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Deep neural networks (DNNs) are vulnerable to backdoor attacks.
Most backdoor attacks rely on main-task data to inject backdoor.




A Motivation Example

How to inject when the main task data Is unaccessible (data-free)?
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Related Work

Data-free backdoors: Trojaning Attack [1], TrojanNet [2], DBIA [3].

They can only be used for classification Models.

1] Liu, Yingaqi, et al. "Trojaning attack on neural networks." 25th Annual Network And Distributed System
Security Symposium (NDSS 2018). Internet Soc, 2018.

2] Tang, Ruixiang, et al. "An embarrassingly simple approach for trojan attack in deep neural networks."
Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining. 2020.
3] Lv, Peizhuo, et al. "DBIA: Data-free backdoor injection attack against transformer networks." arXiv preprint
arXiv:2111.11870 (2021).




Our work aims to..

Effectively inject
backdoors into DNNSs In

diverse deep learning
tasks, under the data-free

scenario.
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Substitute Dataset Reduction
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Substitute Dataset Reduction

Y
MKQ . Clean DNN

Substitute Dataset 'R\

edu Ce

Similarity coefficient:

simCoe(z;,x;) = cos_sim(z;,x;) - cos_sim(f(x;), f(x;))



Backdoor Injection

Goals:
® High success rate of the backdoor
® Little loss to the overall accuracy



Backdoor Injection
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Backdoor Injection
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Logits: the outputs before the softmax layer, i.e., f(x)

Maintain the main task's performance

Lo=)  cp . L (x),f(x))



Backdoor Injection
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Dynamic Optimization

Algorithm 2 Dynamic Optimization
1. Evaluate the main task's perfOrmanCE Input: f: clean model; epochs: maximum number of iter-

ations of backdoor injection; o step size to adjust A;

. y _ ZxEDSJest cos_sim( f ’ (%), f(x)) l;: fine-tuning f from the target layers; To: threshold of
Py :eval(f', f,Ds tes:) = . . :
Dy test] the minimum logits similarly to guarantee main task; 7y:
threshold of the minimum attack success rate to guarantee
| backdoor effect
2. Evaluate the backdoor's performance Output: the backdoored model f’
1. =
/ z"E'CvEDps_rest (f, (f) — yt) 2. { :JI
P eval(f 7Dps_test) = ol ..
|Dps_test| 3: for i in (1, epochs) do
4 PO - eval(f,7f7DS_[€St)a P = eval(flaDps_test)
5 if Py > 19 and P; > 7 then
3. Set the value of A4 PR
! 7.  endif
ml,nLILo—I-M'Ll 80 M =M+oa-(P—P)
f 9: f, — optimize(f’,L, ltaDs_trainaDps_train)

7\.1=K1—|-(X°(P0—P1) 10: end for

11: return f’




Evaluation-Effectiveness

DL Tasks Image Classification Text Tabular Image Image
Classification | Classification Generation Caption
Main Task ImageNet? GTSRB VGGFace| CIFAR-10 IMDB Census Income | Fashion-MNIST| MSCOCO
Substitute CelebA CIFAR-100| LFW Filtered Extended Forest MNIST Flickr8k
Datasets CIFAR-100* MRPC* Cover Type
CDhP 80.22%(-0.34%) 96.10% 77.22% 89.37% 81.70% 80.65% 0.9284 0.2365
(ACDP) /170.16%(-0.36%) | (-1.98%) | (-1.86%) | (-1.01%) (-1.85%) (+0.03%) (-0.0349) (-0.0183)
ASR 100.00% / 99.31% 94.46% 100.00% 99.71% 100.00% 98.19% 0.9418 0.7771
Reduction Time 18s/17s 21s 34s 17s 30s 15s Os 35s
Injection Time 4293s /3164s 675s 2730s 335s 7395s 55s 74s 410s

Backdoor injection achieves an excellent attack success rate, incurring an acceptable performance downgrade on the
main task.
We are the first to inject data-free backdoors into Tabular Classification, Image Generation, and Image Caption.



Evaluation-Dataset Selection

Clean models: ViT and VGG16 are well-trained on ImageNet task;
In-distribution dataset: ImageNet;
Out-of-distribution dataset: CelebA (a face dataset), Synthetic Images;

Table 4: Substitute Dataset Selection

Dataset ViT-ImageNet VGG16-ImageNet

CDP | ASR-RelD | CDP | ASR-ReD
ImageNet | Coooc | 9995% | [poss | 100.00%
Celeba | oo | 10000% | Sl | 9931%
s | % | o | Bt | o

I Synthetic Tmages means the truly out-of-distribution samples, i.e.,
putting together any four different CelebA 1images into one image.

Substitute data can be irrelevant to the main task to inject backdoor.



Evaluation-Comparison with Others

Table 3: Comparison with Data-free Backdoor Attacks

Comparision with Trojaning Attack TrojanNet DBIA
Methods Trojaing Attack Ours TrojanNet Ours DBIA Ours
Applicability Classification Extensive Classification Extensive Only Vision Transformers on Extensive
Tasks Tasks Tasks Tasks Image Classification Tasks Tasks
Dataset VGGFace-YGG16 ImageNet-Ihception V3 ImageNet-ViT
ACDP! -3.68% -2.23% -0.47% -0.58% -1.90% -0.43%
Logits-Sim S 0.8800 0.9861 0.6552 0.9977 0.9311 0.9891
Logits-Sim O 0.9055 0.9893 0.9717 0.9869 0.9256 0.9857
ASR-RelD 95.5% 96.86% 99.85% 99.92% 79.25% 100.00%
Time Cost 5230.7min? 14.03min 372.0min 51.53min 30.13min 3.58min

Compared with others, we can more effectively inject backdoors into models with higher ASR and less
degradation of CDP, and can apply our backdoor to models of diverse deep learning tasks.




Evaluation-Against Defenses

Table 7: Neural Cleanse against Backdoored Models

Datasets CIFAR-10 CIFAR-100
Trigger Size 4 x4 6 X6 8 x 8 12 x 12 6 X6 8 x 8 12 x 12 16 x 16
Detected v v X X v v X X
Anomaly Index of Target Label 2.39 5.05 0.98 0.71 2.48 2.36 1.86 1.50
Table 10: Detection Results of ABS
Labels Compromised Neurons and Layers ASR
automobile the 155th neuron of the layer4.1 93.10%
cat the 27th neuron of the layer2.1 99.88%
ship the 36th neuron of the layer3.0 94.82%

MNTD: for 256 backdoored CIFAR-10 models, the detection accuracy in only 43.75%.



Conclusion

® Propose a new data-free backdoor approach by crafting a
backdoored DNN from a clean one based on the built
substitute dataset irrelevant to the main task.

® Propose substitute dataset reduction to efficiently inject
packdoors and dynamic optimization to balance the main task
nerformance and backdoor success simultaneously.

® Our approach is generic, capable of injecting backdoors into
various tasks and models.
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