Auditory Eyesight: Demystifying µs-Precision Keystroke Tracking Attacks on Unconstrained Keyboard Inputs

Yazhou Tu, **Liqun Shan**, Md Imran Hossen, Sara Rampazzi, Kevin Butler, Xiali Hei

Auditory Devices and Applications

- Laptops, smart speakers, smart TVs, remote controllers
- Leakage in speech [1]

[1] Lau et al. *Alexa, are you listening? Privacy perceptions, concerns and privacy-seeking behaviors with smart speakers.* Proceedings of the ACM on human-computer interaction. 2018.

Privacy Perception

• How about the leakage of sensitive information not communicated via speech?

• Users' natural, unconstrained keyboard inputs

Such as account names, passwords, IDs, SSH credentials, real-world texts (with punctuation, numbers, capital letters, typos), and emails

Challenges of Inferring Unconstrained Inputs

Expanded Solution Space

- From single-letter-case alphabetic keys/words and known sequences in a dictionary or training dataset
- to arbitrary keyboard inputs
- Auditory devices are not designed for distinguishing a large number of compactly spaced keys from a distance
 - E.g., Over 50 commonly used keys in a 27.2×7.1 cm area
- Complex keystroke sound physics
 - Imperfect sound source and measuring
 - Interference from vibrated keyboard, diffraction, reverberation

Keystroke Localization Precision Analysis

Challenge: Large number of keys (>50) in compact keyboard area (27.2×7.1 cm) including non-alphabetic keys Ideal sound sources (sounds from exact keycap centers)

Actual, imperfect sound sources (vibrated keyboard, diffraction, reverberation)

Challenge: Required precision(close to μs) Reference: hardware sampling interval (22.7 μs) with standard audio sample rate (44.1 kHz)

Methodology

- Internal sound component and keystroke physics analysis
 - Temporal analysis, frequency-energy analysis (on internal transient and noisy parts)
- Multi-round keystroke localization with customized processing chains
 - Inspired by imperfect keystroke sound and measuring physics
 - Interpolation, align and recalculation (within keystrokes to μs-range)
- Unconstrained keyboard inputs (with unknown sequences and non-alphabetic keys)

Perceiving the (Im)precision

It is challenging to mitigate localization errors in the range of several to tens of μs

Time-domain Analysis

Perceiving the (Im)precision

It is challenging to mitigate localization errors in the range of several to tens of μs

Observation: Signals in irregular parts provide coarse-grained information but can mask high-precision localization data **(self-masking)**

Multi-Round Processing

Initial Round (I-Round)

- Zero-phase Butterworth filter
- Interpolation to μs range
 - 44.1 kHz recording sample rate
 - 1,761 kHz interpolation (Unit: 0.5686 μs)
- Cross-Correlation

Multi-Round µs-Precision Approach

P: mean of all non-outlier measurements R: half of the difference between max and min non-outlier measurements

Multi-Round Processing

- Initial Round (I-Round)
- Bounding the Range (B-Round)
 - Outlier identification
 - Align and recalculation
 - Align based on center point P
 - Bounding the time delay range with R

B-Round results still have errors and significant overlapping

Multi-Round µs-Precision Approach

P: mean of all non-outlier measurements R: half of the difference between max and min non-outlier measurements

Multi-Round Processing

- Initial Round (I-Round)
- Bounding the Range (B-Round)
- Focusing on Transients (T-Round)
 - Align based on B-Round results
 - Sum, Transient parts selection
 - Time delay recalculation

Multi-Round µs-Precision Approach

Transient parts include the short burst of energy (higher SNR) at start of keystroke and are also less susceptible to interference caused by reverberation and keyboard base vibration 11

Keystroke Sound Localization Results

Localization results of 595 keystrokes on Razor Blackwidow keyboard from 0.5 m

]	Table 2: A	verage	standard	deviation	(Unit: µs)

	Apple ΔT_1	Apple ΔT_2	Razer ΔT_1	Razer ΔT_2		
σ	2.1339	2.0272	1.6274	1.3890		

Table 1: *n*th-attempt accuracy of 594 keystrokes on an Apple keyboard and 595 keystrokes on a Razor keyboard.

Keyboard	First	Second	Third	Forth
Apple	90.64%	98.16%	99.50%	100.00%
Razor	96.47%	99.16%	99.50%	99.83%

User Study

Different users type differently

- Same user types differently when inputting different contents
 - ID numbers, dates, addresses, GPS coordinates
 - Real-world texts with punctuation, numbers, capital letters, typos
 - Usernames and passwords
 - Strong passwords, SSH credentials

Natural typing styles (touch typing) Can adjust typing styles/speeds

Attack Accuracy and Total Keystrokes

Liser	1st Att	empt	2nd At	Total	
User	Accuracy	Correct	Accuracy	Correct	Keystrokes
A	90.6%	2635	95.3%	2773	2909
B	83.8%	2018	92.5%	2228	2408
C	89.3%	2145	93.8%	2253	2402

Recovering Sensitive Information

Shift: 1 Space: □ Backspace: ← Enter: J 2001 J 1999 J July 4 J 1 Sept. 1\$, 2012 J 2/ 28/ 1983 J 1/ 21/ 1967 J 4/ 1 2001 July 4/1 July 4/1 Sept. إز له 2012 July 4/1 (1/21/1967 4/1) 4/ 1985 4 8/ 11/ 1989 440-20-7171 4 418-66-8410 4 156-64-6905 4/ 1985 J 8/ 11/ 1989 440-20-7171 418-66-8410 J 156-64-6905 026-38 -5077 J 608-60-1482 J 064-14-1910 J 561-57-0202 J 690-09-9318 J 019-01--5077 J 608-60-1482 J 064-14-1910' 561-57-0202 J 690-09-9318 J 019-01-] House] ן To↔ Road, ם Boynton, ↔ Beas ↔ ch, ם ך L, ם33436, 107 ע] House/] To ++] Road,]] Boynton, €] Bezs +ch,] F] L, 33436↓ 107m Ve rnon⊇į Street, ⊇į G+į Fullerton, ⊇į Cį A, ⊇93632, J4324⊇į Taylor⊇į Street, ⊇į Ne rnonz) Street,) G+ Fullerton,) C1A, 93632 J 4324m Taylor) Street,) Ne W York, V Y, 10011 J 1722 Scenic Way, Springfield, J L. 62704 Way, DSprinyfield, DIL, 62704 Scenic Way, DSprinyfield, DIL, 62704 ↓ 41. 40338. 2. 17403↓ 40. 689263. 74. 044505↓ 32. 387514. 65. 858 J 41. 40338, 2. 17403 J 40. 689263, -74. 044505 J 32. 3875' 4, y-65. 858 488 J 78. 858014, -178. 973329 J -66. 185680, -4. 246766 J 48. 400692, 488 J 78. 858014, / -178. 973329 J -66. 185680, z-4. 246766 J 48. 400692,

Recovered dates, SSN numbers, addresses, GPS coordinates, etc.

Gray: User Input (Ground Truth) Black: Attack Result (1st Attempt) Blue: Attack Result (2nd Attempt) Red: Error

> L 1 Ms J u 1 S+1 Af8 1 K 1 & 1 P1 K J 1 D1 S4 1 @q1 Mns J w1 N6 1 C1G1! 1 L1Q J ssh L 1 Ms J u 1 S+1 Af8 1 K 1 & 1 P1 K J 1 D1 S4 1 @q1 Mns J w1 N6 1 C1G1! 1 L1Q J ssh r oot1@192. 168. 0. 25 J r u +1 Uf/ 1 As3 1 GJ ssh asse99 1 @252. 84. 124. 1 r oot1@192. 168. 0. 25 J r u +1 Uf/ 1 As3 1 GJ ssh asse99 1 @252. 84. 124. 1 94 J 4d= 1 Sihmz J ssh 1 aser 6 1 @162. 21. 168. 78 J 1 Beuk5639 J ssh ad7m 94 J 4d= 1 Sihmz J ssh 1 aser 6 1 @162. 21. 168. 78 J 1 Beuk5639 J ssh ad7m 94 J 4d= 1 Sihmz J ssh 1 aser 6 1 @162. 21. 168. 78 J 1 Beuk5639 J ssh ad7m 10 @208. 51. 183. 211 J 1 Kr 7 udzs 1 J ssh a +d amo4 1 @124. 173. 66. 43 J 1 in 1 @208. 51. 183. 211 J 1 Kr 7 udzs 1 J ssh a +d amo4 1 @124. 173. 66. 43 J 1

Recovered passwords and SSH credentials

Distance

The range of the time delay has become very small ([-19,11] μ s) at **2-m attack distance**

NLOS Attacks: Covert Typing

Auditory Device

Device View

Table 4: *n*th-attempt accuracy, correctly identified keys, and total number of keystrokes of covert user inputs.

Lloor	1st Attempt		2nd Attempt		3rd Attempt		Total
User	Accu.	Corr.	Accu.	Corr.	Accu.	Corr.	Keystrokes
N 1	74.3%	378	88.4%	450	93.5%	476	509
N2	56.8%	269	75.3%	357	84.4%	400	474

Localization information is not completely lost in refracted keystroke sounds after multi-path transmission in NLOS setting

Gray: actual inputs; Black: 1st-attempt results; Blue: 2ndattempt results; Green: 3rd-attempt results.

NLOS Laptop-Based Attacks

The attack can be launched without pointing any sensors toward the victim's keyboard

Our multi-round approach effectively reduces the excessive errors caused by NLOS keystroke sound transmissions

N-th Attempt Accuracy

1st	2nd	3rd	4th	5th	6th	7th	8th	9th
21.96	42.10	54.91	68.05	75.54	82.36	85.19	89.35	91.18

Conclusion

- Real-world user inputs are usually not purely alphabetic, singleletter-case keys/words
 - This work explored keyboard side-channel attack on unconstrained inputs
- Attacks using limited-resolution audio interfaces can reveal unconstrained keyboard inputs with a fairly sharp and bendable "auditory eyesight"
- Sound component and the underlying physics study allows extracting more targeted and accurate information

Conclusion

- Dataset
 - Benchmark
 - Future research and education to improve privacy awareness

Artifact

https://github.com/auditoryeye/auditoryeye artifact

GitHub Repository

