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1. Background

@
* Open-source libraries greatly affect the security of downstream software.
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* Documents are not trustworthy.
* The majority voting is not trustworthy.

* The usage in the similar context is not trustworthy.



3.1 Our Solution

How experienced programmers find the usage facing the unfamiliar API

Figure out how the existing

Read d t
ead documents Scan the source code of API code uses the AP

v

* APl Usage Reference (AUR)

Document Callee Caller




callee

3 . 1 O ur SO | ut | on int BN_bn2binpad(const BIGNUM *a, unsigned char *to, int tolen) {
‘ if(tolen < 0)
return -1:

returnlbnzbinpad(a, to, tolen, big): | -1 and >0

* APl Usage Reference (AUR) documents

BN _bn2binpad() returns the number of bytes written or -1 if the
supplied buffer is too small.

M) MY N

— Mapping caller —
— i e mapping table
»| Pre-trained | Table casel if(BN_bn2binpad(rl, rbuf, r1_len) <= 0)
Classifier Correctness
Document Inference case2 j=BN_bn2binpad(ret, buf, num); -1,>0

if (< 0) {
goto err;
) /“’ 0,10

< / > > CBP
p- case3 if(!BN_bn2binpad(bn, buf, sz)) mconsistency
allee b
documents case4 if(BN_bn2binpad(sl, sbuf, s1_len) <=0) o
I colrrectness inference
< / > ) COPS ...... 9,
Construction
Caller caller
rule 1: documents and callees are
— S —— consistent, fix callers
documents callee

AURs Detection
Focusing on Incorrect Return Checku



3.2 Analysis of Callee

* Challenge :1. Long call chain

_ =) heavy analysis
2. Return statement location

I int cms _main () {

2 /[* ... 946 lines of code ... */
3 ret = SMIME write_CMS (out, cms);
4 if_(ret <= 0) {

5 ret = 6;

6 goto end;
7 }
8 ret = 0;
9 end:

10 /* ret 3
1 retur4 ret;

to 0 or 6 */

Topological sorting Context-sensitive
DEBCA Backtrace Prediction




3.2 Analysis of Documents

* Challenge : 1. Contain sentences that are irrelevant to the return values.
2. Documents may describe the return values in natural

language. @ affect

extract return values from
documents

Filter Out Irrelevant Sentences Mapping

BERT (Ours)

Word Range

nonzero -, 0) U (0, +)
Zero 0
length,size 0, +)
negative (-, 0)

>

Documents




3.3 AUR should be modified o

* Challenge : Which AUR should be modified facing inconsistency?

Table 3: Rules of Correctness Inference

Consistency Check . .
Caller Calleey Document miodiicd subject
X v v Caller
v v X Document
X v / Caller
Others Manual Check




4 Experiments — Effectiveness‘

Table 4: Effectiveness of AURC.

Inconsistency Detection

Inconsistency Type

Running Time (s)

Codebase 1 ST Code/True [Doc/True | Acc |Rule 1|Rule 2|Rule 3 |Rule 4 |Classification| CBP|CoPS | Detection
OpenSSL | 534 | 424/403 | 110/83 |0.910| 178 | 67 | 135 | 106 2280 | 222 71 | 0.5
libzip 2 2/2 0/0 I | 0 0 2 0 1.47 4| 1 | 0.003
libwebsockets| 8 0/0 8/8 1 0 8 0 0 1.75 34 8 0.047
GnuTLS | 35 | 22/22 13/8 |0.857] 0 g8 | 20 | 2 3.29 63 | 21 | 0.19
curl 2 22 0/0 I | 0 0 2 0 1265 | 46 | 11 | 0.064
mpg123 7 5/5 2/2 I | 0 1 5 1 1.71 13 2 | 0.029
httpd 20 0/0 20/16 |0.800] 0 | 12 | 0 4 8.13 172 32 | 0.077
libgit2 120 | 46/37 | 83/73 |0.852] 5 | 46 | 31 | 28 1402 | 57 | 16 | 0.155
libxml2 | 106 | 60/51 | 46/29 |0.754] 41 | 29 | 5 5 2636 | 69 | 13 | 0.12
net-snmp | 14 or7 55 |0.857] 5 4 2 1 437 58 | 18 | 0.087
Average - - - — | - - - - 9.65 74| 19 | 0.135

All 857 | 570/529 | 287/224 [0.879| 229 | 175 | 202 | 147 - B - -

False Positive: 12.1%

False Negative: 9.1%

529 code bugs 224 document defects




4 Experiments — Components‘

Table 7: Performance of classifier.

The average accuracy and recall are

Groupl Group? Group3 95.5% and 94.3%, respectively.
Acc Recall Acc Recall Acc Recall

Groupl 99.5% 99.2% 89.5% 82.3% 95.2% 91.8%
Group2 90.8% 98.8% 99.9% 99.8% 94.8% 94.8%
Gl'Ollp3 97.4% 96.1% 92.5% 86.0% 99.9% 100% Performance of Classifier

LC(return statement) — LC(CBP finishes)

=12% 88% of code does not need to be analyzed
LC(return statement )

Cov =

NumberO f Paths(replacement)

PathRate =
G = NumberO fPaths(no replacement)

=0.06%  CBP can save the analysis of 99.94% paths

Performance of CBP



5 Practical Effectiveness

* 236 code patches and 103 document patches have been
merged by maintainers.

Yo We rank 25/810 in OpenSSL contributors with the help of
findings of AURC

* We get positive feedback from maintainers.

u PeiweiHu #25 § ° paulidale approved these changes on Jan 6, 2022

75 commits 477 ++ 396 --

paulidale left a comment

Contributors 810

ﬁ's -
@ tmshort commented on Jun 2, 2022
@ -

Pushed to master and openssl-3.0. Thank you!

Nice work, approved with the two style nits adjusted.

+ 799 contributors



6 Summary

* We propose a new method to detect defects in both code
and documents. (cross-check three AURSs)

* We propose techniques to extract information from AURs
including documents, callees, callers.

* We test our prototype on real-world codebases. 236 code
patches and 103 document patches have been merged by
maintainers.
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