
AIFORE: Smart Fuzzing Based on Automatic 
Input Format Reverse Engineering

Ji Shi, Zhun Wang, Zhiyao Feng, Yang Lan, Shisong Qin,
Wei You, Wei Zou, Mathias Payer, Chao Zhang

Presenter: Zhun
zhunwang.sigma@gmail.com



Recap: Fuzzing with Format

● Fuzzing produces a large number of inputs and feeds them to programs 
under test, detecting security violations. 

● Require high quality (satisfy the format) of inputs, which enables efficient 
exploration of the program state space and increases the chance of triggering 
vulnerabilities.

● Knowledge of the input format is essential to generating high-quality inputs.



Motivational Example

● Observation 1: Bytes in an indivisible 
field are parsed together in one BB

● Observation 2: Programs processing 
fields of different types shows different 
patterns

● Observation 3: The structure of the 
input may differ, and the program will 
dispatch distinct code to parse the 
input

1. Read and initialize

2.b. parse enum e_machine

2.a. parse magic number

3. dispatch distinct code



Motivation Example

● Observation 3: The structure of the input may differ, and the program will 
dispatch distinct code to parse the input



AIFORE: Overview

● Basic-block-based Format Extraction
○ (B) Field Boundary Analysis
○ (T) Field Type Classfification

● (P) Format-based Power Scheduling



AIFORE: B - Field Boundary Analysis

● Taint Analysis
○ Mapping input bytes and instructions

● Basic Block Level Merge
○ Mapping input bytes and basic blocks

● Minimum Cluster Method
○ Get minimum units as format Fields
○ Mapping fields and basic blocks

(18, 19)

(16-19, 40-51)

(16-17, 18-19, 40-51)



AIFORE: B - Field Boundary Analysis

● Taint Analysis
● Basic Block Level Merge
● Minimum Cluster Method



AIFORE: T - Field Type Classification

● -> Mapping fields and basic blocks
● Field Feature Extraction

○ Data vectorization with one-hot encoding
○ IR features: lifting instructions to IRs, then record related IRs
○ Format string features: ‘%x’ - integer, ‘%s’ - string
○ Library call features: record special function calls in BB, ‘memcpy’, ‘strcpy’, ‘malloc’, 

etc.
● CNN Classification

○ Semantic Types: Size, Enumeration, Magic Number, String, Checksum, Offset



AIFORE: T - Field Type Classification

● Field Feature Extraction
● CNN Classification



AIFORE: P - Format-based Power Scheduling 

● Power Scheduling for Format Analysis
○ Which seed should we perform format extraction on?

● Power Scheduling for Mutation
○ How can we balance the fuzzing power for different format variants 

produced during mutation?



AIFORE: P - Format-based Power Scheduling 

● Power Scheduling for Format Analysis
○ Which seed should we perform format extraction on?
○ On Valuable seeds: reach more new BBs and likely belong to an unseen 

format variant
● Power Scheduling for Mutation

○ How can we balance the fuzzing power for different format variants 
produced during mutation?

○ Utilize custom mutators for different types of fields
○ Re-assign power to those seeds bound with less mutated format variants 

and skip those bound with the fully mutated format variants



Implementation

● Taint Analysis Engine
○ VUzzer, libdft

● IR Lifting and Basic Block Extraction
○ Angr

● CNN Components
○ Keras

● Format Ground Truth Data
○ 010Editor templates

● Fuzzing
○ AFL



Evaluation

● Format Extraction Performance
○ Accuracy and Time performance
○ Performance under different configs

(compiler optimization level, amount of training data, seed size)
● Fuzzing Performance

○ Code coverage
○ Bug detection
○ Contribution of each module



Evaluation: Field Boundary Accuracy - Opt. levels

● The accuracy for different optimization levels of target programs
● The accuracy is irrelevant to the compiler optimization level



Evaluation: CNN Performance - data amount

● Data amount requirement to train a sufficiently reliable CNN model
● Mean validation accuracy and growth rate among different scales of training 

set. Set 10k fields as unit 1.0
● A larger amount of training data results in higher model accuracy. 
● However, the growth rate stagnates quickly when the scale is larger than 1.0.



Evaluation: CNN Performance - Opt. level

● CNN model performance on the training set and validation set
● Accuracy on training/validation set with -O2 and mixed optimization levels

-O2 Mixed



Evaluation: Field Type Accuracy

● The accuracy for different optimization levels and unseen formats
● Upper half: unseen formats for trained programs
● Lower half: unseen formats for untrained programs

top-1 acc. / top-2 acc.



Evaluation: Field Type Accuracy

● The accuracy for different optimization levels and unseen formats
● AIFORE can predict the field type in unseen formats with high accuracy, while 

the Top-1 accuracy is over 80% and the Top-2 accuracy is over 85%
● the model performance is irrelevant to the programs’ optimization levels

top-1 acc. / top-2 acc.



Evaluation: Format Extraction Accuracy - SOTA comparison

● Field boundary/type accuracy comparison between different input format 
reverse engineering solutions

● AIFORE achieves higher accuracy both in field boundary recognition and field 
type prediction

boundary acc. / type acc.



Evaluation: Format Extraction Time - SOTA comparison

● Average time to parse a file (seconds)
● The average time to parse a file with AIFORE (and TIFF-fuzzer) does not 

differ significantly for different size classes, while ProFuzzer and AFL-Analyze 
spend much more time parsing larger files.



Evaluation: Fuzzing Performance - Code Coverage

● The coverage increment with AIFORE is significant, even though the target 
program and the file format are unseen.

● AIFORE achieves the best performance in most cases.



Evaluation: Fuzzing Performance - Bug Detection

● With the help of format knowledge, AIFORE finds 34 bugs (20 are uncovered 
by other fuzzers) in total after manual deduplication

● Including 10 buffer overflow bugs (CWE-122), 18 NULL pointer dereference 
bugs (CWE-476), and 6 double-free bugs (CWE-617)

● With 2 new bugs in the newest version of xls2csv



Evaluation: Fuzzing Performance - Ablation Study

● Coverage comparison between AIFORE 
and other SOTA fuzzers, and coverage 
increment by each module of AIFORE.

● (B) Field boundaries help mutate bytes as 
a whole in a field, 9.3% increment

● (T) Field types help mutate fields with 
proper mutators, 6.9% increment

● (P) Power scheduling helps assign more 
energy to those formats which are not 
mutated adequately, 8.8% increment



Summary & Conclusion

● Field boundary analysis: taint analysis, BB level merge, minimum cluster
● Field type classification: field feature extraction, CNN classification
● Power scheduling: power rebalance, format-aware mutation, seed filtering

● We implement a novel smart fuzzing solution AIFORE and systematically 
evaluated it on a wide range of input formats and programs. Results show 
that it has a much better performance on input format recognition and format-
aware fuzzing than SOTA solutions.



Q&A
Thank you!


