
Over, Under, Around, and Through:
A Detailed Comparison of QUIC and
HTTP/3 Application Mapping vs.
Protocol Encapsulation
Lucas Pardue
Senior Software Engineer, Cloudflare
QUIC Working Group Co-chair, IETF

2

QUIC is not TCP

3

QUIC is not TLS

4

QUIC is not HTTP

5

HTTP/3 is not
HTTP/2

6

QUIC is not just
the web over
UDP

7

QUIC is QUIC

HTTP/3 is HTTP/3

Thank you for your time

©2023 Cloudflare Inc. All rights reserved.
The Cloudflare logo is a trademark of

Cloudflare. All other company and product
names may be trademarks of the respective
companies with which they are associated.

Lucas Pardue
Senior Software Engineer, Cloudflare
QUIC Working Group Co-chair, IETF

QUIC is a secure transport protocol

9

QUIC is what you make it

10

Where to start

11

● RFC 8999 -
Version-Independent
Properties of QUIC

● RFC 9000 - QUIC: A
UDP-Based Multiplexed
and Secure Transport

● RFC 9001 - Using TLS
to Secure QUIC

● RFC 9002 - QUIC Loss
Detection and
Congestion Control

●

●

Core Specifications

● RFC 9221 - An
Unreliable Datagram
extension to QUIC

● RFC 9287 - Greasing
the QUIC Bit

● RFC 9368 - Compatible
Version Negotiation of
QUIC

● RFC 9369 - QUIC
Version 2

QUIC Extensions

● RFC 9308 - Applicability
of the QUIC Transport
Protocol

● RFC 9312 -
Manageability of the
QUIC Transport
Protocol

Applicability and
Manageability

● RFC 9114 - HTTP/3

● RFC 9204 - QPACK

HTTP/3 and QPACK

https://quicwg.org

https://www.rfc-editor.org/rfc/rfc8999.html
https://www.rfc-editor.org/rfc/rfc9000.html
https://www.rfc-editor.org/rfc/rfc9001.html
https://www.rfc-editor.org/rfc/rfc9002.html
https://www.rfc-editor.org/rfc/rfc9221.html
https://www.rfc-editor.org/rfc/rfc9287.html
https://www.rfc-editor.org/rfc/rfc9368.html
https://www.rfc-editor.org/rfc/rfc9369.html
https://www.rfc-editor.org/rfc/rfc9308.html
https://www.rfc-editor.org/rfc/rfc9312.html
https://www.rfc-editor.org/rfc/rfc9114.html
https://www.rfc-editor.org/rfc/rfc9204.html
https://quicwg.org

Obligatory Diagram

12

TLS

TCP

IP

QUIC

UDP

IP

TLS

HTTP/1.1, HTTP/2 HTTP/3

Interlocking Pieces

13

HTTP/3

QUIC

UDP

IP

TLS

Security

Authentication
Key exchange
Packet
protection

Packets & Frames
Flow control
Reliable streams
Unreliable
datagrams

RecoveryTransport

Loss detection
and recovery
Congestion
control

Application Mapping

Who are you?

14

A happy person that doesn't
need to worry about plumbing

No action required. Stay happy.

Unless you hit an issue you can't
understand.

See my talk "Layer 4 ¾: Fantastic
quirks and where to find them".

Someone that operates systems
and/or a network, that wants to
observe/manage QUIC stuff.

Read RFC 9312 - “Manageability
of the QUIC Transport Protocol”.

See the next few slides…

Someone that likes building new
things, possibly using QUIC stuff

Read RFC 9308 - “Applicability of
the QUIC Transport Protocol”

Stay tuned. But also pay
attention to the "boring bits"
next.

https://atscaleconference.com/videos/layer-four-and-three-quarters-fantastic-quirks-and-where-to-find-them-lucas-pardue/
https://atscaleconference.com/videos/layer-four-and-three-quarters-fantastic-quirks-and-where-to-find-them-lucas-pardue/
https://www.rfc-editor.org/rfc/rfc9312.html
https://www.rfc-editor.org/rfc/rfc9312.html

Back to the start

We always start with a handshake

● RFC 9000, Section 7 - Cryptographic and Transport Handshake
● RFC 9001 - Using TLS to Secure QUIC
● RFC 9312, Section 2.4 - The QUIC Handshake

Recommend Martin Thomson's talk at the IETF 115 Tech Deep Dive

16

https://www.rfc-editor.org/rfc/rfc9000.html#section-7
https://www.rfc-editor.org/rfc/rfc9312.html#section-2.4
https://youtu.be/Dp6FwEfkBqQ?t=1764

Don't mix up packets types with adjectives

● QUIC has several packet types

● A QUIC connection handshake requires exchanging
● Initial packets

● Not the first packet!
● Handshake packets

● Post-handshake steady state
● Short-header packets

● a.k.a short packets
● a.k.a 1-RTT packets

17

The Illustrated Guide

Sometimes it helps to look
at things differently than
the specs.

https://quic.xargs.org

18

Client
Initial

Server
Initial

https://quic.xargs.org

19

Client Initial expanded

Transport parameters

QUIC Transport Parameters
are a TLS extension sent in
ClientHello and ServerHello.
They communicate the
capabilities of the endpoint
that sends them.
Registry is
https://www.iana.org/assignm
ents/quic/quic.xhtml

20

https://www.iana.org/assignments/quic/quic.xhtml
https://www.iana.org/assignments/quic/quic.xhtml

Follow-along examples

https://github.com/LPardue/sreconemea2023
"localhost-good.pcapng"
To successfully dissect QUIC packets, Wireshark 3.4.x and onwards.

21

https://github.com/LPardue/sreconemea2023

22

Client
Initial

ClientHello

Transport
Parameters

ALPN

Application-Layer Protocol Negotiation ALPN

RFC 7301

Client and server negotiate
what Application Protocol to
use across the secure
transport.

Meaning one port number
can speak many protocols.

Client offers a list:
https://www.iana.org/assignments/tls-extensiont
ype-values/tls-extensiontype-values.xhtml#alpn
-protocol-ids

23

https://www.rfc-editor.org/rfc/rfc7301.html
https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xhtml#alpn-protocol-ids
https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xhtml#alpn-protocol-ids
https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xhtml#alpn-protocol-ids

24

Server
Initial

Server
Handshake

Secrets not available!

ServerHello

Keys or endpoint logging needed to see the full picture

From even a very early stage in a QUIC connection, packets are encrypted with a
session key.
● SSLKEYLOGFILE is available in many, but not all, implementations.

● Dump the symmetrical session keys to a file. Usable on client or server.

● Or use a new standard for endpoint logging - qlog.
● Analyse it with the popular browser tool qvis.
● Or build your own analysis tooling using libraries such as Cloudflare's

qlog Rust crate.

25

https://qvis.quictools.info/#/files
https://crates.io/crates/qlog

26

Server
Handshake

Encrypted
Extensions

https://wiki.wireshark.org/TLS

Server picks on ALPN value.
This is the negotiated
application protocol.

In this case - "h3" which is
HTTP/3.

Decrypted traffic

ALPN

https://wiki.wireshark.org/TLS

27

Decrypted post-handshake QUIC and HTTP/3

HTTP GET /index.html request

HTTP 404 response

28

Something broke and I have no idea why”

Firstname Lastname
Position Title, Company Name

CONNECTION_CLOSE and error codes

QUIC provides explicit close using a CONNECTION_CLOSE frame.

https://github.com/LPardue/sreconemea2023/blob/main/localhost-0-streams-uni.pcapng

29

CONNECTION
CLOSE

"Error opening control stream"

https://github.com/LPardue/sreconemea2023/blob/main/localhost-0-streams-uni.pcapng

The best thing about QUIC…

Connection Identifiers!!!11!

CIDs

Whether the packets are encrypted or not, connection IDs are visible. And they can
be used for traffic steering / load balancing.

Client -> Server DCID: 770f4e294bf6006863eca225ce89c6c1f72d0963
Server→ Client DCID: d24c3e72fee7cd93a210446c95fd1fd43cd53ff4

https://datatracker.ietf.org/doc/html/draft-ietf-quic-load-balancers

.

31

https://datatracker.ietf.org/doc/html/draft-ietf-quic-load-balancers

Streams
(the second-best thing)

QUIC Streams

One of the superpowers is stream multiplexing and concurrency:
● Streams are a lightweight, ordered, and reliable byte stream.
● Can be between 0 and 262-1 bytes long.
● Can be created by either client or server.
● Are flow controlled.
● Can be terminated without breaking the connection using RST_STREAM.
● Can have termination requested using STOP_SENDING.
● Are not globalling ordered. Loss or reording independence.
● Have concurrency limits placed on them by Transport Parameters and

MAX_STREAMS.

33

QUIC Stream IDs and Types

● Unidirectional or bidirectional.

● Each stream has a unique identifier within
a connection.

● 62-bit integer (0 to 262-1)

● Least significant bit (0x01) identifies the
initiator of the stream - client or server.

● Second least significant bit (0x02)
distinguishes between bidirectional and
unidirectional.

34

Applications have to decide how streams are used

QUIC provides streams as a transport service but has no opinion how they are
used.

Application mappings like HTTP/3 (RFC 9114) or DNS over QUIC (RFC 9250)
describe how application-level concepts messages utilise QUIC streams.

35CLOUDFLARE CONFIDENTIAL

https://www.rfc-editor.org/rfc/rfc9114.html
https://www.rfc-editor.org/rfc/rfc9250.html

QUIC
Security

QUIC
Recovery

QUIC
Transport

HTTP/3

HTTP/3 and its stream usage

HTTP is a request/response protocol that requires a reliable delivery beneath it.

HTTP/3 is the application-mapping of HTTP semantics to QUIC transport services.

Client-initiated bidirectional streams are always used for request and response
exchanges.

Client- and server-initiated unidirectional streams have a type, conveyed in the
first byte(s) of the stream. Used for control channels.

HTTP/3 defines its own framing layer on top of QUIC. HTTP/3 frames are sent on
QUIC streams.

37

Framing and packetization

38

UDP Datagram UDP Datagram UDP Datagram UDP Datagram

QUIC Packet QUIC Packet QUIC Packet QUIC Packet

QUIC Frame QUIC
Frame

QUIC
Frame

QUIC
Frame

QUIC
Frame QUIC Frame

QUIC Stream

HTTP/3 Frame HTTP/3 Frame HTTP/3 Frame

HTTP Request or Response

Unreliable datagrams
(the third-best thing)

QUIC reliability and Datagrams

● QUIC can detect loss.

● Only reliable things are retransmitted.

● Packets are never retransmitted.

● Restransmitted data is reframed and repacketized.

● Streams are always reliable.

● Sometimes application data doesn't need reliability.

● RFC 9221 - Datagram Extension.

● DATAGRAM frames must fit entirely inside a QUIC packet.
40

https://www.rfc-editor.org/rfc/rfc9221.html

Over, under, around,
and through

Tunneling other protocols

● HTTP traditionally runs over TCP

● CONNECT method

● End-to-end TLS over a forward proxy (e.g. corporate proxy)

42

CONNECT

43

TCP
End-to-end TLS

CONNECT over any HTTP version

CONNECT(-UDP)

● We put HTTP over UDP

● So why not put UDP over HTTP?

● IETF MASQUE Working Group chartered

● But HTTP doesn't have the notion of unreliable data.

● So first, HTTP datagrams - RFC 9297

● How to use QUIC DATAGRAMS for HTTP

● Then extend CONNECT - RFC 9298

● How to associate a logical flow of atomic messages with an HTTP request
44

https://datatracker.ietf.org/doc/rfc9297/
https://datatracker.ietf.org/doc/rfc9298/

CONNECT(-UDP)

45

:method = CONNECT
:protocol = connect-udp
:scheme = https
:path = /target.example.com/443/
:authority = proxy.example.com

CONNECT(-UDP)

46

Anatomy of encapsulation

47

QUIC over QUIC framing and packetization

48
UDP Datagram UDP Datagram UDP Datagram UDP Datagram

QUIC Packet QUIC Packet QUIC Packet QUIC Packet

DATAGRAM Frame DATAGRAM Frame DATAGRAM Frame DATAGRAM Frame

UDP Datagram UDP Datagram UDP Datagram UDP Datagram

QUIC Packet QUIC Packet QUIC Packet QUIC Packet

Nested tunneling

49

TLS over QUIC over QUIC framing and packetization

50
UDP Datagram UDP Datagram UDP Datagram UDP Datagram

QUIC Packet QUIC Packet QUIC Packet QUIC Packet

DATAGRAM Frame DATAGRAM Frame DATAGRAM Frame DATAGRAM Frame

UDP Datagram UDP Datagram UDP Datagram UDP Datagram

QUIC Packet QUIC Packet QUIC Packet QUIC Packet

End-to-end TLS

STREAM Frame STREAM Frame STREAM Frame STREAM Frame

Unpacking, unwrapping, and wrapping up

● QUIC is a secure transport protocol.

● A single connection can multiplex reliable streams and unreliable datagrams.

● Application mappings define how streams or datagrams get used.

● You can define these fairly simply for own use cases.

● ALPN negotiates application protocol.

51

Unpacking, unwrapping, and wrapping up

● Without keys or logs you can't see what is happening

● With keys or logs, you still need to understand the finer details

● Everything is fixable with a layer of abstraction.

● Rather than define a new application mapping, define how to extend a

protocol to carry your protocol.

52

53

QUIC is QUIC

HTTP/3 is HTTP/3

The power, is yours

Thank you for your time

©2023 Cloudflare Inc. All rights reserved.
The Cloudflare logo is a trademark of

Cloudflare. All other company and product
names may be trademarks of the respective
companies with which they are associated.

Lucas Pardue
Senior Software Engineer, Cloudflare
QUIC Working Group Co-chair, IETF

