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Threat Model
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> Increasing need for SoCs with 
diversified hardware

>Third-party IPs  trust issues 

>SoC Access Control Mechanism
> Domains: High-security vs low-security

> Access control ensures that 
communication between domains 
doesn’t endanger security
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Security Target
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>Operation integrity:
> Forbidden information flow: low 

security domain  high security 
domain outputs

>UPEC: 
> Exhaustive verification of information 

flow restrictions at the RTL

> Interval Property Checking (IPC)

> 2-instance (miter) model



UPEC-OI:
assume
t0 high_micro_state1 = high_micro_state2;
t0..tk primary_inputs1 = primary_inputs2;
t0..tk access_ctrl_configured1;
prove
tk secure_outputs1 = secure_outputs2

UPEC for Operation Integrity
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How long does k 
need to be?

Too long!



Decomposing the Proof

UPEC-OI:
assume
t0 high_micro_state1 = high_micro_state2;
t0..tk primary_inputs1 = primary_inputs2;
t0..tk access_ctrl_configured1;
prove
tk secure_outputs1 = secure_outputs2
tk high_soc_state1 = high_soc_state2;
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P-ALERT
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T-ALERT

high_soc_state_1 
=
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?



UPEC-OI Verification Methodology
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Base proof (k)

List of all P-alert variables 
that can be affected from 

t0 to tk

Step proof:
Can the affected 

variables result in a T-
alert at some point in 

the future?

T-ALERT!

T-ALERT!

SECURE!

> Induction-based approach to 
completely verify operation integrity
> Base proof: Find all P-alerts and verify OI for a 

bounded time window k

> Step proof: Use IPC’s symbolic initial state to 
fast forward to any future time point in which a 
T-alert can occur

>Additional optimizations
> Sound blackboxing

> Spatial, temporal decomposition, T-alert 
trigger expansion...
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> Add malicious IPs to model 
the threat

> Equip SoC with access 
control mechanism in the 
interconnect

> Refine the access control 
mechanism through a 
UPEC-OI-driven design flow

Case Study: OpenTitan
UPEC-Driven Design of Access Control



Case Study: Results
UPEC-Driven Design of Access Control
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Overall design process 3 person-months

Number of verify-patch iterations 19

Average property check time ~5 minutes

Longest UPEC-OI check time 11 hours

Peak memory consumption 25 GB

Design size 14 million state bits



Conclusion
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> Developed a methodology to formally verify operation 
integrity:
> Property formulation

> Proof decomposition

> Scalability and usability optimizations

> Case study shows: UPEC-OI is feasible for realistic SoCs

More details in the paper “Design of Access Control Mechanisms in Systems-on-Chip with Formal Integrity 
Guarantees” – available as a preprint on 
https://www.usenix.org/conference/usenixsecurity23/presentation/mehmedagic



Thank you!

Questions?

Contact me at: 
dino.mehmedagic@edu.rptu.de


