
SEC’ 2023 VILLAIN: Backdoor Attacks Against Vertical Split Learning

Yijie Bai1, Yanjiao Chen1, Hanlei Zhang1, Wenyuan Xu1, Haiqin Weng2 , Dou Goodman2

1Ubiquitous System Security Lab (USSLAB), Zhejiang University, 2Ant Group

VILLAIN: Backdoor Attacks Against 
Vertical Split Learning

{baiyj, chenyanjiao, hanleizhang, wyxu}@zju.edu.cn

{haiqin.wenghaiqin, bencao.ly}@antgroup.com

1



SEC’ 2023 VILLAIN: Backdoor Attacks Against Vertical Split Learning

Federated Learning
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 Horizontal Federated Learning  Vertical Federated Learning
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Vertical Split Learning
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 Credit business application  Online advertising application
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Vertical Split Learning
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Step Ⅱ

Vertical Split Learning
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Step Ⅲ

Vertical Split Learning
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Vertical Split Learning
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Backdoor Attack
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Trigger Backdoor
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Attacker’s Goal
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Attacker’s Goal
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Threat Model

11

 Attacker’s knowledge

➢ Local dataset 𝐗a = ƿ𝐱i
a

i=1
N

➢ One target label sample

➢ Gradient information

 Attacker’s capability

➢ Train and manipulate the 

local embedding model 𝐟𝐚 .

➢ Upload the embedding 

vectors to the server.
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Challenge
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 No label information

➢ No knowledge of the labels 

➢ Can't change the labels

 No server model information 

➢ Only gradient update 

information

➢ Unknown server model
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VILLAIN: Detailed Construction
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No label information No global model information 
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Label Inference
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Pinpoint data samples of the target label.
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Label Inference
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Label Inference
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Label Inference
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Label Inference
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Label Inference
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Data Poisoning
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The attacker poisons these target label samples 
to inject the backdoor into the server model.
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Data Poisoning
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Trigger
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Backdoor 
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 Trigger Fabrication

➢ An additive trigger to poison the embedding vector 

ƶ𝐞𝑎 = 𝑓𝑎 ƿ𝐱𝑎 ⊕ℰ

➢ The trigger ℰ is formed as

ℰ = ℳ⊗ (𝛽 ⋅ Δ)
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Experiment Setup
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 Dataset

➢ MNIST (MN).

➢ CIFAR-10 (CF).

➢ CINIC-10 (CN). 

➢ ImageNette (IN). 

➢ Bank Marketing (BM).

➢ Give-Me-Some-Credit (GM). 

Metrics

➢ Attack success rate (ASR).

➢ Clean data accuracy (CDA) .

➢ Label inference accuracy (LIA). 

4 image datasets (unstructured datasets) 
and 2 financial tabular datasets (structured datasets). 
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Experiment Design
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 Overall Performance

➢ Potential side-effects.

➢ Different embedding 

aggregation methods.

➢ Data-domain triggers. 

➢ Multi-participant 

scenario. 

➢ Ablation studies 

 Hyperparameters

➢ Poisoning rate.

➢ Trigger magnitude.

➢ Server & participant models. 

➢ Trigger size.

➢ Learning rate.

➢ Number of candidates.

 Resistance to Defense

➢ Label inference defense.

➢ Backdoor attack defense.

➢ Adaptive Defenses. 
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Overall Performance
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Villain achieves the highest ASR on each dataset.
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Data-domain triggers
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In VILLAIN, the trigger can be added 
in the data domain or the embedding domain. 



SEC’ 2023 VILLAIN: Backdoor Attacks Against Vertical Split Learning

Different embedding aggregation methods
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 Different aggregation methods.

➢ C: CON, embedding concatenation.

➢ A: ADD, element-wise addition. 

➢ M1: MEAN, element-wise average. 

➢ M2: MAX, element-wise maximum. 

➢ M3: MIN, element-wise minimum. 

VILLAIN performs well on different aggregation methods. 
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Impact of Hyperparameters
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 Impact of poisoning rate.

 Impact of server & participant models.

 Impact of learning rate.

 Impact of trigger size.

 Impact of trigger magnitude.

 Impact of number of candidates.

The backdoor attack still works even 
with a low poisoning rate of only 0.5%. 
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Impact of Hyperparameters
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 Impact of poisoning rate.

 Impact of server & participant models.

 Impact of learning rate.

 Impact of trigger size.

 Impact of trigger magnitude.

 Impact of number of candidates.

VILLAIN is robust to different server structures.
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Possible Defenses
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 Label Inference Defense

➢ DPSGD

➢ Gradient compression

➢ Privacy-preserving Deep Learning

Villain can defeat existing label inference methods.



SEC’ 2023 VILLAIN: Backdoor Attacks Against Vertical Split Learning

Possible Defenses
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Both trends prove the defense can not keep 
high CDA while reducing the ASR.

 Backdoor Attack Defense

➢ Model reconstruction

➢ Sample preprocessing

➢ Trigger synthesis

➢ Poison suppression
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Conclusion
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➢ Design effective data poisoning strategies to strengthen the 
link between the trigger and the backdoor in the server model. 

➢ Develop a new label inference algorithm to locate samples of 
the target label. 

➢ Our attack is validated to be effective, robust, and efficient 
based on extensive experiments.
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VILLAIN: Backdoor Attacks Against 
Vertical Split Learning

USSLAB Website: www.usslab.org

Thank you for your patience!

Contract us at:
baiyj@zju.edu.cn
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