FloatZone

Accelerating Memory Error Detection
using the Floating Point Unit

Floris Gorter, Enrico Barberis,

Raphael Isemann, Erik van der Kouwe, (@Vusec

Cristiano Giuffrida, Herbert Bos

Memory Errors

* Problem: Is this memory access safe?

e The pointer could be... int xptr = ..

 out of bounds xptr = 123, // safe?
* point to free'd memory

» (Hidden) security issue! #*

e How can we detect this?

Error Detection with Redzones

Redzone Valid memory Redzone

- _ Can we
int m = xptr,; £t
Check: if (m == 0x8b8b8b8h) { go taster
error_and_exit(); than this?

h

Original code: xptr = 1.23;

Encoding Checks

Check Logic

int m = xptr;

if (m ==) 1
error and exit(); *
s

Instructions

// load

mov eax, [rdi]
// compare
cmp eax,

// branch

je .error

What are the Ideal Instructions?

1. Use an underutilized part of the CPU

// load
* For instruction-level parallelism mov eax, [rdil
2. Use high-throughput instructions // compare
cmp eax,
3. Avoid the branch predictor /7 branch
* Error branch effectively never taken je .error

 No miss-speculation

* NoO resources spent on speculation

Floating Point Operations

1. Are underutilized part of the CPU

// load
» Light FPU workloads are common mov eax, [rdil
2. Many high-throughput instructions // compare
cmp eax,
3. Avoids the branch predictor 7/ branch
» Can't branch with the FPU! jé .error

» But how do encode our jump? —/

Floating Point Exceptions

 FP operations can cause 'exceptions’

* Translated into signal to process (SIGFPE)

* Redirect control flow without branching!
* EXception creation depends on operands (
o Effectively it's a conditional jump -
 Can we do the whole check in one instruction?

* We just have to find the right operation + operands...

VIATR!

+ some Brute Force

FloatZone

// Enable exceptions on subnormal results.

Initial setup:
P feenableexcept (FE _UNDERFLOW) ;

Check: vaddss xmml1l5, 0x0b8bh8b8a, I[ptr]

A

Floating Point Dummy Special Tiny Loads
Addition target Constant memory
register behind ptr

9

FloatZone - Checks

Redzone Valid memory Redzone
ptr

vaddss xmml1l5, 0x0b8h8h8a, [ptr]

1. (float)0x0b8b8bh8a + (float)Oxffcdabll is computed.

2. Outcome: Nothing happens ¥

10

FloatZone - Checks

Redzone Valid memory Redzone
ptr

vaddss xmml1l5, 0x0b8h8h8a, [ptr]

1. (float)0x0b8h8b8a + (float)0x8h8h8h8b underflows!
2. CPU creates FP exception — SIGFPE.

3. SIGFPE handler reports error (and filters false-positives).

11

FloatZone - Overhead

e We built a full FloatZone sanitizer.

e On SPEC CPU benchmarks:

e about 30% and 16% faster
(compared to ASan--)

* On Fuzzing benchmarks:

o 72% times higher throughput
(compared to ReZZan)

12

Runtime overhead:

100

> —66%

93%

50
36%

25

0

I 37%

SPEC CPU2006 SPEC CPU2017

ASan--

FloatZone

Summary

 \WWe can express common redzone checks via FP operations.
* Using FP operations can have microarchitectural benefits.

* Less Iinterference with branch prediction.

 Higher instruction-level parallelism.

* Memory error detection using this technique is notably faster.

13

Questions?

More info at: vusec.net/projects/floatzone

