BalanceProofs: Maintainable Vector
Commitments with Fast
Aggregation

Weijie Wang Annie Ulichney Charalampos Papamanthou (&) Yale University

USENIX Security 23

Vector Commitments
3 N 5 I
AABERS

e Short commitment to an ordered sequence of values

e VC.Commit, VC.OpenAll, VC.UpdAll, VC.Agg, VCVerify, ...

* Correctness, soundness (position binding)

* Maintainable (sublinear UpdAll), aggregatable ({r;};c; = m;)
* Example: Merkle trees

* Applications in verifiable storage, stateless blockchains, and more

Two Types of Vector Commitments

* Type |: not maintainable, but with fast aggregation

* aSVC
* SCN 2020, by Alin Tomescu et al.

e Pointproofs
* CCS 2020, by Sergey Gorbunov et al.

* Type Il: maintainable, but with slow aggregation

e Merkle trees

* Hyperproofs
e USENIX Security 2022, by Shravan Srinivasan et al.

BalanceProofs

First vector commitment that is maintainable with fast aggregation

Hyperproofs BalanceProofs

UpdAll time 1.55 ms 4.60 ms
Agg time 105 s 0.11s

BalanceProofs

* Acom piler We pick aSVC as input scheme

* Input VC scheme (aggregatable):

* O(nlogn) time to open all n proofs

* 0(1) time to update each individual proof 7; after receiving an update request
Update (i, 0)

* Output VC scheme (aggregatable)

* 0(v/nlogn) time to update all proofs

* 0(y/n) time to query any individual proof

How our compiler works

* At the beginning, we have

-
-

How our compiler works

Update record

* When we receive an update request (iq, 0;,) ... (i16,)
1, Yiy

-
-

How our compiler works

Update record

* When we receive an update request (iq, 0;,) ... (i16,)
1, Yiy

g
--
/

How our compiler works

* When we keep receiving update requests ...

il lk
/

Keep
updating

Update record

(ilf 51'1)

(iZ' 61,2)

(i Ogy.)

How our compiler works

* When the number of records reaches \/n,

il lk
/

Update record

(ilf 51'1)

(iZ' 61,2)

(i Ogy.)

10

How our compiler works

* When the number of records reaches \/n,
use O(nlogn) time to open all proofs

il lk
/

Update record

(i1; 51'1)

(iZ' 61,2)

(i Ogy.)

11

How our compiler works

* When the number of records reaches \/n,
use O(nlogn) time to open all proofs,
and clear the record list

il lk
/

Update record

12

How our compiler works

* Anytime if we need to get proof for position J,

j U
14

Update record

(ilf 51'1)

(iZ' 61,2)

(i Ogy.)

13

How our compiler works

* Anytime if we need to get proof for position J,
apply each update in the record list to nj and

get the new proof n

Update record

(ilr 51'1)

(iZ’ 61,2)

(i Ogy.)

14

How our compiler works

e Above all,

nlogn

Vn

We need amortized 0 () = 0(y/nlogn) time to do the update part

We need at most O(1/n) time to get any individual proof

For any index set I, we need O(|I|+/n) time to get each individual proof (and
then we can do aggregation)

If |I]v/n > nlogn, we can choose to open all proofs instead to get each proof

How our compiler works

° AbOve 3 | |’ We can use amortization

technique to improve the
worst case

* We need amertized O (nloﬁgn) = 0(y/nlogn) time to do the update part

* Extend the size of update list to 2/n

* When we have +/n records, separate the O(nlogn) time computation in
next 4/n updates

* When we have 2+/n records, clear the first 4/n records in the list and start
another O(nlogn) time computation

16

Vo

\1

Bucketing BalanceProofs

My

m,

m,

E

My

e Cut the vector into buckets
e Reduce the time of UpdAll

* Ensure that digest is still O(1) size

Basic Bucketing

¢ (x)
f.bo(x) 0F) (x) ¢2(x) (153(95)
> € > < > <«
Vg A v, Vs
My m; ms Mms my M5 Mg m; Mg Mg My | My

Space-efficient Bucketing

d(x,y)
$o(¥) $1(y) $2(y) $3(y)
> < > < > <«
Vg v, v, Vs
Voo | Vou | Vo2 | Vio | Va1 | Vig | Voo | Vo1 | Voo | Vao | Va1 | Va2

Two-layer bucketing

Introduce three variables

First layer: p buckets; second layer: p - t buckets (subvectors)

. n
Each subvector has size —

pt
Pick p = t = n'/*, 0(n'/*log n) UpdAll time, 0(n'/?) proof size
II I, |' > < II I, |' —>
u‘\{lw' > < L_JHP‘MI > < L_J'\pm' > < ¥,
0 2 0 2 0 2 0 1 2
Mo my M M My M5 Me My Mg Mg My | My

[no,o,o]

[

0,0,1] [no,o,z] [7‘0,1,0] [n

0,1,1] [7150,1,2] [“1,0,0]

[

1,0,1] [751,0,2] [nl,l,o] [31,1,1] [31,1,2]

Performance and Comparison

Hyperproofs Two-layer bucketing

UpdAll time 1.55 ms 98 s 3.03s 4.60 ms
Batch proof size 51.6 KB 48 bytes 30~60 KB
Agg time 105 s 0.39 s 0.11s
VrfyAgg time 12.9s 0.43s 0.20s
UpdAll time 2.58 ms >20 hrs 136 s 19.0 ms
Batch proof size 51.6 KB 48 bytes 50~100 KB
Agg time 123 s 0.41s 0.008 s

VrfyAgg time 17.4 s 0.44 s 0.11s

21

Summary - BalanceProofs

* Both maintainable and aggregatable
* Compiler: balance UpdAll time and Query time by auxiliary lists

* Bucketing: balance UpdAll time and proof size

* Basic bucketing, space-efficient bucketing, two-layer bucketing

Thanks!

	Slide 1: BalanceProofs: Maintainable Vector Commitments with Fast Aggregation
	Slide 2: Vector Commitments
	Slide 3: Two Types of Vector Commitments
	Slide 4: BalanceProofs
	Slide 5: BalanceProofs
	Slide 6: How our compiler works
	Slide 7: How our compiler works
	Slide 8: How our compiler works
	Slide 9: How our compiler works
	Slide 10: How our compiler works
	Slide 11: How our compiler works
	Slide 12: How our compiler works
	Slide 13: How our compiler works
	Slide 14: How our compiler works
	Slide 15: How our compiler works
	Slide 16: How our compiler works
	Slide 17: Bucketing BalanceProofs
	Slide 18: Basic Bucketing
	Slide 19: Space-efficient Bucketing
	Slide 20: Two-layer bucketing
	Slide 21: Performance and Comparison
	Slide 22: Summary - BalanceProofs

