
EnigMap:
External-Memory

Oblivious Map for Secure
Enclaves

Afonso Tinoco1,2, Sixiang Gao1, and Elaine Shi1

1Carnegie Mellon University
2Instituto Superior Tecnico

Signal users

Private Contact Discovery

Signal users

Private Contact Discovery

“Here are your friends”

Signal users

My address book
is top secret!

“Here are your friends”

Secure CPU

“Here are your friends”

Strawman Solution:
Encryption

Secure CPU

Access patterns to even
encrypted data leak sensitive

information.

Secure CPU

Access patterns to even
encrypted data leak sensitive

information.

Simply permuting the data
doesn’t solve the problem

⇒
Need Oblivious Algorithms

Signal 2017:
batched linear scan

O(n/β) overhead
500 servers

Signal 2022:
Path ORAM

O(log2 n) overhead
6 servers

[SDS+13]

n: total # memory blocks
β: batch size

Trusted hardware needs oblivious
algorithms!

● Secret Network, Oasis Network, Flashbots

Oblivious Map: Key-Value Store

•Query Privacy 🡪 client doesn’t leak which keys it is querying

•Database Privacy 🡪 database is kept private

SGX & Oblivious Algorithms

•Oblivious map inside of SGX Enclave

• Instruction and memory trace should not leak information about
private data 🡪 use x86’s CMOVcc

SGX & External-Memory

• Limited EPC memory

• Larger External-Memory via EWB or OCALL

SGX & External-Memory - Microbenchmarks

•OCALL 46x to 66x more
expensive than MOV

🡪 External-Memory page swaps is an important metric for SGX’s algorithms

ORAM/algorithms
literature: word RAM

reads/writes
bytes

reads/writes
bytes

Compute overhead

Memory overhead
=

ORAM/algorithms
literature: word RAM

reads/writes
bytes

ORAM/algorithms
literature: word RAM

Secure enclaves:
external-memory

reads/writes
4KB pages

Secure enclaves:
external-memory

Enclave needs to fetch
encrypted data stored

in unprotected
memory/disk reads/writes

4KB pages

Secure enclaves:
external-memory

Page swap dominates
 System call

Enc/Dec

Possible disk swap

reads/writes
4KB pages

<10% >90%Oblix
Compute Page swap

<10% >90%Oblix
Page swapCompute

40% 60%Enigmap

[TGS’23]
Uses external-memory algo

10-100x faster than Oblix

Our Contributions

•Design and implement EnigMap - an oblivious map
• Instruction and Memory Trace Oblivious

•Both External-Memory and Instruction asymptotically more efficient
than previous implementations (Oblix [MPCCP18])

•Concretely 13-53x faster than previous work

• Improved Initialization Algorithm

Our Solution

•Oblivious AVL Tree [WNLCSSH14]

• PathORAM storage [SDSCFRYD12]

•Optimized for the External-Memory model [EnigMap]

AVL Tree

•Binary Search Tree

•Each node corresponds to a key

• For an AVL tree with N nodes:
• 1.44 log(N) maximum depth

• Search/Insert/Delete start from
root

Oblivious AVL Tree

•Recall: “Instruction and memory trace should not leak information
about private data”

•Oblivious Data Structures [WNLCSSH14] 🡪 Store nodes in ORAM

PathORAM

• Full binary tree with N leafs

• Each bucket has Z=4 blocks

• Blocks can have data (an AVL node) or
be fillers

• Each AVL node has a random position

• Access(key, position):
🡪Returns node with a given key knowing it
is on path position
� Cost: Each access call will read and write

that path
� Node with key gets assigned a new

random position after access

Oblivious AVL Tree

•Oblivious Data Structures [WNLCSSH14] 🡪 Store nodes in ORAM
→ keep position of child nodes as part of parent nodes metadata

External memory

Not all buckets can be cached in EPC

Our key optimizations

• Locality friendly layout

• Initialization algorithm

Locality Friendly layout

•PathORAM reads paths on the ORAM tree

•Disk pages store several buckets

•Our layout:
• Store subtrees in the same page

Locality Friendly layout

Our
layout

Heap
layout

Our
layout

Heap
layout

•

Integrity and freshness for free

•Encrypt each disk page with AES-GCM

•Keep nonce stored on parent page

• Implicit merkle tree

• Smaller EPC – no Version Array

Initialization Algorithm

→Read our paper for full details

Initialization Algorithm

•We receive a list of N keys – Key[N]

•Need to build both AVL tree and ORAM with correct positions

Initialization Algorithm – Asymptotic Results

→ Read paper for details

Other concrete optimizations

•Cache blocks during insertions 🡪 ½ ORAM operations for insert

•ORAM treetop caching 🡪 less external memory reads per ORAM
operation

• Single pass AVL insertion 🡪 ½ instructions for insertion

•Optimize page size for OCALL 🡪 improve concrete external memory
performance

• Store values in separate ORAM 🡪 increasing the size of values
doesn’t affect AVL performance

Experimental Results

•Private Contact Discovery – search

• Initialization

Private Contact Discovery

•Comparison new signal:
• 2-4x speedup

Initialization

•Vary database size (N)

•Compare with:
• Oblix – SOTA

• Naïve Initialization – N insertions

•Results:
• 2-8x speedup

Oblivious Data Structure Library

•Open source oblivious algorithm library
•Memory and instruction trace oblivious
•External-Memory efficient

https://github.com/odslib/odsl

https://github.com/odslib/odsl

Conclusions

•Takeaways:
• Efficient trace oblivious algorithms are possible and crucial for enclave security
• External Memory is an important model for enclave algorithms
• By focusing on external memory we achieved 13-53x query speedup compared

to previous SOTA

•Resources:
• Oblivious Data Structure Library 🡪 https://github.com/odslib/odsl
• Extended Version 🡪 https://eprint.iacr.org/2022/1083
• Artifacts 🡪 https://github.com/odslib/EnigMap/tree/usenix-artifacts-final

https://github.com/odslib/odsl
https://eprint.iacr.org/2022/1083
https://github.com/odslib/EnigMap/tree/usenix-artifacts-final

Questions?

Oblivious Data Structure Library 🡪 https://github.com/odslib/odsl

https://github.com/odslib/odsl

