Hot Pixels: Frequency, Power, and Temperature Attacks on GPUs and Arm SoCs

Hritvik Taneja, Jason Kim, Jie Jeff Xu Stephan van Schaik, Daniel Genkin, Yuval Yarom

Evolution of Side-Channel Attacks

Physical Side-Channels /

- **Equipment**: Oscilloscope, EM Probes etc.
- Advantages: Difficult to mitigate, usually works across different microarchitectures

Microarchitectural Side-Channels

- Equipment: Software
- Advantages: No physical proximity, can attack remotely

Hybrid Side-Channels

- **Equipment**: Software
- Advantages: Can attack remotely, difficult to mitigate, usually works across different microarchitectures

In this work, we show

- Hybrid side-channels are everywhere
- Exploit them from unprivileged native user
- And, even from browser!

A sneak peek of our work

Frequency

Power

Temperature

A sneak peek of our work

When one property becomes an operational constraint, other two leak

Frequency

Power

- Pixel Stealing
- History Sniffing
- Website Fingerprinting

Original

Leaked

Machine Cooling

- The more transistors we put on a chip the hotter it runs
- We need big heat sinks to keep the CPU cool and running
- Which makes laptops big and bulky, we don't like that!
- Dynamic Voltage and Frequency Scaling (DVFS)
 - Power or Thermal Limits
 - Run fast till it gets too hot
 - Slow and cool down. Repeat
- Does this idea have any security consequences?

Typical cooling configuration

Mac motherboard

Is DVFS data-dependent?

M1 MacBook Air VAL = VAL + 1VAL = VAL + 092 94 96 98 Temperature (°C) 2.9 2.8 3.0 Frequency (GHz) 11 13 Power (W)

M1 MacBook Pro 73 75 Temperature (°C) 3.2 Frequency (GHz) 13.4 12.2 12.6 13.0

Power (W)

Is DVFS data-dependent?

What about GPUs?

- GPUs have 1000s of cores
- They run hot
- They have massive cooling fans
- But is it enough to cool it?
 - No ⊗

M1 MacBook Air

GPUs also implement DVFS ©

AMD Radeon RX 6600

Pixel stealing attack in Chrome – Primer

SVG Filters can turn this ...

Pixel stealing attack in Chrome – Primer

- SVG Filters can turn this ...
- Into this, using <feGaussianBlur stdDeviation="3"/>
- Various effects:
 - <feGaussianBlur> → blur
 - <feColorMatrix> → color saturation

Pixel stealing attack in Chrome – Primer

- SVG Filters can turn this ...
- Into this, using <feGaussianBlur stdDeviation="3"/>
- Various effects:
 - <feGaussianBlur> → blur
 - <feColorMatrix> → color saturation
- Can be applied to:
 - <div>, <iframe> or any other element
- Can compute on pixels across security boundaries
- Stackable!
 - Stack until the GPU catches fire
 - Or in our case just throttles

Pixel stealing attack in Chrome

attacker.com

Using CSS


```
feGaussianBlur stdDeviation="1"/>
  <feGaussianBlur stdDeviation="2"/>
  <feGaussianBlur stdDeviation="3"/>
  <feColorMatrix type="matrix" values="-6.88 .... "/>
  <feGaussianBlur stdDeviation="4"/>
```


GPU Throttling

Fast = Black

Slow = White

Pixel stealing attack in Chrome - Results

- Works on: Laptops, Phones with integrated GPUs and desktops with discrete GPUs.
- Time to steal a pixel: 10-20 sec
- Accuracy: 60-80%

History sniffing attack in Safari

- Safari does not serve cookies across iframes
- Countermeasure to Pixel Stealing
 - Can't steal what is already public
- Can we steal something?
- Users' Browsing History
- attacker.com embeds links (<a>)
- Isolate a pixel and perform Pixel Stealing
- Works on: M1, M2 MacBook Air and iPhone 12, 13
- Time to recover per link: 200-250 seconds
- Accuracy: 90-100%

Welcome.

Hritvik

Website Fingerprinting

macOS provides API measure GPU frequency and power

- Accessible by unprivileged user
- This is a huge security problem
 - Any random person can read your frequency and power
- Fingerprint Websites accessed by colocated user
- Accuracy / 100 Websites:
 - Top 1: 27%
 - **Top 2**: 37%
 - Top 5: 49%
 - Baseline: 1%

Summary

- 3-way tradeoff between Frequency, Power and Temperature
- Data Dependent CPU and GPU throttling behavior
- Attacks across multiple devices
- Pixel Stealing, History Sniffing, Website Fingerprinting

Leaked

Thank you for listening! Questions?

htaneja3@gatech.edu

