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Motivation

Memory corruption vulnerabilities are one of the major 
threats to software.
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Source: Google Project Zero, 0day "In the Wild" spreadsheet. Last updated: 2023-04-20
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https://docs.google.com/spreadsheets/d/1lkNJ0uQwbeC1ZTRrxdtuPLCIl7mlUreoKfSIgajnSyY/view


Motivation

There are three types of solutions proposed and deployed in practice：

1. Vulnerability patching

2. Software and system hardening

3. Object-specific protections

l It cannot mitigate unknown 0-day vulnerabilities

l Such solutions would introduce performance costs to the system

l Object-specific protection has a good balance between security and performance. 
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Motivation

uAnalyzing publicly exposed exploits to find out objects that are abused

How to identify sensitive objects that need to be protected?

this solution heavily relies on the human experience, and cannot find sensitive data that have 
not been abused yet

uClassifying objects based on developers’ intentions and the program’s semantics

Its results (i.e., sensitive objects) may deviate from the adversary’s

uAnalyzing the target code following specific attack knowledge

SLAKE （CCS '19）ELOISE（CCS '20）
they are not generic solutions for identifying sensitive objects, and cannot distinguish the 
sensitivity of the objects.



Motivation
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Motivation

static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr)
{

...
struct tipc_aead_key *skey = NULL;
...
u16 size = msg_data_sz(hdr);
u8 *data = msg_data(hdr);
...
skey = kmalloc(size, GFP_ATOMIC);
...
skey->keylen = ntohl(*((__be32 *)(data + TIPC_AEAD_ALG_NAME)));
memcpy(skey->alg_name, data, TIPC_AEAD_ALG_NAME); 
memcpy(skey->key, data + TIPC_AEAD_ALG_NAME + sizeof(__be32), skey-

>keylen);
...
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struct tipc_aead_key {
char alg_name[TIPC_AEAD_ALG_NAME];
unsigned int keylen;
char key[ ];

};

struct msg_msg {
struct list_head m_list;
long m_type;
size_t m_ts;
struct msg_msgseg *next;
void * security;

};

struct tty_struct {
int magic;
struct kref kref;
struct device *dev;
struct tty_driver *driver;
const struct tty_operations *ops;
int index;
...

};

Packet (from userland):
Header size: X => X*4
Message size: Y
Content:

… dead beef dead beef dead beef dead beef 
ffff ffff …
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key

sizeY-X*4 overflow
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struct tty_struct {
int magic;
struct kref kref;
struct device *dev;
struct tty_driver *driver;
const struct tty_operations *ops;
int index;
...

};
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Our Solution: AlphaEXP
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Knowledge Graph Construction

Our Solution: AlphaEXP



Attack Path Generation

Inference Engine
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* with new actionAttack
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❹
❸

✓

❶ Choose an state. ❷ Choose an attack action.

❸ Inference attack action effect. ❹ Adding the converged state to state pool.

✓ If the attack action is as expected, add it to the attack path.

Our Solution: AlphaEXP

Inference Rules based on Datalog



Sensitive Object Classifying

Our Solution: AlphaEXP



Evaluation

• RQ1: How effective is AlphaEXP in sensitive objects identifying and classifying?

• RQ2: Is AlphaEXP better at identifying sensitive objects compared to current SOTA techniques?

• RQ3: What is the cost of building a knowledge graph?

• RQ4: How effective is attack path generation?
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• RQ1: How effective is AlphaEXP in sensitive objects identifying and classifying?
• RQ2: Is AlphaEXP better at identifying sensitive objects compared to current SOTA techniques?

50 objects that could be 
abused to get writing 
capability, 81 objects 
with reading capability, 
and 112 objects with 
execution capability
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Evaluation

• RQ3: What is the cost of building a knowledge graph?

The static knowledge extraction process takes 19 minutes

The dynamic knowledge extraction process takes 72 hours

100,723 entities and 180,204 relationships



Evaluation

• RQ4: How effective is attack path generation?



Conclusion

u AlphaEXP can identify sensitive kernel objects and classify their sensitivity, able to help 

defenders build cost-effective defenses.

uAlphaEXP constructs a knowledge graph of the kernel.

uAlphaEXP reports several hundreds of sensitive kernel objects and classifies them into 12 

sensitivity levels.

u AlphaEXP provides a new idea for automated exploit generation (AEG).



Thanks for listening! 
Q&A

Contact: Ruipeng Wang, wangruipeng@nudt.edu.cn


