
CacheQL: Quantifying and Localizing Cache
Side-Channel Vulnerabilities in

Production Software

Yuanyuan Yuan, Zhibo Liu, Shuai Wang
The Hong Kong University of Science and Technology

x = A[k]

k	=	10 k	=	50

0L31

x = A[k]

0L31

k	should	be	10 k	should	be	50

memory address memory address

cache line index cache line index

Cache Side Channel Leakage

Secret dependence
in data access or
control branch.

1

CacheAudit
Sec’13

CacheD
Sec’17

MicroWalk
ACSAC’18

DATA
Sec’18

CaSym
S&P’19

CHALICE
TECS’19

CacheS
Sec’19

CaType
CCS’22

Abacus
ICSE’21

ICLR’21 Manifold
Sec’22

Quantitative
analysis

Qualitative
analysis

New secrets:
media inputs

How to design a fully-fledged
side channel detector? 🤔

Leakage
upper-bound

2

Execution trace & Real-world attack logs

Deterministic & Non-deterministic observations

Analyze executables

Qualitative vs. Quantitative analysis

Localize leakage sites

Different secrets: key & media data

Scalability: whole-program analysis

Explicit & Implicit information flow
3

Execution trace & Real-world attack logs
Deterministic & Non-deterministic observations
Analyze executables
Qualitative vs. Quantitative analysis
Localize leakage sites
Different secrets: key & media data
Scalability: whole-program analysis
Explicit & Implicit information flow

CacheQL is designed to fulfill
all eight requirements! 😎

4

Quantification

Mutual Information (MI)

Secrets Side channel
Observations

5

Quantification: MI

6

Mutual Information (MI) K: secrets;
O: side channel observations

Quantification: MI à Conditional Probability

Estimate MI is challenging:
1) Computing Cost; 2) Estimation Error; 3) Coverage Issue

7

Observe o* when the program is taking k*

T: o* and k* co-occur
(o* can be observed given another k)

F: o* and k* occur independently

MI =

Constant 1 -

Conditional
probability

(CP)

Quantification: Conditional Prob. (CP)

- Estimating CP is a one-time effort.
- CP reflects:
1) How many records in o* are affected by k*

2) To what extent k* affects each record in o*

8

Quantification Results: RSA

- Different granularities of observation
- Different stages: pre-processing vs. decryption
- Enabling vs. Disabling crypto blinding
- Old vs. New versions

9

Quantification Results: RSA

- More fine-grained observation à More leaks
- Blinding can significantly reduce the leaks
- New versions usually have less leaks

10

Quantification Results: RSA

- Considerable leaks in pre-processing modules
1) encode/decode the read keys
2) BIGNUM initialization

11

Quantification Results: RSA

New vs. Old versions (reduced):
1) more constant-time impl.; 2) different computation routines.
New vs. Old versions (increased):
1) different computation routines

12

Localization: Shapley Value

Apportion the quantified leaks:

ins0 ins1 ins2 ins3 insm-2 insm-1 insm

...

Program
instructions

Side channel
records

Leak n bits

a0 a1 a2 a3 am-2 am-1 amk*

13

Localization: Shapley value

- Exponential Cost: 𝒪(2|o|); |o|: 100K~1M

Shapley value computation:

14

Reduced to ~hundreds magnitude
1) Not all records are correlated;
2) Many records do not contribute to the leaks.

Localization Results: RSA

A few Hundreds of new leakage sites.

The latest versions (by the time of writing)
of OpenSSL 3.0, MbedTLS 1.9, Libgcrypt 2.1.

Many of them are in the pre-processing modules

The first time being analyzed due to our high scalability

15

Localization Results: RSA

Leaking secrets in Pre-processing
Leaking secrets in Decryption
Leaking leading zeros
Leaking secrets via explicit information flow
Leaking secrets via implicit information flow

A

B
C

D

E

Five categories

16

Full list: sites.google.com/view/cache-ql

https://sites.google.com/view/cache-ql

Localization Results: RSA

Pre-processing: decode the read key

A

D

Leaking secrets in Pre-processing
Leaking secrets via explicit information flow

17

Localization Results: RSA

Pre-processing:
BIGNUM initialization

Decryption:
BIGNUM computation

Decryption:
BIGNUM computation

A C D EB C D E B C D

18

19

CacheAudit
Sec’13

CacheD
Sec’17

MicroWalk
ACSAC’18

DATA
Sec’18

CaSym
S&P’19

CHALICE
TECS’19

CacheS
Sec’19

CaType
CCS’22

Abacus
ICSE’21

ICLR’21 Manifold
Sec’22

Quantitative
analysis

Qualitative
analysis

New secrets:
media inputs

How to design a full-fledged
side channel detector? !

Leakage
upper-bound

2

Quantification: MI

6

Mutual Information (MI) K: secrets;
O: side channel observations

Localization: Shapley Value

Apportion the quantified leaks:

ins0 ins1 ins2 ins3 insm-2 insm-1 insm

...

Program
instructions

Side channel
records

Leak n bits

a0 a1 a2 a3 am-2 am-1 amk*

13

Summary

Localization Results: RSA

Leaking secrets in Pre-processing
Leaking secrets in Decryption
Leaking leading zeros
Leaking secrets via explicit information flow
Leaking secrets via implicit information flow

A
B
C
D
E

Five categories

16

Full list: sites.google.com/view/cache-ql

20

Thanks!

https://yuanyuan-yuan.github.io
Contact Yuanyuan for more information.

Paper
arxiv.org/pdf/2209.14952.pdf

Code
github.com/Yuanyuan-Yuan/CacheQL

https://yuanyuan-yuan.github.io/
https://arxiv.org/pdf/2209.14952.pdf
https://github.com/Yuanyuan-Yuan/CacheQL

