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Vector Commitments

• Short commitment to an ordered sequence of values

• VC.Commit, VC.OpenAll, VC.UpdAll, VC.Agg, VC.Verify, …

• Correctness, soundness (position binding)

• Maintainable (sublinear UpdAll), aggregatable ( 𝜋𝑖 𝑖∈𝐼 → 𝜋𝐼)

• Example: Merkle trees

• Applications in verifiable storage, stateless blockchains, and more

𝑣0 𝑣1 𝑣2 𝑣𝑛−1⋯

𝜋0 𝜋1 𝜋2 𝜋𝑛−1⋯𝐶
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Two Types of Vector Commitments

• Type I: not maintainable, but with fast aggregation 

• aSVC 
• SCN 2020, by Alin Tomescu et al.

• Pointproofs
• CCS 2020, by Sergey Gorbunov et al.

• Type II: maintainable, but with slow aggregation

• Merkle trees

• Hyperproofs
• USENIX Security 2022, by Shravan Srinivasan et al. 3



BalanceProofs

First vector commitment that is maintainable with fast aggregation
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𝒏 = 𝟐𝟐𝟎 Hyperproofs BalanceProofs

UpdAll time 1.55 ms 4.60 ms

Agg time 105 s 0.11 s



BalanceProofs

• A compiler

• Input VC scheme (aggregatable):

• 𝑂 𝑛 log 𝑛  time to open all 𝑛 proofs

• 𝑂(1) time to update each individual proof 𝜋𝑗 after receiving an update request 
Update (𝑖, 𝛿)

• Output VC scheme (aggregatable)

• 𝑂( 𝑛 log 𝑛) time to update all proofs

• 𝑂( 𝑛) time to query any individual proof

We pick aSVC as input scheme
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How our compiler works

• At the beginning, we have

𝑣0 𝑣1 𝑣2 𝑣𝑛−1⋯

𝜋0 𝜋1 𝜋2 𝜋𝑛−1⋯𝐶
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How our compiler works

• When we receive an update request (𝑖1, 𝛿𝑖1
) …

𝑣0 𝑣1 𝑣2 𝑣𝑛−1⋯

𝜋0 𝜋1 𝜋2 𝜋𝑛−1⋯𝐶

(𝑖1, 𝛿𝑖1
)

Update record
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How our compiler works

• When we receive an update request (𝑖1, 𝛿𝑖1
) …

𝑣0 ⋯ 𝑣𝑖1
+ 𝛿𝑖1 𝑣𝑛−1⋯

𝜋0 ⋯ 𝜋𝑖1 𝜋𝑛−1⋯

(𝑖1, 𝛿𝑖1
)

Update record

𝑖1

𝐶′
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How our compiler works

• When we keep receiving update requests …

𝑣0 ⋯ 𝑣𝑖1
+ 𝛿𝑖1 𝑣𝑛−1

𝜋0 ⋯ 𝜋𝑖1 𝜋𝑛−1𝐶′

(𝑖1, 𝛿𝑖1
)

Update record

𝑖1
(𝑖2, 𝛿𝑖2

)

…

𝑣𝑖1
+ 𝛿𝑖𝑘

𝜋𝑖𝑘

⋯

⋯

⋯

⋯

𝑖𝑘

(𝑖𝑘, 𝛿𝑖𝑘
)

Keep 
updating
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How our compiler works

• When the number of records reaches 𝑛,

𝑣0 ⋯ 𝑣𝑖1
+ 𝛿𝑖1 𝑣𝑛−1

𝜋0 ⋯ 𝜋𝑖1 𝜋𝑛−1𝐶′

(𝑖1, 𝛿𝑖1
)

Update record

𝑖1
(𝑖2, 𝛿𝑖2

)

…

𝑣𝑖1
+ 𝛿𝑖𝑘

𝜋𝑖𝑘

⋯

⋯

⋯

⋯

𝑖𝑘

(𝑖𝑘, 𝛿𝑖𝑘
)

…

(𝑖 𝑛, 𝛿𝑖 𝑛
)
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How our compiler works

• When the number of records reaches 𝑛,
use 𝑂 𝑛 log 𝑛  time to open all proofs

𝑣0 ⋯ 𝑣𝑖1
+ 𝛿𝑖1 𝑣𝑛−1

𝜋0 ⋯ 𝜋𝑖1 𝜋𝑛−1𝐶′

(𝑖1, 𝛿𝑖1
)

Update record

𝑖1
(𝑖2, 𝛿𝑖2

)

…

𝑣𝑖1
+ 𝛿𝑖𝑘

𝜋𝑖𝑘

⋯

⋯

⋯

⋯

𝑖𝑘

(𝑖𝑘, 𝛿𝑖𝑘
)

…

(𝑖 𝑛, 𝛿𝑖 𝑛
)
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How our compiler works

• When the number of records reaches 𝑛,
use 𝑂 𝑛 log 𝑛  time to open all proofs,
and clear the record list

𝑣0 ⋯ 𝑣𝑖1
+ 𝛿𝑖1 𝑣𝑛−1

𝜋0 ⋯ 𝜋𝑖1 𝜋𝑛−1𝐶′

Update record

𝑖1

𝑣𝑖1
+ 𝛿𝑖𝑘

𝜋𝑖𝑘

⋯

⋯

⋯

⋯

𝑖𝑘
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How our compiler works

• Anytime if we need to get proof for position 𝑗,

𝑣0 ⋯ 𝑣𝑗 𝑣𝑛−1

𝜋0 ⋯ 𝜋𝑗 𝜋𝑛−1𝐶′

(𝑖1, 𝛿𝑖1
)

Update record

𝑗
(𝑖2, 𝛿𝑖2

)

…

𝑣𝑖1
+ 𝛿𝑖𝑘

𝜋𝑖𝑘

⋯

⋯

⋯

⋯

𝑖𝑘

(𝑖𝑘, 𝛿𝑖𝑘
)
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How our compiler works

• Anytime if we need to get proof for position 𝑗,
apply each update in the record list to 𝜋𝑗 and
get the new proof 𝜋𝑗

′

𝑣0 ⋯ 𝑣𝑗 𝑣𝑛−1

𝜋0 ⋯ 𝜋𝑗 𝜋𝑛−1𝐶′

(𝑖1, 𝛿𝑖1
)

Update record

𝑗
(𝑖2, 𝛿𝑖2

)

…

𝑣𝑖1
+ 𝛿𝑖𝑘

𝜋𝑖𝑘

⋯

⋯

⋯

⋯

𝑖𝑘

(𝑖𝑘, 𝛿𝑖𝑘
)

𝜋𝑗
′
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How our compiler works

• Above all,

• We need amortized 𝑂
𝑛 log 𝑛

𝑛
= 𝑂( 𝑛 log 𝑛) time to do the update part

• We need at most 𝑂( 𝑛) time to get any individual proof

• For any index set 𝐼, we need 𝑂 𝐼 𝑛  time to get each individual proof (and 
then we can do aggregation)

• If 𝐼 𝑛 > 𝑛 log 𝑛, we can choose to open all proofs instead to get each proof
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How our compiler works

• Above all,

• We need amortized 𝑂
𝑛 log 𝑛

𝑛
= 𝑂( 𝑛 log 𝑛) time to do the update part

• We need at most 𝑂( 𝑛) time to get any single proof

• For any index set 𝐼, we need 𝑂 𝐼 𝑛  time to get each single proof (and then 
we can do aggregation)

• If 𝐼 𝑛 > 𝑛 log 𝑛, we can choose to open all proofs instead to get each proof

We can use amortization 
technique to improve the 
worst case

• Extend the size of update list to 2 𝑛

• When we have 𝑛 records, separate the 𝑂 𝑛 log 𝑛  time computation in 
next 𝑛 updates

• When we have 2 𝑛 records, clear the first 𝑛 records in the list and start 
another 𝑂 𝑛 log 𝑛  time computation
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Bucketing BalanceProofs

• Cut the vector into buckets

• Reduce the time of UpdAll

• Ensure that digest is still O(1) size

v3v2v1v0

m11m0 m9m2m1 m3 m5m4 m6 m8m7 m10
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𝜙0 𝑥 𝜙1 𝑥 𝜙2 𝑥 𝜙3 𝑥

Basic Bucketing

v3v2v1v0

m11m0 m9m2m1 m3 m5m4 m6 m8m7 m10
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𝜙 𝑥



𝜙0 𝑦 𝜙1 𝑦 𝜙2 𝑦 𝜙3 𝑦

Space-efficient Bucketing
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𝜙 𝑥, 𝑦

v3v2v1v0

v3,2v0,0 v3,0v0,2v0,1 v1,0 v1,2v1,1 v2,0 v2,2v2,1 v3,1



Two-layer bucketing

m2m0 m1

0

Π1Π0

π0,0,0

1

Ψ0,0 Ψ0,1

m5m3 m4 m8m6 m7 m11m9 m10

Ψ1,0

π0,0,1 π0,1,0 π0,1,1 π1,0,0 π1,0,1 π1,1,0 π1,1,1

Ψ1,1

2 0 1 2 0 1 2 0 1 2

π0,0,2 π0,1,2 π1,0,2 π1,1,2

• Introduce three variables

• First layer: 𝑝 buckets; second layer: 𝑝 ⋅ 𝑡 buckets (subvectors)

• Each subvector has size 
𝑛

𝑝𝑡

• Pick 𝑝 = 𝑡 = 𝑛1/4, 𝑂(𝑛1/4 log 𝑛) UpdAll time, 𝑂(𝑛1/2) proof size
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Performance and Comparison

𝒏 = 𝟐𝟐𝟎 Hyperproofs aSVC Basic compiler Two-layer bucketing

UpdAll time 1.55 ms 98 s 3.03 s 4.60 ms

Batch proof size 51.6 KB 48 bytes 30~60 KB

Agg time 105 s 0.39 s 0.11 s

VrfyAgg time 12.9 s 0.43 s 0.20 s

𝒏 = 𝟐𝟑𝟎 Hyperproofs aSVC Basic compiler Two-layer bucketing

UpdAll time 2.58 ms >20 hrs 136 s 19.0 ms

Batch proof size 51.6 KB 48 bytes 50~100 KB

Agg time 123 s 0.41 s 0.008 s

VrfyAgg time 17.4 s 0.44 s 0.11 s
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Summary - BalanceProofs

• Both maintainable and aggregatable

• Compiler: balance UpdAll time and Query time by auxiliary lists

• Bucketing: balance UpdAll time and proof size

• Basic bucketing, space-efficient bucketing, two-layer bucketing

Thanks!
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