Efficient Algorithm for Exploiting Multiple
Arithmetic Units. IBM Journal of Research and Development, (1),
1967.

[80] Linus Torvalds. Add __user__kernel address space modifiers. https:
//lwn.net/Articles/28348/, 2003.

[81] Paul Turner. Retpoline: a software construct for preventing branch-
target-injection. https://support.google.com/faqs/answer/
7625886, 2018.

[82] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yu-
val Yarom, and Raoul Strackx. Foreshadow: Extracting the Keys to
the Intel SGX Kingdom with Transient Out-of-Order Execution. In
USENIX Security, 2018.

[83] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina
Minkin, Daniel Genkin, Yarom Yuval, Berk Sunar, Daniel Gruss, and
Frank Piessens. LVI: Hijacking Transient Execution through Microar-
chitectural Load Value Injection. In IEEE S&P’20, 2020.

[84] Stephan van Schaik, Cristiano Giuffrida, Herbert Bos, , and Kaveh
Razavi. Malicious Management Unit: Why Stopping Cache Attacks in
Software is Harder Than You Think. In USENIX Security, 2018.

[85] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo,
Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
RIDL: Rogue in-flight data load. In IEEE S&P, 2019.

[86] Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel Genkin,
and Yuval Yarom. CacheOut: Leaking data on Intel CPUs via cache
evictions. In IEEE S&P, 2021.

[87] Marco Vassena, Craig Disselkoen, Klaus von Gleissenthall, Sunjay
Cauligi, Rami Gökhan Kıcı, Ranjit Jhala, Dean Tullsen, and Deian Ste-
fan. Automatically Eliminating Speculative Leaks from Cryptographic
Code with Blade. In POPL, 2021.

[88] Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tulika Mi-
tra, and Abhik Roychoudhury. oo7: Low-overhead Defense against
Spectre attacks via Program Analysis. IEEE Transactions on Software
Engineering, 2019.

[89] Ofir Weisse, Ian Neal, Kevin Loughlin, Thomas Wenisch, and Baris
Kasikci. NDA: Preventing Speculative Execution Attacks at Their
Source. In MICRO, 2019.

[90] Wikipedia. Usage share of operating systems. https:
//en.wikipedia.org/wiki/Usage_share_of_operating_
systems#Public_servers_on_the_Internet, 2020.

[91] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christo-
pher W. Fletcher, and Josep Torrellas. InvisiSpec: Making Speculative
Execution Invisible in the Cache Hierarchy. In MICRO, 2018.

[92] Yuval Yarom and Katrina Falkner. Flush+Reload: a high resolution,
low noise, L3 cache side-channel attack. In USENIX Security, 2014.

[93] Jiyong Yu, Lucas Hsiung, Mohamad El Hajj, and Christopher W.
Fletcher. Data Oblivious ISA Extensions for Side Channel-Resistant
and High Performance Computing. In NDSS, 2019.

[94] Jiyong Yu, Namrata Mantri, Josep Torrellas, Adam Morrison, and
Christopher W. Fletcher. Speculative Data-Oblivious Execution (SDO):
Mobilizing Safe Prediction For Safe and Efficient Speculative Execu-
tion. In ISCA, 2020.

[95] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrel-
las, and Christopher W. Fletcher. Speculative Taint Tracking (STT): A
Comprehensive Protection for Speculatively Accessed Data. In MICRO,
2019.

[96] Mingwei Zhang and R. Sekar. Control Flow Integrity for COTS Bina-
ries. In USENIX Security, 2013.

[97] To Zhang, Kenneth Koltermann, and Dmitry Evtyushkin. Exploring
Branch Predictors for Constructing Transient Execution Trojans. In
ASPLOS, 2020.

https://lwn.net/Articles/743288/
https://lwn.net/Articles/743288/
https://lwn.net/Articles/28348/
https://lwn.net/Articles/28348/
https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886
https://en.wikipedia.org/wiki/Usage_share_of_operating_systems#Public_servers_on_the_Internet
https://en.wikipedia.org/wiki/Usage_share_of_operating_systems#Public_servers_on_the_Internet
https://en.wikipedia.org/wiki/Usage_share_of_operating_systems#Public_servers_on_the_Internet

	Introduction
	Overview & contributions
	Implications

	Background
	Out-of-order & speculative execution
	Branch prediction
	Cache covert channels
	Transient execution attacks

	Threat model
	Speculative type confusion in eBPF
	eBPF security model
	Verifier vulnerability
	Proof of concept exploit
	Evaluation

	Compiler-introduced speculative type confusion
	Compilers emit gadgets
	Finding compiler-introduced gadgets
	Analysis results
	Supposedly NULL pointer dereference
	Stack slot reuse

	Potential exploitability of the gadgets

	Speculative polymorphic type confusion
	Virtual method speculative type confusion
	Linux analysis
	Analysis results
	Case study of potential vulnerability

	Discussion & mitigations
	General mitigations
	Securing eBPF

	Related work
	Conclusion

