

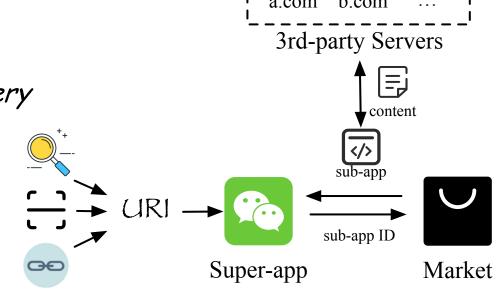
Identity Confusion in WebView-based Mobile Appin-app Ecosystems

Lei Zhang ^{1,*}, **Zhibo Zhang** ^{1,*}, Ancong Liu ¹, Yinzhi Cao ², Xiaohan Zhang¹, Yanjun Chen¹, Yuan Zhang¹, Guangliang Yang¹ Min Yang ¹

- Fudan University
- 2. Johns Hopkins University
- *: The first two authors have contributed equally to this work.

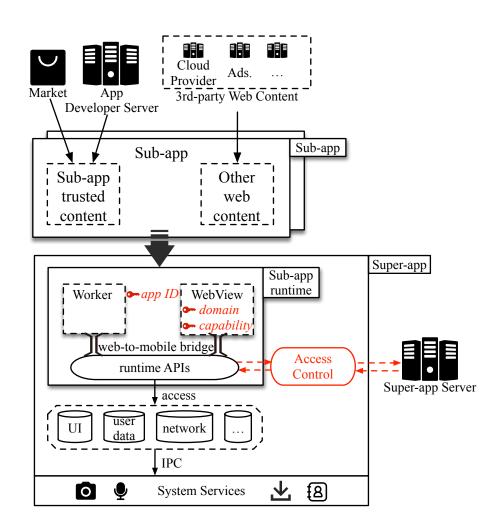
App-in-App Ecosystem

- Super-app
 - A mobile app with rich functionalities, often delegate their functions to other parties (sub-apps)
 - e.g., Paytm, Snapchat, TikTok, WeChat
- Sub-app
 - brings rich content and services
 - native app like experience

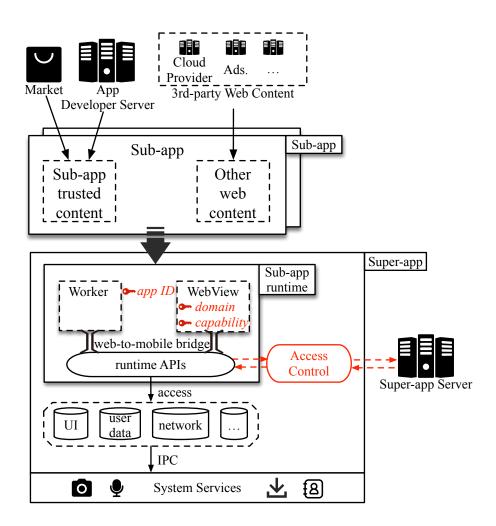

The Popular Trend

- More than 47 high-profile super-apps
 - world-wild
 - Asia (Grab, Line, Paytm), European(VK), and the U.S. (Microsoft Teams)...
 - large user base
 - · with 46B+ downloads in total
- Huge amount of sub-apps
 - e.g., 3.8M+ sub-apps in WeChat

Programming Model & Lifecycle


- Program language
 - JavaScript, HTML, and CSS
- Upload to super-app market
 - driven by URI
 - e.g., super-app://sub-appID/path/query
- Load multi-party resource
 - from sub-app market
 - from third-party servers
- Access privileged APIs

Crucial Question: determining who can call specific privileged APIs


A Survey Study

- Popular Super-app Runtimes
 - an embedded browser instance
 - (customized) WebView in Android
 - WKWebView in iOS
 - web-to-mobile bridge
 - enable JS to call Java functions
 - runtime APIs
 - 50% are un-documented
 - 80% are privileged
 - access user data
 - e.g., account, bank info, phone number...
 - access OS resources
 - e.g., camera, location...

A Survey Study

- Existing Identity Checks
 - · Domain Name
 - represents a server and contents delivered from the server
 - App ID
 - assigned by a super-app to the sub-app
 - · Capability
 - a secret issued by either a super-app or a server and checked based on exact match.

Identity Confusion

- Definition
 - intended identity can be broader than or different from it actually represents
 - · disobey the least privilege principle
- Domain Name Confusion
 - Privileged web domain in an unprivileged sub-app
- App ID Confusion
 - Unprivileged web domains in a privileged sub-app
- · Capability Confusion
 - Privileged capability obtained by an unprivileged sub-app or domain

Identity Confusion Attack

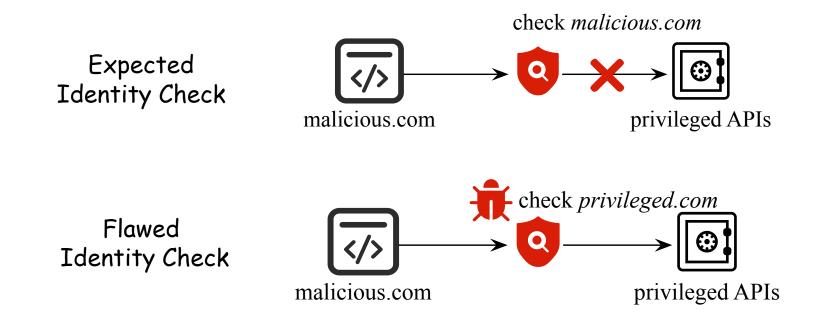
- Once exploited, the attacker can
 - · inject phishing web page to popular sub-app
 - steal user data (address, payment info, phone number, email...)
 - abuse OS resources (open microphone, install malicious apk)

The page at "https://pasarpolis.io"

I got it! So, you are not safe anymore!

PasarPolis

< C <



steal email, phone number

A Taxonomy Study

- Domain Name Confusion
 - happens in domain based identity check
 - · checked domain != actual domain

Domain Name Confusion

- Type 1: Timing-based Confusion
 - Case1. super-apps use onPageStarted() to get identity
 - race condition between different threads of WebView

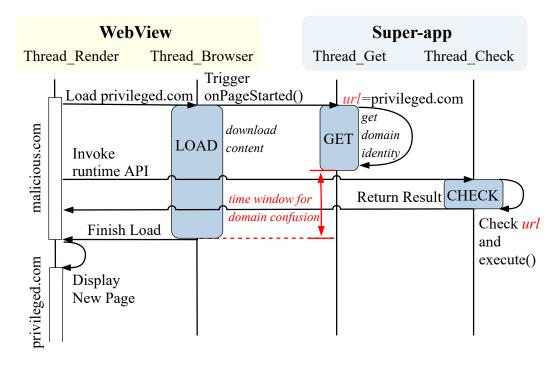


Figure: Race between WebView's Render and Browser Threads

Domain Name Confusion

- Type 1: Timing-based Confusion
 - Case2. super-apps use getUrl() to get identity
 - race condition between different threads of super-app

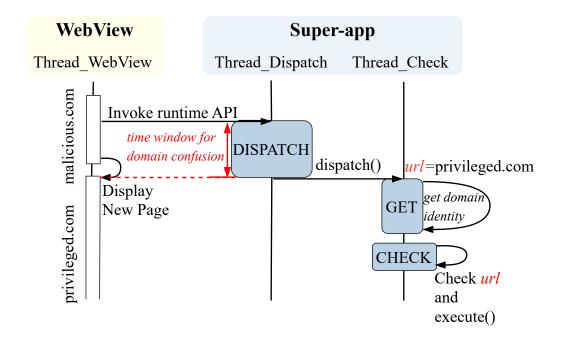


Figure: Race between super-app's Dispatch and Check Threads

Domain Name Confusion

- Type 2: Frame-based Confusion
 - · an iframe acts on behalf of the top frame's identity

Class Name	Method Signature of Event Handlers	Domain Name Confusion				
Class Ivallie	Wiethod Signature of Event Handlers		Frame-based			
Getter Method:						
WebView	getOriginalUrl ()	'	'			
**CD * ICW	getUrl ()	/	/			
Callback Method:						
	doUpdateVisitedHistory (WebView view, String url, boolean isReload)	/	/			
	onLoadResource (WebView view, String url)	/				
	onPageCommitVisible (WebView view, String url)	/	~			
	onPageFinished (WebView view, String url)	/	~			
	onPageStarted (WebView view, String url, Bitmap favicon)	V	~			
WebViewClient	onReceivedClientCertRequest (WebView view, ClientCertRequest request)	/	~			
	onReceivedError (WebView view, WebResourceRequest request, WebResourceError error)	V				
	onReceivedHttpAuthRequest (WebView view, HttpAuthHandler handler, String host , String realm)	V				
	onReceivedHttpError (WebView view, WebResourceRequest request, WebResourceResponse errorResponse)	/				
	shouldInterceptRequest (WebView view, WebResourceRequest request)	/				
	shouldOverrideUrlLoading (WebView view, WebResourceRequest request)	/				
WebChromeClient	onReceivedTouchIconUrl (WebView view, String url , boolean precomposed)	V	/			

Table 3: The domain name confusion in using WebView's event handlers to obtain identity information. We measure them at time and frame dimensions.

Prevalence & Consequence

- Step II: Vulnerability Analysis
 - Methodology
 - static analysis on super-apps to find whether a vulnerable API is used
 - write test cases and exploits
 - Cross Platform Verification
 - use the Proof of Vulnerability (PoV) for Android versions of super-apps to verify their iOS versions

Figure: Example for verifying domain name confusion.

Prevalence & Consequence

- Step II: Vulnerability Analysis
 - Confusion Overall Result
 - all vulnerable to at least one type of identity confusion attack

Table 5: Breakdown of Identity Confusion Vulnerabilities of 47 Super-apps

Identity Confusion		# Super-apps	Examples
Domain	Type 1: Timing-based	15	WeChat, Alipay
	Type 2: Frame-based	15	Microsoft Teams, Go-Jek
	Total	15	
AppID	Type 1: Flawed matching	26	TikTok, Baidu
	Type 2: Flawed parsing	2	WeChat, Go-Jek
	Type 3: Missing checks	10	Microsoft Teams, UnionPay
	Total	38	
Capability	Type 1: Client-side	1	UnionPay
	Type 2: Server-side	1	WeChat
	Total	2	
No identity checks		9	Snapchat, Kuaishou
Total		47	

Prevalence & Consequence

- Step III: Consequence Analysis
 - · privilege escalation
 - phishing
 - privacy leaks

Table 8: Breakdown of Identity Confusion Consequences of 47 Super-apps

Consequences	# Super-apps	Examples
Privilege Escalation	38	Go-Jek, Grab
Phishing	31	TikTok, WeChat
Privacy Leaks	35	Alipay, Microsoft Teams

More in the Paper

- Two other identity confusions
 - App ID Confusion
 - Capability Confusion
- Overall Result Details
 - flaws & consequences in total 47 super-apps
 - other three consequences
 - permission re-delegation
 - data leakage
 - data over-collection
- Real-world Case Studies
- Mitigation & Discussion

Conclusion

- Conduct the first systematic study on identity confusion vulnerabilities in WebView-based app-in-app ecosystem.
- We collect and analyze 47 popular real-world super-apps, and confirms that they are all vulnerable to different types of identity confusion vulnerabilities
- We thoroughly study why such identity confusion vulnerabilities exist and propose corresponding mitigation strategies based on the causes

Thanks!

Q&A

zhibozhang19@fudan.edu.cn