
PET: Prevent Discovered Errors from
Being Triggered in the Linux Kernel

Zicheng Wang, Yueqi Chen, Qingkai Zeng

1

Motivation: Protect Kernel before patches are available

Vulnerability
introduced

Vulnerability
discovered

Patch
merged

Patch
deployed

0-day / n-day attacks while patches are unavailable

66 days on average

2

Key Idea: Prevent Vulnerabilities From Being Triggered

- Take Sanitizer report as input, and generate an eBPF program
- Check if error triggering condition is met right before the error site
- Skip the error site if condition is met

3

BPF program

Background: eBPF in-kernel Virtual Machine

- in-kernel virtual machine that safely

executes programs from user space
- Safety: a verifier to ensure memory safety,

termination, information flow security

- Efficiency: a JIT-engine to execute BPF

bytecode, achieving native machine performance

- Expressiveness: a set of helper functions as

interfaces between eBPF programs and other

kernel subsystems

4

- an eBPF program can be attached to arbitrary error site in kernel

Example: CVE-2016-6187

- Error site: At line 645, length of
args[] is size while args[size] is
written

- Triggering condition: args[size]
is out of the boundary of args[] at
line 645

- Prevention: skip line 645 and jump
to line 693 to return –EINVAL

5

Overview: PET Framework

6

Mechanisms: Report processor & Sanitized-Native Mapper

7

Sanitizer report

source code

native binary

error site in the
sanitized image

error site at the
source code level

error site in the native image movb $0x0, (%rsi, %rdx, 1)

645 args[size] = $0x0;

sanitized reg -> var -> native reg
sanitized inst -> statement-> native inst

Mechanisms: Checkpoints & Restore

8

Source Code
security/apparmor/lsm.c
624 static int apparmor_setprocattr(...)

...
645 args[size] = '\0';

...
693 return error;

Register Context
%rax = 111
%rbx = 222
%rdi = 333
%rsi = 444
...
%r15 = xxx

Register Context
%rax = -EINVAL
%rbx = 222
%rdi = 333
%rsi = 444
...
%r15 = xxx

Checkpoint setup

Restore

Skip error site

int func(...)
{

spin_lock(lock);
a = kmalloc(size);

...

clean:
kfree(a);
spin_unlock(lock);
return error;

}

paired operations

Policies: Out-of-bound Policy & Template

- PET can be extend to any types of vulnerability as long as proper policies
- policies are designed based on the error conditions of each types of vulnerability
- Templates describe the policies, and new helper functions support templates

9

SEC("kprobe/func?+offset?") // error site
int BPF_KPROBE(...) {

u64 addr = ?;
u64 start = bpf_get_start(addr);
u64 end = start + bpf_get_len(addr);
if (addr<start||addr>=end)

// error condition
// send SIGKILL signal
// skip the error instruction
// direct to function exit
return -1;

}

Out-of-bound Template

New helper functions

ptr[offset] = ‘\0’;

ptr + offset ∈ [bpf_get_start(ptr),
bpf_get_start(ptr)+bpf_get_len(ptr))

Out-of-bound Policy

Policies: Complex Use-after-free Policy

- Quarantine & sweepine
- Quarantine the freed object until no dangling pointer exists
- Periodically sweep physical memory for dangling pointers
- Optimization: only sweep certain slab cache

10

SLAB CACHEx BPF program for
UAF prevention

periodically sweeping
dangling pointers

direct mapping area

timer

optimization

Effectiveness

11The sampled results for the effectiveness, ● indicates that BPF prevention program can be generated and prevent the error.

Performance Overhead

12

Slab OOB Page OOB Stack OOB Global OOB UAF Integer

2021-34693 2022-27666 2c0912 2017-18344 be93025 2022-4154 b5b251b
OS Core primitives

OSBench 0.01% 0.71% 0.38% 0.09% 2.12% 3.05% 0.75%
perf-bench 0.35% 0.03% -0.18% 0.12% 3.42% 5.86% 0.61%

Calculation intensive
OpenSSL 0.03% -0.07% 0.19% 0.19% 1.24% 0.44% 1.90%

MP3 Encoding 0.19% 0.19% 0.95% 0.59% 0.71% 1.59% 0.79%
GIMP -1.13% 1.34% -1.12% -2.96% -0.17% 1.09% -0.46%

I/O intensive
SQLite Speedtest -0.71% -0.20% -0.39% -1.50% -0.01% 1.88% -1.86%
WireGuard Stress 0.14% 0.05% -0.19% -0.47% 1.06% 1.57% -0.85%

Common Server Tasks
Git 0.07% 0.24% 0.39% 0.16% 0.58% 0.47% 0.86%

Linux Kernel Compile -0.12% 0.10% 0.03% 0.25% 2.15% 3.23% 1.94%
XZ Compression 0.66% 0.91% 0.03% 0.45% 1.62% 2.29% -0.72%

Apache 0.38% 0.38% -1.14% -0.39% 4.11% 3.64% -1.86%
Nginx 0.80% -0.18% 0.23% 0.55% 6.00% 5.32% 1.14%

Average 0.06% 0.29% -0.07% -0.24% 1.83% 2.54% 0.19%

Scalability

13

__napi_poll, called very frequently

Optimal Use-After-Free Sweeper

14

Conclusion

- PET protects kernel before patches are available
- PET supports error-depent prevention policies for various types of vulnerabilities
- PET provides error-indepent mechanisms to support prevention policies
- A thorough evaluation of overhead and scalability

15

Demo

16

Thank You

17

- Source
- https://github.com/purplewall1206/PET

- Contacts
- wzc@smail.nju.edu.cn
- yueqi.chen@colorado.edu
- zqk@nju.edu.cn

https://github.com/purplewall1206/PET
mailto:wzc@smail.nju.edu.cn
mailto:yueqi.chen@colorado.edu
mailto:zqk@nju.edu.cn

	PET: Prevent Discovered Errors from Being Triggered in the Linux Kernel
	Motivation: Protect Kernel before patches are available
	Key Idea: Prevent Vulnerabilities From Being Triggered
	Background: eBPF in-kernel Virtual Machine
	Example: CVE-2016-6187
	Overview: PET Framework
	Mechanisms: Report processor & Sanitized-Native Mapper
	Mechanisms: Checkpoints & Restore
	Policies: Out-of-bound Policy & Template
	Policies: Complex Use-after-free Policy
	Effectiveness
	Performance Overhead
	Scalability
	Optimal Use-After-Free Sweeper
	Conclusion
	Demo
	Thank You

