
AlphaEXP: An Expert System for Identifying 
Security-Sensitive Kernel Objects

Ruipeng Wang, Kaixiang Chen, Chao Zhang, Zulie Pan
Qianyu Li, Siliang Qin, Shenglin Xu, Min Zhang, Yang Li



Motivation

Memory corruption vulnerabilities are one of the major 
threats to software.

Memory 
Corruption

Non-
Memory 

Corruption

Source: Google Project Zero, 0day "In the Wild" spreadsheet. Last updated: 2023-04-20

[1]

https://docs.google.com/spreadsheets/d/1lkNJ0uQwbeC1ZTRrxdtuPLCIl7mlUreoKfSIgajnSyY/view


Motivation

There are three types of solutions proposed and deployed in practice：

1. Vulnerability patching

2. Software and system hardening

3. Object-specific protections

l It cannot mitigate unknown 0-day vulnerabilities

l Such solutions would introduce performance costs to the system

l Object-specific protection has a good balance between security and performance. 



l Object-specific protection has a good balance between security and performance. 

Motivation

There are three types of solutions proposed and deployed in practice：

1. Vulnerability patching

2. Software and system hardening

3. Object-specific protections

l It cannot mitigate unknown 0-day vulnerabilities

l Such solutions would introduce performance costs to the system

How to identify sensitive objects that need to be protected?



Motivation

uAnalyzing publicly exposed exploits to find out objects that are abused

How to identify sensitive objects that need to be protected?

this solution heavily relies on the human experience, and cannot find sensitive data that have 
not been abused yet

uClassifying objects based on developers’ intentions and the program’s semantics

Its results (i.e., sensitive objects) may deviate from the adversary’s

uAnalyzing the target code following specific attack knowledge

SLAKE （CCS '19）ELOISE（CCS '20）
they are not generic solutions for identifying sensitive objects, and cannot distinguish the 
sensitivity of the objects.



Motivation

Vulnerability Trigger

Capability Upgrade

Exit Capabilities

Capability Stitching

Exploitation Finish

Buffer

overflow

Arbitrary Address Writing
(AAW)

Arbitrary Address Reading
(AAR)

RIP hijacking

GetShell
privilege escalation

… …

AAR

AAW

RIP hijacking



Motivation

static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr)
{

...
struct tipc_aead_key *skey = NULL;
...
u16 size = msg_data_sz(hdr);
u8 *data = msg_data(hdr);
...
skey = kmalloc(size, GFP_ATOMIC);
...
skey->keylen = ntohl(*((__be32 *)(data + TIPC_AEAD_ALG_NAME)));
memcpy(skey->alg_name, data, TIPC_AEAD_ALG_NAME); 
memcpy(skey->key, data + TIPC_AEAD_ALG_NAME + sizeof(__be32), skey-

>keylen);
...

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

struct tipc_aead_key {
char alg_name[TIPC_AEAD_ALG_NAME];
unsigned int keylen;
char key[ ];

};

struct msg_msg {
struct list_head m_list;
long m_type;
size_t m_ts;
struct msg_msgseg *next;
void * security;

};

struct tty_struct {
int magic;
struct kref kref;
struct device *dev;
struct tty_driver *driver;
const struct tty_operations *ops;
int index;
...

};

Packet (from userland):
Header size: X => X*4
Message size: Y
Content:

… dead beef dead beef dead beef dead beef 
ffff ffff …

alg_name

keylen

key

sizeY-X*4 overflow

tty_operations
(function table)

(a) Vulnerable Function (c) Structure Definition

(b) Vulnerability

tty_ioctl

Fake
function table

RIP hijacking

key

ops

tty_struct

tty_operations
(function table)

msgrcv

Overread

Addr. leaking

key

ops

tty_struct

m_ts

msg_msg

Heap manipulation

(d) Exploitation



Motivation

Data

Control

Weak Cap.

Powerful Cap.

Functionality

struct tty_struct {
int magic;
struct kref kref;
struct device *dev;
struct tty_driver *driver;
const struct tty_operations *ops;
int index;
...

};

tty_operations
(function table)

tty_ioctl

Fake
function table

RIP hijacking

key

ops

tty_struct



Motivation

Attack Action
Selector

Inference

Knowledge Graph

Scheduler



Our Solution: AlphaEXP

Kernel

Knowledge Graph Construction

Capability RulesMechanism

Attack Path Generation

Knowledge 
Extraction

Ontology 
Construction

SchemasRules

Memory Inference

Capability Inference

Inference Engine

Knowledge Graph

Attack 
Action

Selector

PoCs

Capabilities

Attack Paths

Sensitive Object Classifying

Applied Conditions
Assessment

Effect Achieved
Assessment

Classifying Results

Inference

Sc
he

du
le

r



Knowledge Graph Construction

Our Solution: AlphaEXP



Attack Path Generation

Inference Engine

Non-convergence State*
* with new actionAttack

Action
Choose

Attack Path

State 
Pool

❷❶

❹
❸

✓

❶ Choose an state. ❷ Choose an attack action.

❸ Inference attack action effect. ❹ Adding the converged state to state pool.

✓ If the attack action is as expected, add it to the attack path.

Our Solution: AlphaEXP

Inference Rules based on Datalog



Sensitive Object Classifying

Our Solution: AlphaEXP



Evaluation

• RQ1: How effective is AlphaEXP in sensitive objects identifying and classifying?

• RQ2: Is AlphaEXP better at identifying sensitive objects compared to current SOTA techniques?

• RQ3: What is the cost of building a knowledge graph?

• RQ4: How effective is attack path generation?



Evaluation

• RQ1: How effective is AlphaEXP in sensitive objects identifying and classifying?
• RQ2: Is AlphaEXP better at identifying sensitive objects compared to current SOTA techniques?

50 objects that could be 
abused to get writing 
capability, 81 objects 
with reading capability, 
and 112 objects with 
execution capability



Evaluation

• RQ1: How effective is AlphaEXP in sensitive objects identifying and classifying?



Evaluation

• RQ3: What is the cost of building a knowledge graph?

The static knowledge extraction process takes 19 minutes

The dynamic knowledge extraction process takes 72 hours

100,723 entities and 180,204 relationships



Evaluation

• RQ4: How effective is attack path generation?



Conclusion

u AlphaEXP can identify sensitive kernel objects and classify their sensitivity, able to help 

defenders build cost-effective defenses.

uAlphaEXP constructs a knowledge graph of the kernel.

uAlphaEXP reports several hundreds of sensitive kernel objects and classifies them into 12 

sensitivity levels.

u AlphaEXP provides a new idea for automated exploit generation (AEG).



Thanks for listening! 
Q&A

Contact: Ruipeng Wang, wangruipeng@nudt.edu.cn


