Rolling Colors: Adversarial Laser Exploits against Traffic Light Recognition

<u>Chen Yan</u>¹, Zhijian Xu^{1,2}, Zhanyuan Yin³, Xiaoyu Ji¹, Wenyuan Xu¹

¹Zhejiang University, ²The Chinese University of Hong Kong, ³The University of Chicago

Traffic Light Recognition

- Enables vehicles to detect and recognize traffic light signals
- Essential for full autonomous driving in urban areas

How does traffic light recognition work?

Front view Camera

What if traffic light recognition goes wrong?

MY FERRARI! I HAD TO DO AWFUL THINGS TO PAY FOR HER.

Spoof traffic light recognition?

• Use fake traffic lights? ... Probably not the best idea.

Let's use laser!

- Narrow beam of radiation \rightarrow *Travel a long distance, hard to detect*
- Previous studies have shown laser's capability on interfering cameras

Petit et al., Remote Attacks on Automated Vehicles Sensors: Experiments on Camera and LiDAR (Blackhat 2015) Yan et al., Can You Trust Autonomous Vehicles: Contactless Attacks against Sensors of Self-Driving Vehicles (DEFCON 2016)

Attack Scenario and Requirements

R1: Laser Interference Study

Real scene

Color stripe

R1: Exploiting the Rolling Shutter

 A rolling shutter is a type of image capture in cameras that records the frame line by line on an image sensor instead of capturing the entire frame all at once.

R1: Exploiting the Rolling Shutter

 A rolling shutter is a type of image capture in cameras that records the frame line by line on an image sensor instead of capturing the entire frame all at once.

R1: Exploiting the Rolling Shutter

- Inject a color stripe into the captured image with a laser pulse signal
- Full control over the stripe's number, width, and position
- Synchronize the laser pulse with the rolling shutter period (frame rate)

R2: Passing Traffic Light Detection

The injected color stripe must **NOT** affect traffic light detection

- Requisite 1: proper control of laser intensity
- Requisite 2: proper design of the stripe's width and position

R3: Spoofing Traffic Light Recognition

Spoof traffic light detection to a targeted color (Red \rightarrow Green, Green \rightarrow Red)

• **Requisite:** fine-tune the laser parameters according to specific traffic lights and attack scenarios

Threat Model & Attack Workflow

Attack Design

• Emulated Attacks

- Real-World Attacks in Stationary Setups
- Real-World Attacks in Motion

5 Cameras

2 Models

Used on Tesla vehicles

Real-World Attacks in Stationary Setups

- Experiment Setup
- Overall Performance
 - Red \rightarrow Green
 - Green ightarrow Red
- Impact of the Traffic Light
 - Distances: 5m 25m
 - 5 Positions: [L, ML, M, MR, R]
 - 3 Directions: [L, M, R]

Real-World Attacks in Stationary Setups

Overall Performance

Table 2: Success rates of attacking 2 systems and 5 cameras.

Green \rightarrow Red is easier than Red \rightarrow Green

Tesla camera is the most vulnerable

Real-World Attacks in Stationary Setups

Impacts of the traffic light's distance, position and direction.

(d) No. of successful $R \rightarrow G$ at various locations

(e) Results of $R \rightarrow G$ attack at various distances

(f) Results of $R \rightarrow G$ attack at various positions

Real-World Attacks in Motion

- Effectiveness across Continuous Video Frames
- Feasibility of Tracking and Laser Aiming
- End-to-End Impact on Driving

Effectiveness across Continuous Video Frames

Experiment setup

Attack videos

Attack results across continuous frames

The attack can continuously spoof traffic light recognition for more than 1 second with a success rate of 85.2%

Feasibility of Tracking and Laser Aiming

Manual tracking and aiming equipment

Setup for long-range laser aiming experiment (the attacker was on the roadside and 40-80 m away from the vehicle)

Feasibility of Tracking and Laser Aiming

 Attacker can track the target camera and aim the laser at the same time even when the vehicle is moving at 20 km/h.
The average attack success rate of spoofing traffic light recognition is 28.4%.

End-to-End Impact on Driving

Attack Scenario 1: Running a red light

Attack Scenario 2: Emergency stop

Countermeasures

- Use global shutters instead of rolling shutters
- Rolling shutter improvement: expose the CMOS rows in a *random sequence*

Sequential rolling

(before defense)

Random rolling (after defense)

Summary

- A new approach to injecting adversarial images by exploiting an inherent vulnerability of the rolling shutters in CMOS cameras
- Experimentally validated the feasibility of fooling traffic light recognition using laser
- Evaluated the attack in real-world setups on 2 traffic light recognition systems, 5 cameras, and a moving vehicle

Attack demos: https://sites.google.com/view/rollingcolors

USSLAB homepage: http://usslab.org