
Decompiling x86 Deep Neural Network 
Executables

Zhibo Liu, Yuanyuan Yuan, Shuai Wang
The Hong Kong University of Science 

and Technology

Xiaofei Xie
Singapore 

Management 
University

Lei Ma
University of 

Alberta



DNN Executable

2

• What is DNN executable?
• Output of deep learning compilers.
• Performing the DNN model inference at runtime.
• In standalone binary format.

DL 
Compiler

DNN 
Executable

DNN 
Model

Cat!



DNN Executable

3

• Why we need DNN compilation/executable?
• To fully leverage low-level hardware primitives for fast model inference.
• To deploy DNN models on heterogeneous hardware devices.

DL 
Compiler

Accelera
tor

…

DNN 
Executable

DNN 
Model



DL Compiler

4

• Many resources from academia and industry have been devoted to 
this field.

NNFusion

DL 
compilers

Support from 
industry

Academic 
output

OSDI’18

OSDI’20

arXiv



Problem

5

• Currently, DL compiler community mainly focuses on performance

• Our questions: 
• What is the difference between DNN exe and traditional exe?
• Can we do reverse engineering on DNN executable?



Problem

6

• Specifically, should we view a DNN executable as a black-box or a 
white-box?

Is it 
incomprehensible?

Or is it 
vulnerable?

Which 
assumption is 

true?



Challenges

7

• The traditional software reverse engineering techniques are unable to 
tackle DNN executables.



Challenges

8

• Complex data flow

Decompiled with IDA



Challenges

9

• Hardware-aware optimizations during compilation.
• memory layout optimization 
•  better memory locality & compatible with SIMD

Weights of 
a Conv



Our Work

10

• The traditional software reverse engineering techniques are unable to 
tackle DNN executables.

• We propose BTD (Bin-To-DNN), the first DNN executable decompiler.

BTDx86 DNN 
Executable

Full DNN Model 
Specification

(architecture + parameters)



Threat Model

• Binary access

11

Model

Downstream 
Tasks

Can read the 
DNN executable 
image directly

Hardware Devices

Watch

Speaker

Cleaner

…

With pre-trained 
parameters inside



Observation

12

DL compilers generate distinct low-level code but retain operator high-
level semantics, because DNN operators are generally defined in a 

clean and rigorous manner. 

E.g., mathematical definition of Conv:

Semantics of different implementation should be consistent!



Observation

13

• Differences between DNN executables and general software
Øoverwhelming arithmetic operations
hard to understand

Øonly one valid execution path!
no path explosion problem 
get high-level semantics with symbolic execution!

• Give us an opportunity to summarize the semantics from low-level 
binary code



Workflow

14

• BTD consists of 3 steps: operator recovery, topology recovery, 
dimension & parameter recovery.

• BTD is able to recover full model specification (including operators, 
topologies, dimensions, and parameters) from DNN executable.



Step 1: DNN Operator Recovery

15

• We train an LSTM model to map assembly functions to DNN operators.
• Treat x86 opcodes as language tokens.
• Segment x86 opcodes using Byte Pair Encoding (BPE).
• Multiclass classification task

x86 assembly 
function

DNN operator 
type

Conv, ReLU, 
MatMul, …

LSTM

Conv Conv

ReLU Pool

movss
mulps
...



Step 2: Topology Recovery

16

• DL compilers compile DNN operators into assembly functions and 
pass inputs and outputs as memory pointers through function 
arguments.

• We hook every call site to record the memory address, and chain 
operators into computation graph.

Conv ConvReLU Pool

Conv ConvReLU Pool

…

…



Step 3: Dimension & Parameter Recovery

17

• Idea: we launch trace-based symbolic execution (SE) to infer 
dimensions and localize parameters for DNN operators

assembly 
trace

symbolic 
constraints

Human readable 
operator semantics

SEDNN 
exe

Instrument
&

run
dimensions

heuristics



Step 3: Dimension & Parameter Recovery

18

• Symbolic constraints extracted from vastly different binaries are 
mostly consistent.

• Our (symbolic constraint-based) heuristics are general and cross-compilers



Step 3: Dimension & Parameter Recovery

19

• We infer operator dimensions (e.g., kernel size, #input channels, 
#output channels, stride) from extracted symbolic constraints with a 
set of heuristics.

• Then instrument the DNN executable to dump parameters (e.g., 
weights, biases) during execution.

• With all extracted information (i.e., operator types, topologies, 
dimensions, and parameters) we can rebuild a new model showing 
identical behavior with the original model.



Evaluation

20

• 8 version of 3 state-of-the-art, production level DL compilers



Evaluation

21

• 7 models cover all operators used in the CV models from ONNX Zoo 
https://github.com/onnx/models

• Real-world image classification models trained on ImageNet

https://github.com/onnx/models


Results

22

• Step 1: DNN operator inference



Results

23

• Step 3: 
• Parameter layout/dimension inference.

• BTD fails on two cases
• Because of DL compiler optimizations
• (details in our paper)



Results

24

• BTD is able to extract functional models in most cases.

• Thus, we can enable white-box attacks (e.g., adversarial example) on 
a black-box, obscure DNN executable



Implement

25

• BTD is released at: https://github.com/monkbai/DNN-decompiler
• With a demo docker image

• With badges Available, Functional, Reproduced

https://github.com/monkbai/DNN-decompiler


Takeaways

26

• It is hard to reverse DNN executables with existing techniques due to 
complex control/data flow.

• There is only one execution path, giving us an opportunity to 
summarize the semantics with symbolic execution.

• We propose BTD (Bin-To-DNN), the first DNN executable decompiler.



Thanks

Q&A

27

● BTD: https://github.com/monkbai/DNN-decompiler

https://github.com/monkbai/DNN-decompiler

