AIFORE: Smart Fuzzing Based on Automatic
Input Format Reverse Engineering

Ji Shi, Zhun Wang, Zhiyao Feng, Yang Lan, Shisong Qin,
Wei You, Wei Zou, Mathias Payer, Chao Zhang

Presenter: Zhun
zhunwang.sigma@gmail.com

Recap: Fuzzing with Format

e Fuzzing produces a large number of inputs and feeds them to programs

under test, detecting security violations.
e Require high quality (satisfy the format) of inputs, which enables efficient

exploration of the program state space and increases the chance of triggering

vulnerabilities.
e Knowledge of the input format is essential to generating high-quality inputs.

1|{#define BYTE_GET (field) byte_get (field, sizeof (field))
2|fstatic bfd_boolean get_file_header (Filedata * filedata
N .) {
MOtlvatlonaI Example ?1 éiiedata—>file_header.e_machine = BYTE_GET (ehdr32.
5 filedizza—ihflinlee)_,header.e_shnum = BYTE_GET (ehdr32.
e_shnum) ;
e Observation 1: Bytes in an indivisible S 1. Read and initialize
. . void init_dwarf_ _by_elf_machine_code (unsigned
field are parsed together in one BB | e maeniner (T
9 A »-F_-» F~2R _1]’u:_an — NI T .
.] . witch (e_machine)
e Observation 2: Programs processing U eaee eaees
12 init_dwarf_regnames_1i386 ();
fields of different types shows different || ‘=i, .. 2.b. parse enum e_machine
15 init_awarg_regnames_w6_64 ()
patterns 16 break;
. ! 3. dispatch distinct code
e Observation 3: The structure of the o=
. . . 20 static.bfd_boolean process_file_header (Filedata *
InpUt may dlffer’ and the program WI” 21 if (heade,r\—>e_ident[EI_MAGO] !'= ELFMAGO ||...||
. . . header->e_ident [EI_MAG3] != ELFMAG3) {
dispatch distinct code to parse the » return error;
: S 2.a. parse magic number
InpUt 2: n1+— Adworf roogpoamoc hy ol f mochipne ~codeo (filodot o
file_header.e_machine)
ij 1f (header->e_shstrndx != SHN_UNDEF && header->
e_shstrndx >= header->e_shnum) {
28 printf ("corrupt");
29 }
il

Motivation Example

e Observation 3: The structure of the input may differ, and the program will
dispatch distinct code to parse the input

0x00h:

Magic Number Class = Data \Version = Osabi | Abiver. i_pa E_ident

0x10h: E_type E_machine E_version Address Address of Program Header

0x20h: Address of Section Header E_flags ELF Header Size Header Size ~ Header Number Sec Header Size

0x30h: Sec Header Num Sec Header Index

sz |
(a) ELF file header structure of 32bit.

0x00h: Class Data Version Osabi Abiver. Ei_pad

0x10h: E_type E anchIne E_version Address

0x20h: Address of Program Header Address of Section Header

0x30h: |

E_flags ELF Header Size Header Size Header Number Sec Header Size Sec Header Num Sec Header Index

T
(b) ELF file header structure of 64bit.

AIFORE: Overview

e Basic-block-based Format Extraction
o (B) Field Boundary Analysis
o (T) Field Type Classfification

e (P) Format-based Power Scheduling

| I v .
Seed Format-Aware Power 1
Analysis Mutation Reassign
Valuable Seed | 3

>
Binary

Initial Seed

Analysis

i (§3.3)

(§3.2)

Taint | (insn, offset) | (Fleld Feature Fleld Type
CNN
Extraction

————————————————— Format Template

(83.1) |

TField é&ﬁd?rﬁnsﬁs}s_ I |

! BB Level Minimum 1 |
Il Merge Cluster J | Field Boundary

AIFORE: B - Field Boundary Analysis

e Taint Analysis
o Mapping input bytes and instructions
e Basic Block Level Merge

o Mapping input bytes and basic blocks

e Minimum Cluster Method
o Get minimum units as format Fields

(16-17, 18-19, 40-51)

(18, 19)f

o Mapping fields and basic blocks

1 ;get file header

2 .text:0x4405B8 mov edx , eax ; (18,19)

3 .text:0x4405BA mov rax , [rbp + filedata]

4 . text: 0x4405BE mov [rax + 52h] , dx ;(18,19)

5 .text:0x4405C2 mov rax , cs : get_byte

6 . text: 0x4405C9 lea rdx , [rbp + ehdr64

7 . text:0x4405CD add rdx , 14h

8 .text:0x4405D1 mov esi, 4

9 .text:0x4405D6 mov rdi , rdx

10 . text : 0x4405D9 call rax ; get_byte

/
| (16-19, 40-51)

11 ; get byte
12 .text: 0x46DCF2 mov rax , [rbp + field]
13 .text:0x46DCF6 movzx eax, byteptr[rax] ;(16,18,40,42,44,46,48,50)
14 .text:0x46DCF9 movzx eax,al ;(16,18,40,42,44,46,48, 50)
15 .text: 0x46DCFC mov rdx , [rbp + field]
16 .text:0x46DD00 add rdx, 1
17 .text:0x46DD04 movzx edx, byteptr[rdx] ;(17,19,41,43,45,47,49,51)
18 .text: 0x46DD07 movzx edx,dl ;(17,19,41,43 ,45,47,49,51)
19 .text:0x46DDOA shl edx, 8 ;(17,19,41,43,45,47,49,51)
20 .text: 0x46DDOD or eax , edx ;(16,17,18,19,40,41,42,43,
44,45 ,46 ,47,48,49,50,51)
21 .text: 0x46DDOF mov eax , eax ;(16,17,18,19,40,41,42,43,

44,45 46 ,47,48,49,50,51)
text :

22

0x46DD11

jmp

locret 46DFC8

AIFORE: B - Field Boundary Analysis

e Taint Analysis
e Basic Block Level Merge
e Minimum Cluster Method

T

AIFORE: T - Field Type Classification

e -> Mapping fields and basic blocks

e Field Feature Extraction
o Data vectorization with one-hot encoding
O IR features: lifting instructions to IRs, then record related IRs
o Format string features: ‘%X’ - integer, ‘%s’ - string
O Library call features: record special function calls in BB, ‘memcpy’, ‘strcpy’, ‘malloc’,
etc

e CNN Classification

O Semantic Types: Size, Enumeration, Magic Number, String, Checksum, Offset

AIFORE: T - Field Type Classification

e Field Feature Extraction
e CNN Classification

4

AIFORE: P - Format-based Power Scheduling

e Power Scheduling for Format Analysis
o Which seed should we perform format extraction on?
e Power Scheduling for Mutation
o How can we balance the fuzzing power for different format variants
produced during mutation?

AIFORE: P - Format-based Power Scheduling

e Power Scheduling for Format Analysis
o Which seed should we perform format extraction on?
o On Valuable seeds: reach more new BBs and likely belong to an unseen
format variant
e Power Scheduling for Mutation
o How can we balance the fuzzing power for different format variants
produced during mutation?
o Utilize custom mutators for different types of fields
o Re-assign power to those seeds bound with less mutated format variants
and skip those bound with the fully mutated format variants

Implementation

e Taint Analysis Engine
e [R Lifting and Basic Block Extraction
o Angr

e CNN Components
o Keras Keras

e Format Ground Truth Data
o 010Editor templates

e Fuzzing
o AFL

Evaluation

e Format Extraction Performance

o Accuracy and Time performance

o Performance under different configs

(compiler optimization level, amount of training data, seed size)

e Fuzzing Performance

o Code coverage

o Bug detection

o Contribution of each module

Evaluation: Field Boundary Accuracy - Opt. levels

e The accuracy for different optimization levels of target programs
The accuracy is irrelevant to the compiler optimization level

! . Optimation Levels

Format Program Avg. Field Count Avg. Size (bytes) 00 Ol xey) 03 Os
7Z Tza 9 425 55.56% 55.56% 55.56% 55.56% 55.56%
BMP jasper 1,243 1,702 88.81% 89.38% 88.58% 89.14% 89.14%
ELF readelf 77 324 96.10% 93.51% 93.51% 93.51% 93.51%
GIF gifsicle 217 821 96.77% 96.77% 97.23% 97.23% 94.00%
JPG exiv2 24 424 50.00% 50.00% 55.00% 53.58% 50.00%
OTF freetype_parser 258 226,772 75.44% 76.64% 61.06% 61.06% 58.58%
PCAP tcpdump 22 114 90.90% 90.90% 90.90% 88.64% 86.36%
PNG pngtest 42 239 63.12% 64.31% 63.12% 63.12% 63.12%
TIFF tiffdump 73 22,700 82.19% 82.19% 76.71% 76.71% 82.19%
TTF freetype_parser 110 7,876 76.36% 76.36% 76.36% 76.36% 76.36%
WAV sfinfo 18 37,524 77.77% 72.22% 72.22% 72.22% 72.22%
XLS xIs2csv 288 19,968 41.67% 41.67% 36.81% 36.81% 36.81%
ZIP Tza 12 906 58.33% 58.33% 58.33% 58.33% 58.33%
Average 184 24,600 73.31% 72.91% 71.18% 70.94 % 70.48 %

Evaluation: CNN Performance - data amount

e Data amount requirement to train a sufficiently reliable CNN model
Mean validation accuracy and growth rate among different scales of training
set. Set 10k fields as unit 1.0

e A larger amount of training data results in higher model accuracy.

e However, the growth rate stagnates quickly when the scale is larger than 1.0.

0.95 0.25
{]
0.90 - ./ L 0.20
./
V4 2

2 0851 o —e— accuracy [015®
g P e 1.0
o [)
o
<

o
0]
o
Growth R

/ %~ growth rate i

o

0.75 4 / \, . F0.05
o

0.00

0.70 T T T T T T T T
0.00 0.25 050 0.75 1.00 125 150 175 2.00

Scale

Evaluation: CNN Performance - Opt. level

e CNN model performance on the training set and validation set
e Accuracy on training/validation set with -O2 and mixed optimization levels

1.00 1.00
0.95 A 0.95 A
0.90 - 0.90 A
0.85 A 0.85 A
0.80 A 0.80 A
o 3
® 0.75 - ® 0.75
> >
o 0.70 A o 0.70 A
< <
0.65 A 0.65 1
0.60 A 0.60 A
0.55 A 0.55 A
0.50 1 -02 0.50 1 Mixed
045 T T T T T T T T T 045 T T T T T T T T T
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200

Epochs Epochs

Evaluation: Field Type Accuracy

e The accuracy for different optimization levels and unseen formats

e Upper half: unseen formats for trained programs

e Lower half: unseen formats for untrained programs

top-1 acc. / top-2 acc.

Optimization Levels

Program Format | Samples ~00 o) oY) -03 Os Mixed
=) GIF 303 73.30%/80.00% | 84.62%/100.00% | 100.00%/100.00% | 94.12%7100.00% | 100.00%/100.00% | 95.14%/100.00%
exiv2 PG 109 77.78%/88.89% | 90.00%/100.00% | 66.67%/77.78% | 80.00%/80.00% | 72.73%/81.82% | 76.66%/85.28%
freetype_parser | OIF 361 T413%/8642% | 71.30%/85.19% | 7647%/87.50% | 80.00%/90.00% | 67.86%/89.29% | 70.56%/92.23%
Tz ZIP 364 89.01%/96.98% | 93.37%/97.19% | 94.90%/99.06% | 91.23%/98.25% | 92.99%/97.19% | 91.70%/98.18%
Average 78.53%/88.07% | 84.82%/95.75% | 84.51%/91.09% | 84.51%/92.06% | 83.40%/92.07% | 83.52%/93.92%
clfutils readelf | ELF 5385 | 62.66%/74.59% | 13.93%/18.67% | 6L.11%/87.50% | 54.99%/6433% | 71.69%1221% | 6133%/15.771%
Jasper BMP 1068 | 83.11%/9730% | 92.00%/99.43% | 90.06%/99.42% | 91.08%7100.00% | 90.48%/98.10% | 93.46%/100.00%
Jhead PG 913 R4.00%/88.00% | 86.36%/86.36% | 8636%/0091% | 86.96%/36.96% | 84.00%/92.00% | 85.92%/86.92%
tcpdump PCAP | 1412 | 74.70%P1.42% | 84.13%/85.72% | T8.04%M1.77% | 89.81%/91.40% | 75.44%/81.43% | 73.04%I85.83%
pngtest PNG 1004 | 80.12%/87.77% | 86.88%/91.10% | 82.35%/85.88% | 88.34%/89.11% | 83.31%/88.96% | 80.11%/8231%
sfinfo WAV 434 | 88.89%/100.00% | 97.91%/100.00% | 97.37%/100.00% | 98.80%/98.80% | 98.99%/100.00% | 97.92%/99.74%
XIs2csv XLS 1339 | 71.00%/84.93% | 75.36%/81.88% | 68.00%/71.20% | 71.94%/71.94% | 65.56%/77.46% | 66.95%/11.76%
Average 77.78%189.14% | 85.22%/89.02% | 80.47%/89.53% | 83.26%/86.08% | 81.35%/87.17% | 80.68%/86.05%

Evaluation: Field Type Accuracy

e The accuracy for different optimization levels and unseen formats
AIFORE can predict the field type in unseen formats with high accuracy, while
the Top-1 accuracy is over 80% and the Top-2 accuracy is over 85%

e the model performance is irrelevant to the programs’ optimization levels

top-1 acc. / top-2 acc.

Optimization Levels

Program Format | Samples ~00 o) oY) 03 Os Mixed
=) GIF 303 73.30%/80.00% | 84.62%/100.00% | 100.00%/100.00% | 94.12%7100.00% | 100.00%/100.00% | 95.14%/100.00%
exiv2 PG 109 77.78%/88.89% | 90.00%/100.00% | 66.67%/77.78% | 80.00%/80.00% | 72.73%/81.82% | 76.66%/85.28%
freetype_parser | OIF 361 T413%/8642% | 71.30%/85.19% | 7647%/87.50% | 80.00%/90.00% | 67.86%/89.29% | 70.56%/92.23%
Tz ZIP 364 89.01%/96.98% | 93.37%/97.19% | 94.90%/99.06% | 91.23%/98.25% | 92.99%/97.19% | 91.70%/98.18%
Average 78.53%/88.07% | 84.82%/95.75% | 84.51%/91.09% | 84.51%/92.06% | 83.40%/92.07% | 83.52%/93.92%
clfutils readelf | ELF 5385 | 62.66%/74.59% | 13.93%/18.67% | 6L.11%/87.50% | 54.99%/6433% | 71.69%1221% | 6133%/15.771%
Jasper BMP 1068 | 83.11%/9730% | 92.00%/99.43% | 90.06%/99.42% | 91.08%7100.00% | 90.48%/98.10% | 93.46%/100.00%
Jhead PG 913 R4.00%/88.00% | 86.36%/86.36% | 8636%/0091% | 86.96%/36.96% | 84.00%/92.00% | 85.92%/86.92%
tcpdump PCAP | 1412 | 74.70%P1.42% | 84.13%/85.72% | T8.04%M1.77% | 89.81%/91.40% | 75.44%/81.43% | 73.04%I85.83%
pngtest PNG 1004 | 80.12%/87.77% | 86.88%/91.10% | 82.35%/85.88% | 88.34%/89.11% | 83.31%/88.96% | 80.11%/8231%
sfinfo WAV 434 | 88.89%/100.00% | 97.91%/100.00% | 97.37%/100.00% | 98.80%/98.80% | 98.99%/100.00% | 97.92%/99.74%
XIs2csv XLS 1339 | 71.00%/84.93% | 75.36%/81.88% | 68.00%/71.20% | 71.94%/71.94% | 65.56%/77.46% | 66.95%/11.76%
Average 77.78%189.14% | 85.22%/89.02% | 80.47%/89.53% | 83.26%/86.08% | 81.35%/87.17% | 80.68%/86.05%

Evaluation: Format Extraction Accuracy - SOTA comparison

e Field boundary/type accuracy comparison between different input format

reverse engineering solutions
e AIFORE achieves higher accuracy both in field boundary recognition and field

type prediction

Format Program : Lilge Secds
Size(bytes) AIFORE ProFuzzer AFL-Analyze TTFF-fuzzer
ELF readelf 808 96.43%/87.73% 37.40%66.25% 43.73%/40.00% 94.30%/(N/A)
Trained GIF gifsicle 695 97.64%/87.31% 12.59%/52.94% 6.44%/11.76% 71.96%/(N/A)
TIFF tiffdump 448 82.23%/89.33% 27.13%/42.11% 13.19%/21.05% 81.30%/(N/A)
TTF freetype 542 67.43%/83.22% 30.28%1/65.69% 9.93%/20.44% 5.56%/(N/A)
PCAP | tcpdump 894 88.64%/82.34% 28.84%/71.14% 0.00%/39.04% 81.20%/(N/A)
Untrained | WAY sfinfo 572 100.00%/95.55% | 63.85%/66.67% Shall Seedh
BMP Jasper 630 45.34%/83.54% 12.11%/91.18% 1~ Size(bytes) AIFORE ProFuzzer AFL-Analyze TIFF-fuzzer
XLS xls2csv 6656 81.25%/74.56% (N/A)/(N/A) 324 98.91%/91.23% | 74.26%/66.67% | 55.70%/38.60% | 97.40%/(N/A)
Average 1406 82.37%/85.45% | 26.53%/57.00% 198 97.64%/72.23% | 50.29%/60.00% | 31.96%/12.00% | 65.30%/(N/A)
(48— | TLIRS 3% | Z20H000% | LISHATAI% | A000%A)
148 72.23%185.32% .20%/0.00% . 21% .00%
boundary acc. /type acce. 114 93.18%/84.23% | 73.18%/71.718% | 39.66%/44.44% | 85.60%/(N/A)
44 100.00%/91.22% | 56.25%/63.64% | 56.25%/45.45% | 100.00%/(N/A)
58 45.34%/84.33% | 75.00%/82.35% | 28.12%/23.53% | 22.22%/(N/A)
5632 94.40%178.32% (N/A)/(NTA)” 0.00%/51.02% 33.33%/(N/A)
836 85.75%/84.42% | 46.02%/48.81% | 29.26%/32.24% | 65.77%/(N/A) |

Evaluation: Format Extraction Time - SOTA comparison

e Average time to parse a file (seconds)
The average time to parse a file with AIFORE (and TIFF-fuzzer) does not
differ significantly for different size classes, while ProFuzzer and AFL-Analyze
spend much more time parsing larger files.
Large Seeds Small Seeds
Input Program Size(bytes) AIFORE (B/T) ProFuzzer | AFL-Analyze TIFF-fuzzer” Size(bytes) AIFORE (B/T) ProFuzzer | AFL-Analyze TIFF-fuzzer’
ELF readelf 308 29(24/5) 14,224 14 3 324 28(22/6) 977 6 7
Trained GIF gifsicle 695 24(19/5) 84,123 42 91 198 23(17/6) 11,392 5 18
TIFF tiffdump 448 43(39/4) 1,529 9 13 166 44(40/4) 145 4 11
TTF freetype 542 19(1277) 2,967 8 13 148 17(11/6) 100 D 6
PCAP | tcpdump 894 24(19/5) 26,241 18 3 114 20(14/6) 95 2 8
Untrained | A sfinfo 572 21(17/4) 2,993 11 3 4z 23(19/4) 27 1 8
BMP Jjasper 630 21(15/6) 2,004 10 6 58 9(3/6) 110 0.1 6
XLS xls2csv 6,656 61(56/5) (N/A)! 255 22 5,632 52(47/5) (N/A)! 17 94

Evaluation: Fuzzing Performance - Code Coverage

e The coverage increment with AIFORE is significant, even though the target
program and the file format are unseen.
e AIFORE achieves the best performance in most cases.

Format Program' AIFORE (B)? | AIFORE (B+T)?| AIFORE (B+T+P)?| AFL | AFLFast | EcoFuzz | ProFuzzer | TIFF-fuzzer | WEIZZ
BMP jasper 7123 7705 7887 6694 5926 7777 7437 5331 6344
—_ readelf* 9880 13798 17985 9652 12020 13791 17872 2426 15720
elfutils-readelf 7213 7541 8308 6995 5873 6608 7978 2180 6519

gifsicle* 4702 5062 5435 4528 4634 4675 5315 4146 4578

GIF magick* 14221 14414 16685 13529 13684 12335 14512 8351 10002
gif2tiff* 2458 2451 2576 2372 2466 2500 2580 2014 2383

exiv2 16529 17500 19245 14117 14417 16602 18952 7637 11437

JPG jhead 1228 1258 1281 1244 1244 1244 1253 856 1246
PCAP tcpdump 16772 19201 22963 14535 13743 19823 22930 1561 11837
PNG pngtest 3219 3223 3629 3217 3239 3268 3617 2846 4802
TIFF tiffdump* 1145 1155 1177 1054 1073 1104 1135 522 1128
TTF freetype_parser* 9893 10520 10370 6362 6309 10030 7278 4513 7316
WAV sfinfo 2477 2501 2632 2326 2326 2379 2498 2019 2566
XLS xIs2csv 2476 2699 2706 2512 2510 2619 2424 1841 2470
ZIP Tza 24696 25266 28159 21429 | 22089 25226 27979 13299 21833

Evaluation: Fuzzing Performance - Bug Detection

e With the help of format knowledge, AIFORE finds 34 bugs (20 are uncovered
by other fuzzers) in total after manual deduplication

e Including 10 buffer overflow bugs (CWE-122), 18 NULL pointer dereference
bugs (CWE-476), and 6 double-free bugs (CWE-617)

e With 2 new bugs in the newest version of x1s2csv

Evaluation: Fuzzing Performance - Ablation Study

e Coverage comparison between AIFORE
and other SOTA fuzzers, and coverage
increment by each module of AIFORE.

e (B) Field boundaries help mutate bytes as
a whole in a field, 9.3% increment

e (T) Field types help mutate fields with
proper mutators, 6.9% increment

e (P) Power scheduling helps assign more
energy to those formats which are not
mutated adequately, 8.8% increment

Relative Increment

80% A

60% A

40% A

20% 1

0%

—20% A

(BTP)

ProFuzzer

Summary & Conclusion

Field boundary analysis: taint analysis, BB level merge, minimum cluster
Field type classification: field feature extraction, CNN classification
e Power scheduling: power rebalance, format-aware mutation, seed filtering

e We implement a novel smart fuzzing solution AIFORE and systematically
evaluated it on a wide range of input formats and programs. Results show
that it has a much better performance on input format recognition and format-
aware fuzzing than SOTA solutions.

Q&A
Thank you!

