Precise and Generalized Robustness Certification for Neural Networks

Yuanyuan Yuan, Shuai Wang, Zhendong Su HKUST, ETH Zurich

Robustness Certification

$$\forall x', f(x) = f(x')$$

Guaranteed to classify to label 8

*Figures are from the ERAN project: <u>https://github.com/eth-sri/eran</u>

Robustness Certification

	$f(x) = f(x'), \forall x' \in \{\tau(x, \delta) \mid 0 \le \ \delta\ \le \ \delta_{\max}\ \}$	$\forall x', f(x) = f(x')$
Sound		

	$f(x) = f(x'), \ \forall x' \in \{\tau(x, \delta) \mid 0 \le \ \delta\ \le \ \delta_{\max}\ \}$	$\exists x', f(x) \neq f(x')$
Incomplete	X	?
Complete	X	

Diverse input mutations

semantic-level

Simple mutations: • Explicit math forms • Linear *I*

perceptual

The focus of previous works

contrast

Can directly get precise input space representation

Sound & complete certification

brightness pixel-level Complex M

4

translation scaling

Complex mutations: • Explicit math forms ○ Non-linear *I*

Over-approximated input space representation

shearing rotation

foggy

Only incomplete certification

Geometrical Filter-based

orientation mouth style 1 style 2

Advanced mutations: • No explicit math form \circ Non-linear I

Never studied!

eyes

standing

Style transfer Perceptual-level

Overview

Precise:

- Deliver precise I

Generalized:

- Support advanced mutation
- Unified implementation
- Support conventional certification frameworks (complete/quantitative)

Motivation: Generative Model

A collection Infinite images by of images (inter)extrapolation Latent space

Data-driven mutations:

- 1) Extract mutations from diverse images
- 2) Represent mutations as moving directions in latent space

Motivation and Problems

Certify
$$f \circ G$$

G(z): original input G(z'): maximumly mutated inputs $\overline{zz'}$: corresponds to all mutated inputs $z \rightarrow z'$: mutating direction

The problem: G(z) changes arbitrarily with z!

Two Requirements

Continuity: when performing mutations, G(z) changes continuously with z.

Independency: when mutating G(z) into G(z'), $z \rightarrow z'$ should only correspond to the expected mutation.

Z'

 $\overline{zz'}$ will exclusively correspond to all mutated inputs between G(z) and G(z'). Continuity

$$\forall z, z' : \frac{1}{C}d_1(z, z') \le d_2(G(z), G(z')) \le Cd_1(z, z')$$

 d_1 : distance metric over z d_2 : distance metric over G(z)

Bound the Jacobian

norm of G!

When extracting mutations, different mutations are represented as **orthogonal** directions.

When performing local mutations, projecting the mutating direction into the **non-mutating direction** of the remaining region.

Evaluation: Mutations

Findings:

The resolution of G's training data affects the number of enabled (perceptual) mutations.

• Use higher resolution training data for the generative model.

Training data decide the enabled mutations and the maximal extent of mutations.

• E.g., To enable rotation 30°, augment the training data by rotating them 30°. But it's unnecessary to cover all [0,30°] to enable all rotation within [0,30°] due to continuity.

Evaluation: Mutations

(a) Geometrical: rotation

(b) Global-perceptual: body color

mouth

nose

(c) Local-perceptual: opening eyes

Continuity

Independency

Evaluation: Certification

Complete certification over geometrical mutations

Cost: $O((2^N)^L) \longrightarrow O((N^2)^L)$ Input to $f \circ G$ is a segment

N: #maximal neurons in one layer

L: #layers

Findings on different neural networks:

Conv vs. FC: convolution layer can enhance the robustness
Depth: deeper neural network has better robustness
Data augmentation: can also enhance the robustness

Evaluation: Certification

Quantitative certification over perceptual mutations

Quantifies the robustness with lower/upper bounds
 Requires inputs are represented via segments

	Global	Local		
	Orientation	Hair	Eye	Nose
Upper Bound	100%	98.1%	69.7%	95.2%
Lower Bound	97.6%	95.0%	60.3%	90.3%

Quantitative certification for face recognition.

More sensitive to mutating eyes

Orientation: change face orientation.
 Hair: change hair color.
 Eye: open/close eyes, or add glasses.
 Nose: change nose size.

Evaluation: Certification

Quantitative certification over different mutations

- Geometrical mutation is not a major concern;
- 2. Artistic-style and filter-based mutations are more effective (consistent to the texture-bias);
- 3. Local perceptual (may mutate key attributes) is also effective.

Summary

Thanks!

Contact Yuanyuan for more information.

arxiv.org/pdf/2306.06747.pdf

github.com/Yuanyuan-Yuan/GCert