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Machine Learning on AWS

e

Azure Explore v Products v  Solutions v Pricing v  Partners v Resources +

Azure Al services

Create intelligent applications quickly with simple APIs and customizable models

Try Azure Al services for free Create a pay-as-you-go account |

Why Hard-label Black-box
Universal Attack?

Machine learning as a service (MLaaS)

=  Companies deploy ML models on online platforms

=  Applications using MLaa$S are suspectable to
attacks: facial recognition, optical character
recognition, etc.
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Machine Learnina on AWS

i ey T — Why Hard-label Black-box
&\ : ) Universal Attack?

Machine learning as a service (MLaaS)

=  Companies deploy ML models on online platforms

~\ =  Applications using MLaa$S are suspectable to
iR . . .

| [T attacks: facial recognition, optical character
- apersohmésldingaqutula ‘ : - y -, h.._ ’-—"“ -‘ J _ . ! . recognition, etC-

a person wearing a yellow apron

ML Models are intellectual properties
= Only provide API access — black-box

Use Al to identify and analyze content within images and videos using: "= On |y return the pred iCted resu |t N hd rd - |CI be|

® Azure Al Vision. Identify and analyze content within images and videos.
* Azure Al Custom Vision. Customize image recognition to fit your business needs.

= Limited number of queries — universal
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How To Generate?
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Let’s Approximate It!
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For a single input, add a set of random noises on the trigger
Inspect whether any noise leads to the target prediction
Obtain the (estimated) gradient based on the noises
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Let’s Approximate It!

Misclassified

[ 1
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_________________________________________ /

= For a single input, add a set of random noises on the trigger

= |nspect whether any noise leads to the target prediction

" Obtain the (estimated) gradient based on the noises

= Aggregate the gradients for multiple inputs to mutate the trigger
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Gradient Estimation for Multiple Inputs

@
= Leverage historical
o o verage !
® O misclassified rate
® . .
® = Dynamically adjust
o / importance
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Direct Estimation Importance-aware Estimation
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s Grad Approx. Sufficient?

Additive noises may not increase the attack
A7 success rate
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s Grad Approx. Sufficient?
®

/ Additive noises may not increase the attack
A success rate

= Hard to determine the magnitude of the noise

= Limited number of queries

History is always instructive!
= Two close-by minima indicate a promising region

" |nterpolation between them yields a better trigger
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Experiment Setup

Datasets & Models Commercial Services Baselines

= Datasets: CIFAR-10, = Microsoft Azurel = 3 hard-label black-box

SVHN, STL-10, GTSRB adversarial attacks:

= Clarifai?
HSJA3, GRAPHITE?,

= Models: ResNetlS8,

ResNet34, ResNet50, SPalscEop

VGG1l1, GoogleNet, = 3 soft-label black-box
DenseNetl121, attacks: Bandits®,
MobileNet V2 SPSA’, Sparse-RS8

! https://azure.microsoft.com/en-us/ services/cognitive- services/

2 https://www.clarifai.com/

3 Chen, Jianbo, et al. HopSkipJumpAttack: A query-efficient decision-based attack. S&P 2020.

4 Feng, Ryan, et al. Graphite: Generating automatic physical examples for machine-learning attacks on computer vision systems. EuroS&P 2022.
® Vo, Viet, et al. Query efficient decision based sparse attacks against black-box deep learning models. ICLR 2022.

% llyas, Andrew, et al. Prior convictions: Black-box adversarial attacks with bandits and priors. ICLR 2019.

7 James C Spall. A one-measurement form of simultaneous perturbation stochastic approximation. Automatica 1997.

8 Croce, Francesco, et al. Sparse-RS: a versatile framework for query-efficient sparse black-box adversarial attacks. AAAI 2022.
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Attack Performance

" Generate a trigger for each pair of classes
" Size: 7x7 (4.79% of the input) # Queries: 50k

" Count the number of pairs above a certain attack success rate (ASR)
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Attacking Online Services

Two online commercial services:
Microsoft Azure and Clarifai

* Upload data for training (not deployed)
= Use the prediction API for attack
= Sjze: TX7 # Queries: 240

Results (averaged on 10 pairs)
= Azure: 74% (vs. 60% by HSJA)
= Clarifai: 74% (vs. 53% by HSJA)
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Countermeasures

Certifiable Defense: PatchCleanser?

" Produce correct predictions no matter whether inputs are adversarially perturbed

= Average certified robust accuracy: 0.17%

Query-based Defense: Blacklight?

= |dentify malicious queries by black-box attacks

= Average detection rate: 0.2%

U N |Ve rSGI Adve rsa ”G I PC] tCh DeteCt|On : Sent| N et3 ! Xiang, Chong, et al. PatchCleanser: Certifiably robust
defense against adversarial patches for any image
= Reject adversarially perturbed inputs classifier. USENIX Security 2022.

2 Li, Huiying, et al. Blacklight: Scalable defense for neural
networks against query-based black-box attacks. USENIX
Security 2022.

3 Chou, Edward, et al. SentiNet: Detecting localized
universal attack against deep learning systems. SPW 2020.

= Average detection accuracy: 50.53%
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Propose a novel hard-label black-box
universal adversarial patch attack,
obtaining more than twice high-ASR patch
triggers (>90%) than eight baselines

Successfully attack two online commercial
services, Microsoft Azure and Clarifai, with
an average ASR of 74%

. Effectively evade three state-of-the-art
Conclusion defense techniques
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Guanhong Tao
taog@purdue.edu

https:/www.cs.purdue.edu/homes/taog/



