¥ €443 12 (58 TSR
INSTITUTE OF INFORMATION ENGINEERING,CAS

() ¥ 6445 %

CHINESE ACADEMY OF SCIENCES

AURC: Detecting Errors in Program Code and

Documentation

Peiwei Hu, Ruigang Liang, Ying Cao, Kai Chen, and Runze Zhang

SKLOIS, Institute of Information Engineering, CAS, China
School of Cyber Security, University of Chinese Academy of Sciences, China
Beijing Academy of Artificial Intelligence, China

1/14

1. Background

@
* Open-source libraries greatly affect the security of downstream software.

~~ 2104 Log4Shell
CVE-2021-44228

practical software

pen-s

2. Previous Studies

How to detect the bugs in libraries:

Based on the

Based on majority Based on the

usage extracted behavior in the

voting

from documents similar context

2. Previous Studies

How to detect the bugs in libraries:

Based on the

Based on majority Based on the

usage extracted behavior in the

voting

from documents

similar context

* Documents are not trustworthy.
* The majority voting is not trustworthy.

* The usage in the similar context is not trustworthy.

3.1 Our Solution

How experienced programmers find the usage facing the unfamiliar API

Figure out how the existing

Read d t
ead documents Scan the source code of API code uses the AP

v

* APl Usage Reference (AUR)

Document Callee Caller

callee

3 . 1 O ur SO | ut | on int BN_bn2binpad(const BIGNUM *a, unsigned char *to, int tolen) {
‘ if(tolen < 0)
return -1:

returnlbnzbinpad(a, to, tolen, big): | -1 and >0

* APl Usage Reference (AUR) documents

BN _bn2binpad() returns the number of bytes written or -1 if the
supplied buffer is too small.

M) MY N

— Mapping caller —
— i e mapping table
»| Pre-trained | Table casel if(BN_bn2binpad(rl, rbuf, r1_len) <= 0)
Classifier Correctness
Document Inference case2 j=BN_bn2binpad(ret, buf, num); -1,>0

if (< 0) {
goto err;
) /“’ 0,10

< / > > CBP
p- case3 if(!BN_bn2binpad(bn, buf, sz)) mconsistency
allee b
documents case4 if(BN_bn2binpad(sl, sbuf, s1_len) <=0) o
I colrrectness inference
< / >) COPS 9,
Construction
Caller caller
rule 1: documents and callees are
— S —— consistent, fix callers
documents callee

AURs Detection
Focusing on Incorrect Return Checku

3.2 Analysis of Callee

* Challenge :1. Long call chain

_ =) heavy analysis
2. Return statement location

I int cms _main () {

2 /[* ... 946 lines of code ... */
3 ret = SMIME write_CMS (out, cms);
4 if_(ret <= 0) {

5 ret = 6;

6 goto end;
7 }
8 ret = 0;
9 end:

10 /* ret 3
1 retur4 ret;

to 0 or 6 */

Topological sorting Context-sensitive
DEBCA Backtrace Prediction

3.2 Analysis of Documents

* Challenge : 1. Contain sentences that are irrelevant to the return values.
2. Documents may describe the return values in natural

language. @ affect

extract return values from
documents

Filter Out Irrelevant Sentences Mapping

BERT (Ours)

Word Range

nonzero -, 0) U (0, +)
Zero 0
length,size 0, +)
negative (-, 0)

>

Documents

3.3 AUR should be modified o

* Challenge : Which AUR should be modified facing inconsistency?

Table 3: Rules of Correctness Inference

Consistency Check . .
Caller Calleey Document miodiicd subject
X v v Caller
v v X Document
X v / Caller
Others Manual Check

4 Experiments — Effectiveness‘

Table 4: Effectiveness of AURC.

Inconsistency Detection

Inconsistency Type

Running Time (s)

Codebase 1 ST Code/True [Doc/True | Acc |Rule 1|Rule 2|Rule 3 |Rule 4 |Classification| CBP|CoPS | Detection
OpenSSL | 534 | 424/403 | 110/83 |0.910| 178 | 67 | 135 | 106 2280 | 222 71 | 0.5
libzip 2 2/2 0/0 I | 0 0 2 0 1.47 4| 1 | 0.003
libwebsockets| 8 0/0 8/8 1 0 8 0 0 1.75 34 8 0.047
GnuTLS | 35 | 22/22 13/8 |0.857] 0 g8 | 20 | 2 3.29 63 | 21 | 0.19
curl 2 22 0/0 I | 0 0 2 0 1265 | 46 | 11 | 0.064
mpg123 7 5/5 2/2 I | 0 1 5 1 1.71 13 2 | 0.029
httpd 20 0/0 20/16 |0.800] 0 | 12 | 0 4 8.13 172 32 | 0.077
libgit2 120 | 46/37 | 83/73 |0.852] 5 | 46 | 31 | 28 1402 | 57 | 16 | 0.155
libxml2 | 106 | 60/51 | 46/29 |0.754] 41 | 29 | 5 5 2636 | 69 | 13 | 0.12
net-snmp | 14 or7 55 |0.857] 5 4 2 1 437 58 | 18 | 0.087
Average - - - — | - - - - 9.65 74| 19 | 0.135

All 857 | 570/529 | 287/224 [0.879| 229 | 175 | 202 | 147 - B - -

False Positive: 12.1%

False Negative: 9.1%

529 code bugs 224 document defects

4 Experiments — Components‘

Table 7: Performance of classifier.

The average accuracy and recall are

Groupl Group? Group3 95.5% and 94.3%, respectively.
Acc Recall Acc Recall Acc Recall

Groupl 99.5% 99.2% 89.5% 82.3% 95.2% 91.8%
Group2 90.8% 98.8% 99.9% 99.8% 94.8% 94.8%
Gl'Ollp3 97.4% 96.1% 92.5% 86.0% 99.9% 100% Performance of Classifier

LC(return statement) — LC(CBP finishes)

=12% 88% of code does not need to be analyzed
LC(return statement)

Cov =

NumberO f Paths(replacement)

PathRate =
G = NumberO fPaths(no replacement)

=0.06% CBP can save the analysis of 99.94% paths

Performance of CBP

5 Practical Effectiveness

* 236 code patches and 103 document patches have been
merged by maintainers.

Yo We rank 25/810 in OpenSSL contributors with the help of
findings of AURC

* We get positive feedback from maintainers.

u PeiweiHu #25 § ° paulidale approved these changes on Jan 6, 2022

75 commits 477 ++ 396 --

paulidale left a comment

Contributors 810

ﬁ's -
@ tmshort commented on Jun 2, 2022
@ -

Pushed to master and openssl-3.0. Thank you!

Nice work, approved with the two style nits adjusted.

+ 799 contributors

6 Summary

* We propose a new method to detect defects in both code
and documents. (cross-check three AURSs)

* We propose techniques to extract information from AURs
including documents, callees, callers.

* We test our prototype on real-world codebases. 236 code
patches and 103 document patches have been merged by
maintainers.

L. ;(? »
FEHAT 2
i CHINESE ACADEMY OF SCIENCES

R ¥ 84512 EELIEARER

INSTITUTE OF INFORMATION ENGINEERING,CAS

AURC: Detecting Errors in Program Code and

Documentation

Thanks for your attention!

14/14

