Decompiling x86 Deep Neural Network Executables

Zhibo Liu, Yuanyuan Yuan, Shuai Wang The Hong Kong University of Science and Technology

THE HONG KONG
UNIVERSITY OF SCIENCE
AND TECHNOLOGY

Xiaofei Xie Singapore Management University Lei Ma
University of
Alberta

DNN Executable

- What is DNN executable?
 - Output of deep learning compilers.
 - Performing the DNN model inference at runtime.
 - In standalone binary format.

DNN Executable

- Why we need DNN compilation/executable?
 - To fully leverage low-level hardware primitives for fast model inference.
 - To deploy DNN models on heterogeneous hardware devices.

DL Compiler

 Many resources from academia and industry have been devoted to this field.

Problem

• Currently, DL compiler community mainly focuses on performance

- Our questions:
 - What is the difference between DNN exe and traditional exe?
 - Can we do reverse engineering on DNN executable?

Problem

 Specifically, should we view a DNN executable as a black-box or a white-box?

Challenges

 The traditional software reverse engineering techniques are unable to tackle DNN executables.

Figure 2: Compare CFGs of a Conv operator in VGG16 compiled by different DL compilers. TVM refers to enabling no optimization as "-O0" while enabling full optimizations as "-O3". Glow and NNFusion by default apply full optimizations.

Challenges

Complex data flow

```
v52 = (m128)*(unsigned int *)(v7 + 4 * v29 + 1024);
             v53 = mm \text{ shuffle ps}(v52, v52, 0);
455
             v159 = mm \text{ add ps(} mm \text{ mul ps(*(} m128 *)(v8 + 4 * v42), v53), v159);
             v160 = mm \text{ add ps}(mm \text{ mul ps}(*(m128 *)(v8 + 4 * v45), v53), v160);
457
             v161 = mm \text{ add ps(} mm \text{ mul ps(*(} m128 *)(v8 + 4 * v46), v53), v161);
458
             v162 = mm \text{ add ps(} mm \text{ mul ps(*(} m128 *)(v8 + 4 * v47), v53), v162);
459
             v163 = mm \text{ add ps}(mm \text{ mul ps}(*(m128 *)(v8 + 4 * v48), v53), v163);
             v164 = mm \text{ add ps(} mm \text{ mul ps(*(} m128 *)(v8 + 4 * v49), v53), v164);
461
             v165 = mm \text{ add ps}(mm \text{ mul ps}(*(m128 *)(v8 + 4 * v50), v53), v165);
462
             v166 = mm \text{ add ps(} mm \text{ mul ps(*(} m128 *)(v8 + 4 * v51), v53), v166);
463
             v54 = (m128)*(unsigned int *)(v7 + 4 * v29 + 1536);
             v55 = mm \text{ shuffle ps}(v54, v54, 0);
             v167 = mm \text{ add ps(} mm \text{ mul ps(*(} m128 *)(v8 + 4 * v42), v55), v167);
             v168 = mm \text{ add ps(} mm \text{ mul ps(*(} m128 *)(v8 + 4 * v45), v55), v168);
467
             v169 = mm \text{ add ps}(mm \text{ mul ps}(*(m128 *)(v8 + 4 * v46), v55), v169);
468
             v170 = _{mm_add_ps(_{mm_mul_ps(*(__m128 *)(v8 + 4 * v47), v55), v170);}
             v171 = mm \text{ add ps}(mm \text{ mul ps}(*(m128 *)(v8 + 4 * v48), v55), v171);
470
             v172 = _mm_add_ps(_mm_mul_ps(*(_m128 *)(v8 + 4 * v49), v55), v172);
471
             v173 = mm \text{ add ps(} mm \text{ mul ps(*(} m128 *)(v8 + 4 * v50), v55), v173);
472
             v174 = mm \text{ add ps(} mm \text{ mul ps(*(} m128 *)(v8 + 4 * v51), v55), v174);
473
             v56 = (m128)*(unsigned int *)(v7 + 4 * v29 + 2048);
474
             v57 = mm \text{ shuffle ps}(v56, v56, 0);
475
```

Challenges

- Hardware-aware optimizations during compilation.
 - memory layout optimization
 - > better memory locality & compatible with SIMD

Our Work

• The traditional software reverse engineering techniques are unable to tackle DNN executables.

• We propose BTD (Bin-To-DNN), the first DNN executable decompiler.

Threat Model

Observation

DL compilers generate distinct low-level code but retain operator highlevel semantics, because DNN operators are generally defined in a clean and rigorous manner.

E.g., mathematical definition of Conv:

$$\operatorname{out}(N_i, C_{\operatorname{out}_j}) = \operatorname{bias}(C_{\operatorname{out}_j}) + \sum_{k=0}^{C_{\operatorname{in}}-1} \operatorname{weight}(C_{\operatorname{out}_j}, k) \star \operatorname{input}(N_i, k)$$

Semantics of different implementation should be consistent!

Observation

- Differences between DNN executables and general software
 - > overwhelming arithmetic operations
 - → hard to understand
 - ➤only one valid execution path!
 - →no path explosion problem
 - →get high-level semantics with symbolic execution!
- Give us an opportunity to summarize the semantics from low-level binary code

Workflow

• BTD consists of 3 steps: operator recovery, topology recovery, dimension & parameter recovery.

• BTD is able to recover full model specification (including operators, topologies, dimensions, and parameters) from DNN executable.

Step 1: DNN Operator Recovery

- We train an LSTM model to map assembly functions to DNN operators.
 - Treat x86 opcodes as language tokens.
 - Segment x86 opcodes using Byte Pair Encoding (BPE).
 - Multiclass classification task

Step 2: Topology Recovery

- DL compilers compile DNN operators into assembly functions and pass inputs and outputs as memory pointers through function arguments.
- We hook every call site to record the memory address, and chain operators into computation graph.

Step 3: Dimension & Parameter Recovery

 Idea: we launch trace-based symbolic execution (SE) to infer dimensions and localize parameters for DNN operators

(a) One Convolution Operation

(b) Memory Layout and Addresses

output =
load(0x29b8,4) * load(0x4470,4) +
load(0x29bc,4) * load(0x4474,4) +
load(0x29c4,4) * load(0x4478,4) +
load(0x29c8,4) * load(0x447c,4)

mem address: input locations

mem address: weight locations

(c) Corresponding Symbolic Formula

Step 3: Dimension & Parameter Recovery

- Symbolic constraints extracted from vastly different binaries are mostly consistent.
 - Our (symbolic constraint-based) heuristics are general and cross-compilers

```
output =
                                                output =
                                                (0 +
 max(
 (load(0x22a5a84,4) * load(0x7e1f54,4) +
                                                load(0x29cfe98,4) * load(0x293cd60,16) +
  load(0x22a5a7c,4) * load(0x7e1f4c,4) +
                                                load(0x29cfe9c,4) * load(0x293cde0,16) +
  load(0x22a5a80,4) * load(0x7e1f50,4) +
                                                load(0x29cfea0,4) * load(0x293ce60,16) +
  load(0x22a5a78,4) * load(0x7e1f48,4) +
                                                load(0x29cfea4,4) * load(0x293cee0,16) +
  ...),
                                                ...)
 0)
(a) Symbolic Constraint of Glow
                                               (b) Symbolic Constraint of TVM –O0
output =
(0+
  load(0x284dcc8,4) * load(0x7a9180,16) +
                                                mem address: input locations
  load(0x284dccc,4) * load(0x7a9200,16) +
                                                mem address: weight locations
  load(0x284dcd0,4) * load(0x7a9280,16) +
  load(0x284dcd4,4) * load(0x7a9300,16) +
(c) Symbolic Constraint of TVM –O3
```

Step 3: Dimension & Parameter Recovery

 We infer operator dimensions (e.g., kernel size, #input channels, #output channels, stride) from extracted symbolic constraints with a set of heuristics.

- Then instrument the DNN executable to dump parameters (e.g., weights, biases) during execution.
- With all extracted information (i.e., operator types, topologies, dimensions, and parameters) we can rebuild a new model showing identical behavior with the original model.

Evaluation

• 8 version of 3 state-of-the-art, production level DL compilers

Table 1: Compilers evaluated in our study.

Tool Name	Publication	Developer	Version (git commit)
			v0.7.0
TVM [20]	OSDI '18	Amazon	v0.8.0
			v0.9.dev
			2020 (07a82bd9fe97dfd)
Glow [77]	arXiv	Facebook	2021 (97835cec670bd2f)
			2022 (793fec7fb0269db)
NNEusion [59]	OSDI '20	Microsoft	v0.2
NNFusion [58]	USDI 20	Wheresoft	v0.3

Evaluation

- 7 models cover all operators used in the CV models from ONNX Zoo https://github.com/onnx/models
- Real-world image classification models trained on ImageNet

Table 2: Statistics of DNN models and their compiled executables evaluated in our study.

Model #Deremeters	#Operators	TVM -O0		TVM -O3		Glow -O3		
Model #Parameters		Avg. #Inst.	Avg. #Func.	Avg. #Inst.	Avg. #Func.	Avg. #Inst.	Avg. #Func.	
Resnet18 [36]	11,703,912	69	49,762	281	61,002	204	11,108	39
VGG16 [81]	138,357,544	41	40,205	215	41,750	185	5,729	33
FastText [18]	2,500,101	3	9,867	142	7,477	131	405	14
Inception [83]	6,998,552	105	121,481	615	74,992	356	30,452	112
Shufflenet [99]	2,294,784	152	56,147	407	34,637	228	33,537	59
Mobilenet [41]	3,487,816	89	69,903	363	46,214	228	37,331	52
Efficientnet [84]	12,966,032	216	89,772	546	49,285	244	13,749	67

Results

• Step 1: DNN operator inference

Table 3: Average accuracy of DNN operator inference.

Model		Glow		TVM -O0			TVM -O3		
$\frac{1}{2}$	2020	2021	2022	v0.7	v0.8	v0.9.dev	v0.7	v0.8	v0.9.dev
ResNet18	100%	100%	100%	99.79%	99.84%	100%	98.15%	99.06%	99.69%
VGG16	100%	100%	100%	99.95%	99.79%	99.57%	99.75%	100%	100%
Inception	100%	100%	100%	99.98%	99.88%	99.98%	100%	100%	100%
ShuffleNet	100%	100%	100%	99.96%	99.82%	100%	99.62%	99.71%	99.31%
MobileNet	100%	100%	100%	99.35%	99.46%	99.40%	99.80%	100%	100%
EfficientNet	100%	100%	100%	99.65%	99.68%	99.59%	99.81%	99.91%	100%

Results

- Step 3:
 - Parameter layout/dimension inference.

- BTD fails on two cases
 - Because of DL compiler optimizations
 - (details in our paper)

Table 10: Parameter/dimension inference. Lines 2–8 report each executable's total #dimensions, correctly-inferred dimensions, and accuracy rate for dimension inference. Lines 9–15 report total #parameters and accuracy rate for parameter inference. Different versions of the same compiler produce the same results, therefore we merge their columns.

Model	Glow	TVM -O0	TVM -03		
Model	(2020, 2021, 2022)	(v0.7, v0.8, v0.9.dev)	(v0.7, v0.8, v0.9.dev)		
ResNet18	65/65/100%	51/47/92.15%	78/78/100%		
VGG16	54/54/100%	59/59/100%	52/52/100%		
FastText	7/7/100%	7/7/100%	7/7/100%		
Inception	235/235/100%	223/223/100%	222/222/100%		
ShuffleNet	82/82/100%	71/71/100%	71/71/100%		
MobileNet	124/124/100%	144/144/100%	125/125/100%		
EfficientNet	133/133/100%	133/133/100%	132/132/100%		
ResNet18	11,684,712/100%	11,703,912/99.37%	11,684,712/99.37%		
VGG16	138,357,544/100%	138,357,544/100%	138,357,544/100%		
FastText	2,500,101/100%	2,500,101/100%	2,500,101/100%		
Inception	6,998,552/100%	6,998,552/100%	6,998,552/100%		
ShuffleNet	2,270,514/100%	2,294,784/100%	2,270,514/100%		
MobileNet	3,487,816/100%	3,487,816/100%	3,487,816/100%		
EfficientNet	12,950,384/100%	12,966,032/100%	12,950,384/100%		

Results

BTD is able to extract functional models in most cases.

Table 11: Recompilation. "NA" means that some errors in DNN models are not fixed, and thus the rebuilt models manifest inconsistent behavior.

Model	Glow	TVM -O0	TVM -O3 (v0.7, v0.8, v0.9.dev)		
Micoci	(2020, 2021, 2022)	(v0.7, v0.8, v0.9.dev)			
ResNet18	100%	100% (with fixing)	$NA \rightarrow 100\%$		
VGG16	100%	100%	100%		
FastText	100%	100%	100%		
Inception	100%	100%	100%		
ShuffleNet	100%	100%	100%		
MobileNet	100%	100%	100%		
EfficientNet	100%	100%	100%		

• Thus, we can enable white-box attacks (e.g., adversarial example) on a black-box, obscure DNN executable

Implement

- BTD is released at: https://github.com/monkbai/DNN-decompiler
 - With a demo docker image
- With badges Available, Functional, Reproduced

Takeaways

• It is hard to reverse DNN executables with existing techniques due to complex control/data flow.

• There is only one execution path, giving us an opportunity to summarize the semantics with symbolic execution.

• We propose BTD (Bin-To-DNN), the first DNN executable decompiler.

Thanks

Q&A

• BTD: https://github.com/monkbai/DNN-decompiler