
Rui Li∗, Wenrui Diao∗(), Shishuai Yang∗, Xiangyu Liu§, Shanqing Guo∗, and Kehuan Zhang‡

∗ Shandong University § Alibaba Group ‡ The Chinese University of Hong Kong

32nd USENIX SECURITY SYMPOSIUM AUGUST 11, 2023

<manifest ... >
<activity

android:name="com.example.TestActivity"
android:exported="false">

</activity>
...

</manifest>

Example of an element in a manifest file.

/

 Android Manifest File

32nd USENIX SECURITY SYMPOSIUM AUGUST 11, 2023

 Manifest File Functions

 Describe the essential configurations of an app.

 Highly relevant to multiple Android critical mechanisms.

 Manifest File Composition

 A set of XML elements.

 An element contains multiple attributes.

 android:name attribute can be treated as the identifier.

Part composition of an APK file.

 Correct Manifest Configuring (previous work)

 Correct Manifest Data Processing (neglected by the security community)

 Vulnerable manifest data processing procedures could be
exploited to break the Android systems.

Manifest File-Related Security

 App developers’ misconfigurations on manifest files will put apps at risk.

Declaring Duplicate Components / Misplacing Attributes / … Component Protection Bypassing / App Defrauding / …

 Manifest files bridge Android apps and Android OS.

Manifest files are constructed by app developers. Manifest files are related to multiple core mechanisms.

/32nd USENIX SECURITY SYMPOSIUM AUGUST 11, 2023

Manifest Processing Procedure (Android 11 & 12)

Manifest File:
Activity Element

ParsingPackageImpl Class:
activities

(package’s activity info)

ComponentResolver Class:
mActivities

(OS’s activity registration info)ComponentResolverPPU

/

PPU

Extract Parse Process

PPU System Module

PPU ParsingPackageUtils

Manifest Package Settings

 System
 ConfigurationsPPU

Extract Parse

PPU

Manifest Package Settings

Package Setting Construction System Configuration Update

Process

System Module

Package Settings

 System
 Configurations

32nd USENIX SECURITY SYMPOSIUM AUGUST 11, 2023

 Build a malicious app with a crafted manifest file.

 For Attacker

 For User

 Install this “apparently harmless” app on her phone.

Threat Model

 Release this app on various app markets.

This app exploits our discovered system vulnerabilities to conduct
malicious actions (e.g., privilege escalation).

/32nd USENIX SECURITY SYMPOSIUM AUGUST 11, 2023

Motivation Case* – Permission Element

 Request permissions through the <uses-permission> elements.

 Closely related to security – protect sensitive resources.

 Defined by system or third-party apps.

System Permission Custom Permission

<manifest ... >
<permission

android:name="com.example.cp"
android:protectionLevel="normal" />

<uses-permission
android:name = "com.example.cp" />

...
</manifest>

Define and request a custom permission.

Prompt of the runtime permission CALL_PHONE.

 Three main protection levels: normal, signature, dangerous.

• Be granted or denied by the user when the app is running.

• Be managed on a group basis.

/* Attack demo link: https://sites.google.com/view/eviltwins.

Motivation Case* – Privilege Escalation (Android 11)

 Crafted manifest file with twin permission declarations.

 High severity: CVE-2021-39695.

The app gets the dangerous system permission
automatically without user consent.

* Attack demo link: https://sites.google.com/view/eviltwins. /

z

<manifest ... >
<permission

android:name="com.example.cp"
android:protectionLevel="dangerous"
android:permissionGroup="android.permission-group.PHONE" />

<permission
android:name="com.example.cp"
android:protectionLevel="signature | development" />

<uses-permission android:name="com.example.cp" />
<uses-permission android:name="android.permission.CALL_PHONE" />

</manifest>

test

 This app can be built through app repackaging easily.

Motivation Case – Cause Analysis (Android 11)

* The ParsingPackageUtils module.

 Permission Element Parsing

 PPU* parses each permission element
and stores the parsed data in
List<ParsedPermission> permissions

List<ParsedPermission> permissions

Twin Permission Declarations
permission name = com.example.cp
protection level = dangerous
group = PHONE
source package name = ATK-app

permission name = com.example.cp
protection level = signature|development
source package name = ATK-app

ParsingPackageImpl.java

List<ParsedPermission> permissions

 ParsedPermission
-- com.example.cp

ParsedPermission
-- com.example.cp

 <permission
 android:name="com.example.cp"
 android:protectionLevel= "dangerous"
 android:permissionGroup="android.permission-group.PHONE"/>

 <permission
 android:name="com.example.cp"
 android:protectionLevel="signature|development"/>

 <uses-permission android:name="com.example.cp"/>
 <uses-permission android:name="android.permission.CALL_PHONE"/>

AndroidManifest.xml (of test)

/

List<ParsedPermission> permissions

ParsedPermission
-- com.example.cp

ParsedPermission
-- com.example.cp

/* All of the permissions known to the system. The mapping is from permission name
 to permission object. */
ArrayMap<String, BasePermission> mPermissions

PermissionSettings.java

bp.perm: permission name = com.example.cp
 protection level = dangerous
 group = PHONE
 source package name = ATK-app

bp.protectionLevel: dangerous

 com.example.cp

permission name = com.example.cp
protection level = dangerous
group = PHONE
source package name = ATK-app

permission name = com.example.cp
protection level = signature|development
source package name = ATK-app

ParsingPackageImpl.java

bp.perm: permission name = com.example.cp
 protection level = dangerous
 group = PHONE
 source package name = ATK-app

bp.protectionLevel: signature|development

Motivation Case – Cause Analysis (Android 11)

* The PermissionManagerService module.

 Permission Registering

 Based on permissions, PMS* further updates
ArrayMap<permission-name, BasePermission>
mPermissions.

List<ParsedPermission> permissions

ArrayMap<String, BasePermission> mPermissions

Inconsistent permission protection levels.

Protection level attributes are lost.

/

The Evil Twins Flaw

/

During the processing of twin manifest elements, the ill-considered
data structure conversion merges them into one item with attribute

loss, further resulting in system configuration inconsistency.

 Twin elements: have the same identifier (e.g., name) but different attributes.

 Flaw Detection

 The manifest file is a practical attack surface & correlates to core mechanisms.

An automated tool to detect Evil Twins flaw-related vulnerabilities is needed.

 Root Cause

32nd USENIX SECURITY SYMPOSIUM AUGUST 11, 2023

TwinDroid* – Data Flow Analysis Tool

/* Source code: https://github.com/little-leiry/TwinDroid.

 The output is a candidate set of suspicious methods causing attribute loss.

Analyze Android OS’s manifest processing procedure implementations
to identify the data structure conversions with attribute loss.

 Confirm vulnerabilities manually based on method info and the Android source code.

 Design Idea

TwinDroid* – Data Flow Analysis Tool

/

 Find the package settings supporting duplicate
elements, e.g., List<ParsedPermission> permissions.

 Identify the methods that 1) access the target
package settings and 2) cause attribute loss due
to data structure conversion.

 Find Target Package Settings

 Identify Suspicious Processing Methods

Paths

New Base-units

Entry Base-units Paths

 Base-Set
 Initialization

 Source Variable
 Tracing

 Execution Path
 Generation

 Target Setting
 Filtering

 Suspicious Method
 Identification

 Suspicious Processing
Methods

ParsingPackageUtils System-level ModulesAndroid OS Code

 Stage 1: Find Target Package Settings

Base-Set

Base-unit Data Structure Info

Target Package
Settings

New Base-units

Entry Base-units

 Base-Set
 Initialization

 Source Variable
 Tracing

 Execution Path
 Generation

Base-Set

Base-unitData Structure Info

Extract

 Stage 2: Identify Suspicious Processing Methods

Output: methods’ names, associated element
types, and saved data structures.

* Source code: https://github.com/little-leiry/TwinDroid.

Evaluation & Results

/

 Implementation

 6100 lines of Java code.

 Integrate Soot.

 Optimization strategies, e.g., path explosion avoiding & incorrect path pruning.

 Execution Environment

 Intel Xeon Gold 6226R CPU @ 2.90GHz and 256G RAM.

 Ubuntu 20.04.3 LTS.

32nd USENIX SECURITY SYMPOSIUM AUGUST 11, 2023

/* Complete results are provided at https://github.com/little-leiry/TwinDroid/blob/main/Results.pdf.

 Input: DEX files under the /system/framework directory from Android 11 & 12.

 Result Overview

 Output: 47 suspicious methods, 6 of which are false positives.

Evaluation & Results

Discovered suspicious processing methods* with security issues.

8 Target Package Settings

4 Exploitable Inconsistencies

41 Suspicious Methods

10 Element Types

/* Attack demo link: https://sites.google.com/view/eviltwins.

Vulnerabilities*

Vulnerability Severity CVE Exploit

1 - Break Permission Protection Levels High CVE-2021-39695 Permission Escalation

2 - Break Permission-Group Mapping High CVE-2022-20392 Permission Escalation

3 - Break Permission Registration Status Low N/A
Permission Revoking

Prevention

4 - Break Permission Granting Status Moderate CVE-2023-20971 Permission Escalation

N/A: not assign a CVE ID.

 Vul#1 and Vul#2 have been acknowledged by Samsung, Huawei, Honor, realme, and LG.

/

Mitigation

 Lessons Learned

 For Google & OEM:

Avoid potential information loss during processing configuration data.

 For App Developers:

Avoid defining multiple elements with the same name, even for different element types.

32nd USENIX SECURITY SYMPOSIUM AUGUST 11, 2023

/

One-page Takeaway

 Flaw Discovery

 Rui Li (Shandong University): leiry@mail.sdu.edu.cn

Discover a new category of vulnerabilities — the Evil Twins flaw.

Develop an automated tool, TwinDroid, to detect the flaw-related vulnerabilities.

 Flaw Detection

Identify a series of severe vulnerabilities in the real-world evaluation.

 TwinDroid: https://github.com/little-leiry/TwinDroid

 Attack demo link: https://sites.google.com/view/eviltwins

32nd USENIX SECURITY SYMPOSIUM AUGUST 11, 2023

