
ACFA: Secure Runtime Auditing & Guaranteed
Device Healing via Active Control Flow Attestation

Adam Caulfield*, Norrathep Rattanavipanon+, Ivan De Oliveira Nunes*

1
32nd USENIX Security Symposium

August 2023

* Rochester Institute of Technology
+ Prince of Songkla University, Phuket Campus

Embedded devices - Smart Spaces & “Internet of Things”

2

● Low-end, energy efficient, low cost

● Resource constrained — security

● Execute safety-critical tasks in modern
systems
○ Sensor/alarm system
○ Modern medical device

● Must monitor device behavior to determine
unexpected/malicious activity

Can we achieve runtime auditing of a remotely
deployed (potentially compromised) MCU?

Desired security guarantees for runtime auditing:

1. Generate authentic/accurate evidence of the exact runtime behavior

2. Deliver the evidence to device owner for further analysis

3. After compromise is detected, provide a means to remotely remediate the
source of the compromise

3

(2) Execute Software

Exec() → CFLog

(3) Produce Response

H = Attest(chal, MEM, CFLog)

Control Flow Attestation (CFA):
Generate evidence of static and runtime integrity of remote device

4

(5) Verify the result

(1) Send Challenge chal

(4) Send H and CFLog

Verifier (Vrf) Prover (Prv)

Ignores
challenge

From Attestation to Auditing

5

● Attestation is a passive technique

● No guarantee that Verifier receives
the response

● Attestation – something is wrong

● Auditing – what is wrong

Challenge

X
No Response

After detection…

6

● How to resolve compromises?

● Physical intervention

X
Detected

compromise…
Now what?

Shut down!

I can’t hear
you!

Summary

7

✔ Guarantees runtime evidence is accurate/authentic

X Cannot guarantee eventually delivery of runtime evidence to Vrf

X No ability to remotely intervene after compromise detection

Current Techniques

To bridge this gap…

8

✔ Guarantees runtime evidence is accurate/authentic

✔ Guarantees Vrf eventually receives runtime evidence

✔ Enables remote device healing: trusted mechanism executes upon detection

Our work, ACFA: Active Control Flow Attestation

Active CFA (ACFA) Overview

9

1. Key Idea:
a. Extend conventional CFA to include communication of evidence (H, CFLog) in TCB

b. Hardware that generates CFLog and actively triggers generation/transmission of response

c. Hardware support ensures healing mechanism executes the moment compromise is detected

Active CFA (ACFA) Overview

10

1. Key Idea:
a. Extend conventional CFA to include communication of evidence (H, CFLog) in TCB

b. Hardware that generates CFLog and actively triggers generation/transmission of response

c. Hardware support ensures healing mechanism executes the moment compromise is detected

2. Low-cost hybrid (software/hardware) architecture for MCUs
a. Low-cost hardware extension to protect memory, trigger TCB, and record MCU’s control flow

b. Software for attestation/communication of evidence and healing mechanism

11

Boot / Reset TCB Execute
S

TCB Software Untrusted SoftwareStart

ACFA Workflow
● MCU program memory contains

ACFA’s TCB and the application
software (S)

12

Boot / Reset TCB Execute
S

TCB Software Untrusted Software

Monitor
TCB & S

ACFA Hardware

Violation

Start

TriggerAttest

Detect & log
CFLogH

ACFA Workflow
● Establish an active root of trust

with additional guarantees
through hardware extension

Detect & log

13

Boot / Reset TCB Execute
S

TCB Software Untrusted Software

Monitor
TCB & S

ACFA Hardware

Violation

Start

TriggerAttest

CFLogH

ACFA Workflow
 ACFA Hardware:

● Detects branching instructions

● Appends CFLog

● Protects software & critical data
from illegal modifications

● Generates custom
non-maskable interrupt
to trigger TCB

TCB Software

14

Boot / Reset TCB-Att TCB-Wait Execute
S

TCB-Heal

Untrusted Software

Restart TCB

Monitor
TCB & S

Vrf: “Yes”

ACFA Hardware

Violation

Vrf: “No”

Trigger

Start

Attest

H

ACFA Workflow
● TCB Executes three

submodules atomically:

● Attestation (TCB-Att) always
executes first

● Computes H over the CFLog and
significant memory regions

CFLog

Detect & log

TCB Software

15

Boot / Reset TCB-Att TCB-Wait Execute
S

TCB-Heal

Untrusted Software

Restart TCB

Monitor
TCB & S

Vrf: “Yes”

ACFA Hardware

Violation

Vrf: “No”

Trigger

Start

Attest

H

ACFA Workflow

CFLog

Detect & log

● Next, the TCB communicates
with the Verifier and waits for a
response (TCB-Wait)

● It continues to transmit the
response until it receives an
authenticated message back
from Verifier

● Next module depends on
detection

16

Boot / Reset TCB-Att TCB-Wait Execute
S

TCB-Heal

TCB Software Untrusted Software

Restart TCB

Monitor
TCB & S

Vrf: “Yes”

ACFA Hardware

Violation

Vrf: “No”

Trigger

Start

Attest

H

ACFA Workflow

CFLog

Detect & log

● If verification fails, TCB
automatically executes a healing
action (TCB-Heal)

● This is configurable by the
Verifier prior to device
deployment

● Always followed by TCB-Att

Cost Evaluation

17

● No runtime overhead to log control flow
transfers

● Evaluate hardware cost compared to
hardware-based CFA

● Hardware Cost: 275 LUTs, 202 FFs
○ 5.8x less LUTs, 10.5x less FFs than LiteHAX

Paper link:

● Available on arXiv
● https://arxiv.org/abs/2303.16282

ACFA Repository:

● Available from RIT-CHAOS-Sec on Github:
● www.github.com/RIT-CHAOS-SEC/ACFA

Thank you

18

Contact information:

● Email: ac7717@rit.edu

https://arxiv.org/abs/2303.16282
http://www.github.com/RITA-CHAOS-SEC/ACFA

