AEX-Notify: Thwarting Precise Single-Stepping Attacks through Interrupt Awareness for Intel® SGX Enclaves

<u>Scott Constable¹, Jo Van Bulck²</u>, Xiang Cheng³, Yuan Xiao¹, Cedric Xing¹, Ilya Alexandrovich¹, Taesoo Kim³, Frank Piessens², Mona Vij¹, Mark Silberstein⁴

32nd USENIX Security Symposium, August 10, 2023

¹Intel Corporation ²imec-DistriNet, KU Leuven ³Georgia Institute of Technology ⁴Technion

Part I: Problem statement

Enclaved execution: Reducing attack surface

Intel® SGX: Hardware-level isolation and attestation

Enclaved execution: Privileged side channels

Game changer: Untrusted OS → new class of powerful side channels!

Challenge: Side-channel sampling rate

SGX-Step: Executing enclaves one instruction at a time

SGX-Step: Executing enclaves one instruction at a time

↑ https://github.com/jovanbulck/sgx-step

O Unwatch 27 • ♀ Fork 81 • ☆ Star 385 •

SGX-Step: Executing enclaves one instruction at a time

SGX-Step: Enabling a line of high-resolution attacks

SGX-Step demo: Building a memcmp password oracle

Root-causing SGX-Step: Aiming the timer interrupt

Root-causing SGX-Step: Microcode assists to the rescue!

PTE A-bit	Mean (cycles)	Stddev (cycles)
A=1	27	30
A=0	666	55

1. Clear PTE A-bit

2. TLB flush

page walk (\$RIP)

ехес

Arm timer ERESUME NOP₁

Root-causing SGX-Step: Microcode assists to the rescue!

Arm timer

ERESUME

 NOP_1

Root-causing SGX-Step: Microcode assists to the rescue!

Part II: Solution overview

Ideas that were rejected (1)

Breaks the OS/User contract

Ideas that were rejected (2)

Ideas that were rejected (3)

Highly complex

Ideas that were rejected (3)

AEX-Notify solution overview

AEX-Notify solution overview

AEX-Notify solution overview

Evaluation: Effectiveness

Evaluation: Performance

Real-world performance impact depends on AEX frequency...

	With Mitigation	Without Mitigation
Resuming an enclave thread	58% slowdown (6,500 → 10,300 cycles)	Performance unaffected
Handling an exception within an enclave	76% speedup	88% speedup

If the enclave is interrupted every 1 million cycles, the overhead is:

$$\frac{10,300-6,500}{1,000,000}=\mathbf{0.38}\%$$

Conclusions

Extensible AEX-Notify hardware-software co-design

Eliminate root cause of perfect single/zero stepping

https://github.com/intel/linux-sgx/

Minimal performance overhead and fast CTD

Thank you! Questions?