Rolling Colors:
 Adversarial Laser Exploits against Traffic Light Recognition

Chen Yan ${ }^{1}$, Zhijian Xu ${ }^{1,2}$, Zhanyuan Yin ${ }^{3}$, Xiaoyu Ji¹, Wenyuan Xu ${ }^{1}$
${ }^{1}$ Zhejiang University, ${ }^{2}$ The Chinese University of Hong Kong,
${ }^{3}$ The University of Chicago

Traffic Light Recognition

- Enables vehicles to detect and recognize traffic light signals
- Essential for full autonomous driving in urban areas

How does traffic light recognition work？

$\square-$

What if traffic light recognition goes wrong？

Rear－end Crash！

Spoof traffic light recognition？

－Use fake traffic lights？．．．Probably not the best idea．

Let＇s use laser！

－Narrow beam of radiation \rightarrow Travel a long distance，hard to detect
－Previous studies have shown laser＇s capability on interfering cameras

Laser off

Laser on

Laser off

Laser on

Attack Scenario and Requirements

R1：Laser Interference Study

Real scene

R1：Exploiting the Rolling Shutter

－A rolling shutter is a type of image capture in cameras that records the frame line by line on an image sensor instead of capturing the entire frame all at once．

Image sensor

R1：Exploiting the Rolling Shutter

－A rolling shutter is a type of image capture in cameras that records the frame line by line on an image sensor instead of capturing the entire frame all at once．

R1：Exploiting the Rolling Shutter

－Inject a color stripe into the captured image with a laser pulse signal
－Full control over the stripe＇s number，width，and position
－Synchronize the laser pulse with the rolling shutter period（frame rate）

Color stripe injected

R2：Passing Traffic Light Detection

The injected color stripe must NOT affect traffic light detection
－Requisite 1：proper control of laser intensity
－Requisite 2：proper design of the stripe＇s width and position

R3：Spoofing Traffic Light Recognition

Spoof traffic light detection to a targeted color（Red \rightarrow Green，Green \rightarrow Red）
－Requisite：fine－tune the laser parameters according to specific traffic lights and attack scenarios

Threat Model \＆Attack Workflow

Attack Design

Input
Attack Building Blocks

Output

Evaluation

- Emulated Attacks
- Real-World Attacks in Stationary Setups
- Real-World Attacks in Motion

5 Cameras
2 Models

Real-World Attacks in Stationary Setups

- Experiment Setup

- Overall Performance
- Red \rightarrow Green
- Green \rightarrow Red
- Impact of the Traffic Light
- Distances: 5m-25m
- 5 Positions: [L, ML, M, MR, R]
- 3 Directions: [L, M, R]

(a) Illustration of setup

(b) Real setup

Real－World Attacks in Stationary Setups

－Overall Performance

Table 2：Success rates of attacking 2 systems and 5 cameras．

Sys．	Attack Scenario	Target Camera				Avg．
		Tesla ${ }^{\text {Xiaomi }}$	Hikv	OPPO	OpMV	
$\begin{aligned} & \stackrel{\circ}{\overline{0}} \\ & \frac{2}{4} \end{aligned}$	$\mathrm{R} \rightarrow \mathrm{G}$	Red \rightarrow Green：			7．39\％	20．27\％
	$\mathrm{R} \rightarrow \mathrm{DoS}$				3．04\％	32．74\％
	$\mathrm{G} \rightarrow \mathrm{R}$	20．53\％			． 37	41．86\％
	$\mathrm{G} \rightarrow \mathrm{DoS}$				2.65	36．46\％
$\begin{gathered} \text { 芶 } \\ \text { 亿 } \end{gathered}$	$\mathrm{R} \rightarrow \mathrm{G}$	Green \rightarrow Red：			0\％	20．78\％
	$\mathrm{R} \rightarrow \mathrm{DoS}$ 1				100\％	48．04\％
	$\mathrm{G} \rightarrow \mathrm{R}$	44．95\％			000\％	65．94\％
	$\overline{\mathrm{G} \rightarrow \text { DoS }}$				0\％	32．72\％

Green \rightarrow Red is easier than Red \rightarrow Green
Tesla camera is the most vulnerable

Real－World Attacks in Stationary Setups

－Impacts of the traffic light＇s distance，position and direction．

（d）No．of successful $\mathrm{R} \rightarrow \mathrm{G}$ at various locations

Distance \Uparrow
Attack success rate \downarrow

（e）Results of $\mathrm{R} \rightarrow \mathrm{G}$ attack at various distances

（f）Results of $\mathrm{R} \rightarrow \mathrm{G}$ attack at various positions

Real－World Attacks in Motion

－Effectiveness across Continuous Video Frames
－Feasibility of Tracking and Laser Aiming
－End－to－End Impact on Driving

Effectiveness across Continuous Video Frames

Experiment setup

Attack results across continuous frames

Feasibility of Tracking and Laser Aiming

Manual tracking and aiming equipment

Setup for long－range laser aiming experiment （the attacker was on the roadside and $40-80 \mathrm{~m}$ away from the vehicle）

Feasibility of Tracking and Laser Aiming
 \section*{$\longrightarrow-$}

1．Attacker can track the target camera and aim the laser at the same time even when the vehicle is moving at $20 \mathrm{~km} / \mathrm{h}$ ．
2．The average attack success rate of spoofing traffic light recognition is $\mathbf{2 8 . 4 \%}$ ．

End－to－End Impact on Driving

Attack Scenario 1：

 Running a red lightAttack Scenario 2： Emergency stop

Countermeasures

－Use global shutters instead of rolling shutters
－Rolling shutter improvement：expose the CMOS rows in a random sequence

Sequential rolling （before defense）

Random rolling （after defense）

Summary

－A new approach to injecting adversarial images by exploiting an inherent vulnerability of the rolling shutters in CMOS cameras
－Experimentally validated the feasibility of fooling traffic light recognition using laser
－Evaluated the attack in real－world setups on 2 traffic light recognition systems， 5 cameras，and a moving vehicle

Questions？

Attack demos：https：／／sites．google．com／view／rollingcolors
USSLAB homepage：http：／／usslab．org

