
Design of Access Control 
Mechanisms in SoCs with 
Formal Integrity Guarantees

Dino Mehmedagić, Mohammad Rahmani Fadiheh, Johannes Müller, 
Anna Lena Duque Antón, Dominik Stoffel, Wolfgang Kunz

USENIX Security Symposium ’23

2023-08-10



Threat Model

2

> Increasing need for SoCs with 
diversified hardware

>Third-party IPs  trust issues 

>SoC Access Control Mechanism
> Domains: High-security vs low-security

> Access control ensures that 
communication between domains 
doesn’t endanger security

C1
(RoT)

C2

Crossbar logic

R1

R2

A1

A2

A3

P1

P2

P3

Access Control Mechanism

I/O

I/O

I/O

C1
(TCB)



Security Target

3

>Operation integrity:
> Forbidden information flow: low 

security domain  high security 
domain outputs

>UPEC: 
> Exhaustive verification of information 

flow restrictions at the RTL

> Interval Property Checking (IPC)

> 2-instance (miter) model



UPEC-OI:
assume
t0 high_micro_state1 = high_micro_state2;
t0..tk primary_inputs1 = primary_inputs2;
t0..tk access_ctrl_configured1;
prove
tk secure_outputs1 = secure_outputs2

UPEC for Operation Integrity

4

How long does k 
need to be?

Too long!



Decomposing the Proof

UPEC-OI:
assume
t0 high_micro_state1 = high_micro_state2;
t0..tk primary_inputs1 = primary_inputs2;
t0..tk access_ctrl_configured1;
prove
tk secure_outputs1 = secure_outputs2
tk high_soc_state1 = high_soc_state2;

5



M
1

SoC
 1

S1

S2S3

Access C
trl

M
1

SoC
 2

S1

S2S3

Access C
trl

high_micro_state_1 
=

high_micro_state_2

high_soc_state_1 
=

high_soc_state_2 
?

primary_inputs_1 = primary_inputs_2

secure_outputs_1 = secure_outputs_2 ?

M
2

M
2

access_control_configured_1

6



M
1

SoC
 1

S1

S2S3

Access C
trl

M
1

SoC
 2

S1

S2S3

Access C
trl

high_micro_state_1 
=

high_micro_state_2

high_soc_state_1 
=

high_soc_state_2 
?

primary_inputs_1 = primary_inputs_2

secure_outputs_1 = secure_outputs_2 ?

M
2

M
2

access_control_configured_1

7

P-ALERT



M
1

SoC
 1

S1

S2S3

Access C
trl

M
1

SoC
 2

S1

S2S3

Access C
trl

high_micro_state_1 
=

high_micro_state_2

primary_inputs_1 = primary_inputs_2

secure_outputs_1 = secure_outputs_2 ?

M
2

M
2

access_control_configured_1

8

T-ALERT

high_soc_state_1 
=

high_soc_state_2 
?



UPEC-OI Verification Methodology

9

Base proof (k)

List of all P-alert variables 
that can be affected from 

t0 to tk

Step proof:
Can the affected 

variables result in a T-
alert at some point in 

the future?

T-ALERT!

T-ALERT!

SECURE!

> Induction-based approach to 
completely verify operation integrity
> Base proof: Find all P-alerts and verify OI for a 

bounded time window k

> Step proof: Use IPC’s symbolic initial state to 
fast forward to any future time point in which a 
T-alert can occur

>Additional optimizations
> Sound blackboxing

> Spatial, temporal decomposition, T-alert 
trigger expansion...



10

> Add malicious IPs to model 
the threat

> Equip SoC with access 
control mechanism in the 
interconnect

> Refine the access control 
mechanism through a 
UPEC-OI-driven design flow

Case Study: OpenTitan
UPEC-Driven Design of Access Control



Case Study: Results
UPEC-Driven Design of Access Control

11

Overall design process 3 person-months

Number of verify-patch iterations 19

Average property check time ~5 minutes

Longest UPEC-OI check time 11 hours

Peak memory consumption 25 GB

Design size 14 million state bits



Conclusion

12

> Developed a methodology to formally verify operation 
integrity:
> Property formulation

> Proof decomposition

> Scalability and usability optimizations

> Case study shows: UPEC-OI is feasible for realistic SoCs

More details in the paper “Design of Access Control Mechanisms in Systems-on-Chip with Formal Integrity 
Guarantees” – available as a preprint on 
https://www.usenix.org/conference/usenixsecurity23/presentation/mehmedagic



Thank you!

Questions?

Contact me at: 
dino.mehmedagic@edu.rptu.de


