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LiDARs in Automated Driving System

 Most ADS companies take LiDARs as
main sensors
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Threats of Appearing Attacks

* |njecting points into LiDAR point clouds

1. Photodiode captures the lasers sent by LiDAR
2. Laser transmitter sent back the fake reflected

lasers
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* Forging non-existent vehicles to pose threat
1. Forcing the ADS vehicle to emergency brake
2. Keeping the ADS vehicle immobile
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The Magic of Such Attacks

1. Practicability
 Reusable traditional adversarial methods (FGSM, PGD, C&W...)

2. Naturalness
e Difficult for human to distinguish

3. Variability

* Various attack goals _
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Universal Defenses

Improving the robustness of PC models against noise

Initial Motivation:
SRS and SOR

Removing Outlier

Keeping & Erasing




Existing Defense Methods

* Specific Defenses

* Initial Motivation: Mitigating specific attack methods
* SVF, CARLO and Shadow-Catcher

‘ Refer from
for https://sites.google.com/view/shadow-catcher
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Limitations of Existing Attacks

* Two Common Limitations
1. Constrained by the attack device - the position and number of forged points
2. Constrained by the attack goal - the shape of forged objects
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Defense Insight

2. On the Shape

the local difference is mostly larger than

1. On the Position and Number
* the distributions of point density and .

Point Density

depth are different
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LiDARs in Automated Driving System

1. On the Position and Number 2. On the Shape
Modeling the depth-density relation * Deploying local detector + Voting

Explicit depth feature & Implicit density feature Split the prediction by splitting input space
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Our Proposed Method

* Local Objectness Predictor

* Plug-and-Play Design (*No need to retrain the whole detector)
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Defense Effectiveness

 More improvement on the * Acceptable costs on memory and
performance and robustness of slightly larger costs on time
protected 3D object detectors
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Simulation Experiments

* The performance of Apollo 6.0.0 deployed with LOP, evaluated in LGSVL
simulator

(a) Attack Scenario

Precision ASR time cost (ms)  FPS

Apollo 6.0.0 (w/o. LOP) 8.33% 53.66% 33.36ms 29.97
Apollo 6.0.0 (w/. LOP) 100.00%  0.00% 42 .48ms 23.54

(c) with LOP |m
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Future Directions

Direction 1 Direction 2
The Existence of False positives The Upgrade of Attack Device
* Farther objects are harder to detect * The maximum of forged points is
* 12.95%/16.53% of FP with depth < a|ready up to 2500
10m/20m

The Fig.7 in PLA-LIDAR (S&P 2023)
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Take Away Message

J Full paper of

1. We conclude the limitations of our LOP

existing appearing attacks

2. We propose a plug-and-play defense
method LOP

B More Research

3. We prove the effectiveness of our on Al Security

LOP online and offline
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