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• What is DNN executable?
• Output of deep learning compilers.
• Performing the DNN model inference at runtime.
• In standalone binary format.
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• Why we need DNN compilation/executable?
• To fully leverage low-level hardware primitives for fast model inference.
• To deploy DNN models on heterogeneous hardware devices.
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• Many resources from academia and industry have been devoted to 
this field.
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• Currently, DL compiler community mainly focuses on performance

• Our questions: 
• What is the difference between DNN exe and traditional exe?
• Can we do reverse engineering on DNN executable?



Problem
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• Specifically, should we view a DNN executable as a black-box or a 
white-box?

Is it 
incomprehensible?

Or is it 
vulnerable?

Which 
assumption is 

true?
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• The traditional software reverse engineering techniques are unable to 
tackle DNN executables.
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• Complex data flow

Decompiled with IDA



Challenges
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• Hardware-aware optimizations during compilation.
• memory layout optimization 
•  better memory locality & compatible with SIMD

Weights of 
a Conv



Our Work
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• The traditional software reverse engineering techniques are unable to 
tackle DNN executables.

• We propose BTD (Bin-To-DNN), the first DNN executable decompiler.
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DL compilers generate distinct low-level code but retain operator high-
level semantics, because DNN operators are generally defined in a 

clean and rigorous manner. 

E.g., mathematical definition of Conv:

Semantics of different implementation should be consistent!



Observation
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• Differences between DNN executables and general software
Øoverwhelming arithmetic operations
hard to understand

Øonly one valid execution path!
no path explosion problem 
get high-level semantics with symbolic execution!

• Give us an opportunity to summarize the semantics from low-level 
binary code



Workflow
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• BTD consists of 3 steps: operator recovery, topology recovery, 
dimension & parameter recovery.

• BTD is able to recover full model specification (including operators, 
topologies, dimensions, and parameters) from DNN executable.



Step 1: DNN Operator Recovery
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• We train an LSTM model to map assembly functions to DNN operators.
• Treat x86 opcodes as language tokens.
• Segment x86 opcodes using Byte Pair Encoding (BPE).
• Multiclass classification task
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Step 2: Topology Recovery
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• DL compilers compile DNN operators into assembly functions and 
pass inputs and outputs as memory pointers through function 
arguments.

• We hook every call site to record the memory address, and chain 
operators into computation graph.
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17

• Idea: we launch trace-based symbolic execution (SE) to infer 
dimensions and localize parameters for DNN operators
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Step 3: Dimension & Parameter Recovery
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• Symbolic constraints extracted from vastly different binaries are 
mostly consistent.

• Our (symbolic constraint-based) heuristics are general and cross-compilers



Step 3: Dimension & Parameter Recovery
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• We infer operator dimensions (e.g., kernel size, #input channels, 
#output channels, stride) from extracted symbolic constraints with a 
set of heuristics.

• Then instrument the DNN executable to dump parameters (e.g., 
weights, biases) during execution.

• With all extracted information (i.e., operator types, topologies, 
dimensions, and parameters) we can rebuild a new model showing 
identical behavior with the original model.
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• 8 version of 3 state-of-the-art, production level DL compilers



Evaluation
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• 7 models cover all operators used in the CV models from ONNX Zoo 
https://github.com/onnx/models

• Real-world image classification models trained on ImageNet

https://github.com/onnx/models
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• Step 1: DNN operator inference



Results
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• Step 3: 
• Parameter layout/dimension inference.

• BTD fails on two cases
• Because of DL compiler optimizations
• (details in our paper)
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• BTD is able to extract functional models in most cases.

• Thus, we can enable white-box attacks (e.g., adversarial example) on 
a black-box, obscure DNN executable
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• BTD is released at: https://github.com/monkbai/DNN-decompiler
• With a demo docker image

• With badges Available, Functional, Reproduced

https://github.com/monkbai/DNN-decompiler
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• It is hard to reverse DNN executables with existing techniques due to 
complex control/data flow.

• There is only one execution path, giving us an opportunity to 
summarize the semantics with symbolic execution.

• We propose BTD (Bin-To-DNN), the first DNN executable decompiler.
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● BTD: https://github.com/monkbai/DNN-decompiler

https://github.com/monkbai/DNN-decompiler

