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Multiple datasets lead to better accuracy l @ —- 0
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Privacy @ ‘
e secure computation [GMW87, Y82] T

Security
e malicious security [CLOS02, DPSZ12, WRK13]




Attempt 1: range checks

Age Distribution Corrupted Corrupted Input:

- negative age (age <0)
- too old age (age > 120)
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e.g. [BBBPWM18,CB17,AGJOP21]

e Enforce a range of values that each input can take
e Previously the only technique against malicious inputs



Are range checks enough?

e Introduce distribution testing (check properties of distribution)
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e Distribution testing + range checks >>> range checks!



Our work: HOLMES

e Checks malicious input using distribution testing

e Operates in highest level of security
@ o Malicious security (e.g. n - 1 out of n parties)
e Perform distribution testing efficiently

o 10-10000x faster than baselines



Why distribution testing?

e Pragmatic Clinical Trials
o Compare distributions of datasets to detect discrepancies

e Group fairness
o Biased data => biased trained model

e Data quality
o Model of joint dataset > models of individual datasets



Beyond Distribution Testing

e Distribution testing cannot detect input poisoning attacks
o Input poisoning: small pertubations to inputs

e Input poisoning attacks are ineffective in certain cases
o e.g., federated learning [SHKR21]



Roadmap

e Use zero-knowledge (ZK) for fast distribution testing
o Offload and verify computation of local dataset using ZK
o Refer to the paper for more details

e Design efficient multidimensional tests
o 10000x times faster than strawman!

e Perform experimental evaluation
o HOLMES distribution testing vs. Naive



Histogram goodness-of-fit
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Classical histogram checks use Pearson’s x*-test
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What happens in multidimensional data?
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Multidimensional goodness-of-fit
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Perform histogram check for each attribute: age & income



Multidimensional goodness-of-fit
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Checking histograms for individual attributes does not suffice

Number of histogram bins grows exponentially

Pearson’s X2 test is prohibitively expensive 1"



Our solution: efficient sketching

Distribution from Dataset
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Johnson-Lindenstrauss Lemma [JL84,A03]:

For suitable random matrix A, ||x], = ||AX]],

Only works when comparing to a public distribution



Experimental Evaluation
Setup: = =

e QuickSilver for ZK, SCALE-MAMBA for MPC \ /
e AWS c5.9xlarge instances, each containing 36 cores

o Each instance is a different party
e \ary: 2 to 10 parties, input dataset size, real-world datasets

Highlights:

e 10 times speedup for classical distribution tests
e 10000 times speedup for multidimensional distribution tests
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Single dimension histogram check w/ varying input size
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10x speedup with ZK at an input size of 200k entries
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Histogram check w/ varying number of attributes
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10000x speedup with JL at five attributes per input entry
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Conclusion

e We present HOLMES, an efficient framework for distribution testing
e HOLMES is a lot more efficient than the baseline generic MPC

o Combines MPC + ZK (10x speedup)

o Sketching for multidimensional distribution tests (10000x speedup)

e E-print: https://eprint.iacr.org/2021/1517
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https://eprint.iacr.org/2021/1517

Questions?
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