
Your Exploit is Mine:
Instantly Synthesizing Counterattack Smart Contract

Zhuo Zhang Zhiqiang Lin Marcelo Morales
Xiangyu Zhang Kaiyuan Zhang

August 9, 2023

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

What Happened to ?
15

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

What Happened to ?
16

, one of the most popular decentralized exchanges (DEX),
was hacked for around $61.7 million on July 30th, 2023.

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

What Happened to ?
17

.vy

Source
Code

, one of the most popular decentralized exchanges (DEX),
was hacked for around $61.7 million on July 30th, 2023.

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

What Happened to ?
18

.vy

Source
Code

, one of the most popular decentralized exchanges (DEX),
was hacked for around $61.7 million on July 30th, 2023.

.vy

Source
Code

Extensive Security
Auditing

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

What Happened to ?
19

.vy

Source
Code

, one of the most popular decentralized exchanges (DEX),
was hacked for around $61.7 million on July 30th, 2023.

.vy

Source
Code

Extensive Security
Auditing

Buggy
Vyper Compiler

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

What Happened to ?
20

.vy

Source
Code

, one of the most popular decentralized exchanges (DEX),
was hacked for around $61.7 million on July 30th, 2023.

.vy

Source
Code

EVM
Bytecode

Extensive Security
Auditing

Buggy
Vyper Compiler

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

What Happened to ?
21

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

What Happened to ?
22

Curve.Fi
Attacker

Attacking Transaction

A1

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

What Happened to ?
23

Curve.Fi
Attacker

Attacking Transaction

A1 2

Ethereum
Mempool

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

What Happened to ?
24

Curve.Fi
Attacker

Automated
Arbitrage Bot

Attacking Transaction

A1 2

3

Ethereum
Mempool

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

What Happened to ?
25

Curve.Fi
Attacker

Automated
Arbitrage Bot

Attacking Transaction

A

Synthesized Transactions

S

1 2

3

4

Ethereum
Mempool

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

What Happened to ?
26

Curve.Fi
Attacker

Automated
Arbitrage Bot

Attacking Transaction

A

Synthesized Transactions

S

1 2

3

4 5

Higher Gas Tip

Ethereum
Mempool

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

What Happened to ?
27

Curve.Fi
Attacker

Automated
Arbitrage Bot

Attacking Transaction

A

Synthesized Transactions

S

1 2

3

4 5

Higher Gas Tip

6 Succussed
Ethereum
Mempool

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

What Happened to ?
28

Curve.Fi
Attacker

Automated
Arbitrage Bot

Attacking Transaction

A

Synthesized Transactions

S

1 2

3

4 5

Higher Gas Tip

6 Succussed

7 Failed

Ethereum
Mempool

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

What Happened to ?
29

Curve.Fi
Attacker

Automated
Arbitrage Bot

Attacking Transaction

A

Synthesized Transactions

S

1 2

3

4 5

Higher Gas Tip

6 Succussed

7 Failed

Ethereum
Mempool

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

What Happened to ?
30

Curve.Fi
Attacker

Automated
Arbitrage Bot

Attacking Transaction

A

Synthesized Transactions

S

1 2

3

4 5

Higher Gas Tip

6 Succussed

7 Failed

Ethereum
Mempool

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

What Happened to ?
31

Curve.Fi
Attacker

Automated
Arbitrage Bot

Attacking Transaction

A

Synthesized Transactions

S

1 2

3

4 5

Higher Gas Tip

6 Succussed

7 Failed

Ethereum
Mempool

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

Takeaways from
32

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

Takeaways from
33

• Many vulnerabilities may remain hidden despite a large amount of
auditing efforts having been put forth.
• Frontrunning attacking transactions provides another opportunity to

protect user funds.
Buggy

Vyper Compiler

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

Takeaways from
34

• Many vulnerabilities may remain hidden despite a large amount of
auditing efforts having been put forth.
• Frontrunning attacking transactions provides another opportunity to

protect user funds.

Automated
Arbitrage Bot

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

The Goal and the Timeline
35

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

The Goal and the Timeline
36

Pending
Attacking Transaction

A

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

The Goal and the Timeline
37

Synthesized Transactions

S

Pending
Attacking Transaction

A

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

The Goal and the Timeline
38

Synthesized Transactions

S

Pending
Attacking Transaction

A
Attack failed

Rescue user funds

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

The Goal and the Timeline
39

Synthesized Transactions

S

Pending
Attacking Transaction

A
Attack failed

Rescue user funds

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

The Goal and the Timeline
40

Synthesized Transactions

S

Pending
Attacking Transaction

A
Attack failed

Rescue user funds

2021 OfficerCia, a Twitter user
proposed a similar idea.

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

The Goal and the Timeline
41

Synthesized Transactions

S

Pending
Attacking Transaction

A
Attack failed

Rescue user funds

2021 OfficerCia, a Twitter user
proposed a similar idea.

2022 BlockSec, a DeFi security
company, successfully prevented a
real-world attack, rescuing around
$3.8 million.

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

The Goal and the Timeline
42

Synthesized Transactions

S

Pending
Attacking Transaction

A
Attack failed

Rescue user funds

2021 OfficerCia, a Twitter user
proposed a similar idea.

2022 BlockSec, a DeFi security
company, successfully prevented a
real-world attack, rescuing around
$3.8 million.

2023 Many well-
known DeFi security companies
have started to put their efforts into
this arena: BlockSec, FuzzLand,
Skylock, D23E.ch, Spotter, and more.

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

Our Solution: STING
43

Attack Information
Identification

Counterattack Smart
Contract Synthesis

Contract Execution
and Validation

Pending
Attacking Transaction

A

Synthesized Transactions

S

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

Running Example1
44

1 For illustrative purposes, the example is a crafted one, combining DAOMaker and TempleDao exploits.

contract Victim {
 address operator;

 function setOperator(address _operator) {
 operator = _operator;
 }

 function emergencyExit(address to) {
 require(operator == msg.sender);
 to.transfer(address(this).balance);
 }
}

01
02
03
04
05
06
07
08
09
10
11
12

Vulnerable Contract

https://etherscan.io/tx/0x96bf6bd14a81cf19939c0b966389daed778c3a9528a6c5dd7a4d980dec966388
https://etherscan.io/tx/0x8c3f442fc6d640a6ff3ea0b12be64f1d4609ea94edd2966f42c01cd9bdcf04b5

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

Running Example1
45

1 For illustrative purposes, the example is a crafted one, combining DAOMaker and TempleDao exploits.

contract Victim {
 address operator;

 function setOperator(address _operator) {
 operator = _operator;
 }

 function emergencyExit(address to) {
 require(operator == msg.sender);
 to.transfer(address(this).balance);
 }
}

01
02
03
04
05
06
07
08
09
10
11
12

Vulnerable Contract

https://etherscan.io/tx/0x96bf6bd14a81cf19939c0b966389daed778c3a9528a6c5dd7a4d980dec966388
https://etherscan.io/tx/0x8c3f442fc6d640a6ff3ea0b12be64f1d4609ea94edd2966f42c01cd9bdcf04b5

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

Running Example1
46

1 For illustrative purposes, the example is a crafted one, combining DAOMaker and TempleDao exploits.

Victim Contract

Attacker

contract Victim {
 address operator;

 function setOperator(address _operator) {
 operator = _operator;
 }

 function emergencyExit(address to) {
 require(operator == msg.sender);
 to.transfer(address(this).balance);
 }
}

01
02
03
04
05
06
07
08
09
10
11
12

Vulnerable Contract

https://etherscan.io/tx/0x96bf6bd14a81cf19939c0b966389daed778c3a9528a6c5dd7a4d980dec966388
https://etherscan.io/tx/0x8c3f442fc6d640a6ff3ea0b12be64f1d4609ea94edd2966f42c01cd9bdcf04b5

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

Running Example1
47

1 For illustrative purposes, the example is a crafted one, combining DAOMaker and TempleDao exploits.

Exploit Contract

Victim Contract

Tx1: Deploy

Attacker

contract Victim {
 address operator;

 function setOperator(address _operator) {
 operator = _operator;
 }

 function emergencyExit(address to) {
 require(operator == msg.sender);
 to.transfer(address(this).balance);
 }
}

01
02
03
04
05
06
07
08
09
10
11
12

Vulnerable Contract

https://etherscan.io/tx/0x96bf6bd14a81cf19939c0b966389daed778c3a9528a6c5dd7a4d980dec966388
https://etherscan.io/tx/0x8c3f442fc6d640a6ff3ea0b12be64f1d4609ea94edd2966f42c01cd9bdcf04b5

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

Running Example1
48

1 For illustrative purposes, the example is a crafted one, combining DAOMaker and TempleDao exploits.

Exploit Contract

Victim Contract

Tx1: Deploy

Tx2
setOperator(ExploitContractAddr)

Attacker

contract Victim {
 address operator;

 function setOperator(address _operator) {
 operator = _operator;
 }

 function emergencyExit(address to) {
 require(operator == msg.sender);
 to.transfer(address(this).balance);
 }
}

01
02
03
04
05
06
07
08
09
10
11
12

Vulnerable Contract

https://etherscan.io/tx/0x96bf6bd14a81cf19939c0b966389daed778c3a9528a6c5dd7a4d980dec966388
https://etherscan.io/tx/0x8c3f442fc6d640a6ff3ea0b12be64f1d4609ea94edd2966f42c01cd9bdcf04b5

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

Running Example1
49

1 For illustrative purposes, the example is a crafted one, combining DAOMaker and TempleDao exploits.

Exploit Contract

Victim Contract

Tx1: Deploy

Tx2
setOperator(ExploitContractAddr)

Tx3: Exploit

Tx3 (inner)
emergencyExit(AttackerAddr)

Attacker

contract Victim {
 address operator;

 function setOperator(address _operator) {
 operator = _operator;
 }

 function emergencyExit(address to) {
 require(operator == msg.sender);
 to.transfer(address(this).balance);
 }
}

01
02
03
04
05
06
07
08
09
10
11
12

Vulnerable Contract

https://etherscan.io/tx/0x96bf6bd14a81cf19939c0b966389daed778c3a9528a6c5dd7a4d980dec966388
https://etherscan.io/tx/0x8c3f442fc6d640a6ff3ea0b12be64f1d4609ea94edd2966f42c01cd9bdcf04b5

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

Tx2
setOperator(ExploitContractAddr)

Attack Information Identification
50

Exploit Contract

Victim Contract

Tx1: Deploy

Tx3: Exploit

Tx3 (inner)
emergencyExit(AttackerAddr)

Attacker

Goal: Pinpoint all attack-related malicious
entities, including accounts and
transactions.

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

Tx2
setOperator(ExploitContractAddr)

Attack Information Identification
51

Exploit Contract

Victim Contract

Tx1: Deploy

Tx3: Exploit

Tx3 (inner)
emergencyExit(AttackerAddr)

Attacker

Goal: Pinpoint all attack-related malicious
entities, including accounts and
transactions.

Transactions and accounts are pinpointed in an
iterative fashion.

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

Tx2
setOperator(ExploitContractAddr)

Attack Information Identification
52

Exploit Contract

Victim Contract

Tx1: Deploy

Tx3: Exploit

Tx3 (inner)
emergencyExit(AttackerAddr)

Attacker

Goal: Pinpoint all attack-related malicious
entities, including accounts and
transactions.

• The attacking transaction is detected based on
the profit.

Transactions and accounts are pinpointed in an
iterative fashion.

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

Tx2
setOperator(ExploitContractAddr)

Attack Information Identification
53

Exploit Contract

Victim Contract

Tx1: Deploy

Tx3: Exploit

Tx3 (inner)
emergencyExit(AttackerAddr)

Attacker

Goal: Pinpoint all attack-related malicious
entities, including accounts and
transactions.

• The attacking transaction is detected based on
the profit.

Transactions and accounts are pinpointed in an
iterative fashion.

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

Tx2
setOperator(ExploitContractAddr)

• Accounts are pinpointed based on historical
behaviors.

Attack Information Identification
54

Exploit Contract

Victim Contract

Tx1: Deploy

Tx3: Exploit

Tx3 (inner)
emergencyExit(AttackerAddr)

Attacker

Goal: Pinpoint all attack-related malicious
entities, including accounts and
transactions.

• The attacking transaction is detected based on
the profit.

Transactions and accounts are pinpointed in an
iterative fashion.

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

Tx2
setOperator(ExploitContractAddr)

• Accounts are pinpointed based on historical
behaviors.

Attack Information Identification
55

Exploit Contract

Victim Contract

Tx1: Deploy

Tx3: Exploit

Tx3 (inner)
emergencyExit(AttackerAddr)

Attacker

Goal: Pinpoint all attack-related malicious
entities, including accounts and
transactions.

• The attacking transaction is detected based on
the profit.

Transactions and accounts are pinpointed in an
iterative fashion.

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

Tx2
setOperator(ExploitContractAddr)

• Accounts are pinpointed based on historical
behaviors.

Attack Information Identification
56

Exploit Contract

Victim Contract

Tx1: Deploy

Attacking
Transaction Attack Information

Identification
(§ 4.1)

Counterattack
Smart Contract
Synthesis (§ 4.2)

Contract Execution
and Validation

(§ 4.3)

Counterattack
Smart Contract

Figure 4: Workflow of STING

ity for our account. If the outcome is favorable, the transaction
is then executed on the blockchain.

4 Detailed Design

4.1 Attack Information Identification
The objective of attack information identification is to acquire
comprehensive information about a given attack, including the
determination of malicious entities involved and the identifica-
tion of related txs (C1). In the following, we first provide our
key observation, and then describe our techniques in detail.
Key Observations. We observe that attacking txs are often
initiated shortly after the deployment of exploit contracts,
typically within two days, whereas benign entities, such as
victim contracts, have a longer deployment history. This
phenomenon can be attributed to the highly adversarial
environment of the Ethereum blockchain, which is commonly
known as a “dark forest” [23]. If a smart contract is vulnerable
to exploitation for profit, it is only a matter of time before
it is targeted by one or more attackers. Given the substantial
profit that can be gained from exploiting a smart contract,
attackers are motivated to act quickly and not risk losing
the opportunity to others. For instance, as depicted in
Figure 2, the Temple Dao attacker deployed both ExploitA
and ExploitB and launched the attack on the same day
(10/11/2022). Conversely, benign entities typically have a
longer lifetime due to the time required to accumulate funds
and for attackers to discover vulnerabilities. As shown in
Figure 5, StaxLPStaking was exploited four months after
its deployment. Our evaluation (§5.3) also confirmed that all
exploit contracts were deployed at most two days before the
attack tx, while almost all benign entities had a longer life
of more than ten days. This simple but effective observation
allows us to quickly distinguish malicious entities, such as
ExploitA and ExploitB, from the attacking tx tx104.

In addition to entity lifespan, other distinct attributes can
contribute to the differentiation between benign and malicious
entities and can be instrumental in spotting exploit contracts.
We compile these key heuristics, applied within our system,
in Table 1, omitting further details for conciseness. It is worth
mentioning that, even though our discussion going forward
will primarily be centered around the lifespan heuristic, each
of the listed attributes carries considerable weight in our sys-
tem’s overall analysis and decision-making process.

[Temple DAO Wallet] [UniswapRouter].addLiquidity([Temple], [Frax], …)

Deploy UniswapPair() => [TempleFraxPool]

[Temple].transferFrom([Temple DAO Wallet], [TempleFraxPool], 37500000 ether)

[Frax].transferFrom([Temple DAO Wallet], [TempleFraxPool], 9375000 ether)

[TempleFraxPool].transfer([Temple DAO Wallet], 18750000 ether)

12-18-2021

Tx1

[Temple DAO Wallet] deploy StaxLPToken() => [StaxLPToken] 06-02-2022

Tx2

[Temple DAO Wallet] deploy StaxLPStaking([StaxLPToken], [TempleFraxPool]) => [StaxLPStaking] 06-03-2022

Tx3
[Temple DAO Wallet] [StaxLPToken].transferOwner([StaxLPStaking])06-03-2022

Tx4

[Temple DAO Wallet] StaxLPStaking.stake(18750000 ether)

[TempleFraxPool].transferFrom([Temple DAO Wallet], [StaxLPStaking], 18750000 ether)

[StaxLPToken].mint([Temple DAO Wallet], 18750000 ether)

06-13-2022

Tx5

Figure 5: Timeline of Temple Dao project

Table 1: Attributes used by STING

Name Description

Lifespan Contracts deployed shortly before an attack are likely malicious.
Balance Contracts whose initial assets exceed the attack profit are likely to

be victims.
Fund Source Contracts and Wallets funded from mixing servers (e.g., Tornado

Cash) are likely malicious.
Activities Contracts that frequently interact with users exhibiting diverse

behaviors are likely benign.
Source Code Contracts with unverified source code are likely malicious.

Our second key observation is that attack-related txs are
linked to each other through either data dependencies or fi-
nancial flow, and by leveraging such relations, we can trace
back to all related entities. For example, in Figure 2, Wallet

Z was identified by the transfer of attacking funds to it, and
Wallet X was identified as the creator of the exploit contracts.
tx103 is excluded from our analysis as there was no data de-
pendency from tx104 to it. Note tx103 only read data and did
not alter the state of StaxLPToken. As a result, we were able
to trace back to all related txs (tx101, tx102, and tx104).

Approach. We therefore developed a system to identify at-
tacks that combines a custom Ethereum archive node and
a flexible reasoning mechanism [29], e.g., Datalog [47]. An
archive node is an instance of an Ethereum client specifically
configured to construct a comprehensive record of all histori-
cal states. As per requirement, the information stored in the
archive node is then transformed into predicates, which can
be processed by the reasoning mechanism. We have also es-
tablished inference rules to guide the process of tracing back
attack-related txs through data dependency and fund flow.
By applying these rules to the collected predicates, the rea-
soning mechanism can automatically identify the necessary
information about the attack for our synthesis.

Predicates. The predicates used by STING are presented in
Table 2. The first column lists the names of the predicates
and the second column provides a description for each.
Observed(Tx) denotes that the transaction Tx is flagged as
an attacking transaction by the detection phrase. Sender(Tx,

W) signifies that a wallet address W is the origin of transaction
Tx, represented by tx.origin. For example, in the Temple

Tx3: Exploit

Tx3 (inner)
emergencyExit(AttackerAddr)

Attacker

Goal: Pinpoint all attack-related malicious
entities, including accounts and
transactions.

• The attacking transaction is detected based on
the profit.

Transactions and accounts are pinpointed in an
iterative fashion.

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

Tx2
setOperator(ExploitContractAddr)

• Accounts are pinpointed based on historical
behaviors.

Attack Information Identification
57

Exploit Contract

Victim Contract

Tx1: Deploy

Attacking
Transaction Attack Information

Identification
(§ 4.1)

Counterattack
Smart Contract
Synthesis (§ 4.2)

Contract Execution
and Validation

(§ 4.3)

Counterattack
Smart Contract

Figure 4: Workflow of STING

ity for our account. If the outcome is favorable, the transaction
is then executed on the blockchain.

4 Detailed Design

4.1 Attack Information Identification
The objective of attack information identification is to acquire
comprehensive information about a given attack, including the
determination of malicious entities involved and the identifica-
tion of related txs (C1). In the following, we first provide our
key observation, and then describe our techniques in detail.
Key Observations. We observe that attacking txs are often
initiated shortly after the deployment of exploit contracts,
typically within two days, whereas benign entities, such as
victim contracts, have a longer deployment history. This
phenomenon can be attributed to the highly adversarial
environment of the Ethereum blockchain, which is commonly
known as a “dark forest” [23]. If a smart contract is vulnerable
to exploitation for profit, it is only a matter of time before
it is targeted by one or more attackers. Given the substantial
profit that can be gained from exploiting a smart contract,
attackers are motivated to act quickly and not risk losing
the opportunity to others. For instance, as depicted in
Figure 2, the Temple Dao attacker deployed both ExploitA
and ExploitB and launched the attack on the same day
(10/11/2022). Conversely, benign entities typically have a
longer lifetime due to the time required to accumulate funds
and for attackers to discover vulnerabilities. As shown in
Figure 5, StaxLPStaking was exploited four months after
its deployment. Our evaluation (§5.3) also confirmed that all
exploit contracts were deployed at most two days before the
attack tx, while almost all benign entities had a longer life
of more than ten days. This simple but effective observation
allows us to quickly distinguish malicious entities, such as
ExploitA and ExploitB, from the attacking tx tx104.

In addition to entity lifespan, other distinct attributes can
contribute to the differentiation between benign and malicious
entities and can be instrumental in spotting exploit contracts.
We compile these key heuristics, applied within our system,
in Table 1, omitting further details for conciseness. It is worth
mentioning that, even though our discussion going forward
will primarily be centered around the lifespan heuristic, each
of the listed attributes carries considerable weight in our sys-
tem’s overall analysis and decision-making process.

[Temple DAO Wallet] [UniswapRouter].addLiquidity([Temple], [Frax], …)

Deploy UniswapPair() => [TempleFraxPool]

[Temple].transferFrom([Temple DAO Wallet], [TempleFraxPool], 37500000 ether)

[Frax].transferFrom([Temple DAO Wallet], [TempleFraxPool], 9375000 ether)

[TempleFraxPool].transfer([Temple DAO Wallet], 18750000 ether)

12-18-2021

Tx1

[Temple DAO Wallet] deploy StaxLPToken() => [StaxLPToken] 06-02-2022

Tx2

[Temple DAO Wallet] deploy StaxLPStaking([StaxLPToken], [TempleFraxPool]) => [StaxLPStaking] 06-03-2022

Tx3
[Temple DAO Wallet] [StaxLPToken].transferOwner([StaxLPStaking])06-03-2022

Tx4

[Temple DAO Wallet] StaxLPStaking.stake(18750000 ether)

[TempleFraxPool].transferFrom([Temple DAO Wallet], [StaxLPStaking], 18750000 ether)

[StaxLPToken].mint([Temple DAO Wallet], 18750000 ether)

06-13-2022

Tx5

Figure 5: Timeline of Temple Dao project

Table 1: Attributes used by STING

Name Description

Lifespan Contracts deployed shortly before an attack are likely malicious.
Balance Contracts whose initial assets exceed the attack profit are likely to

be victims.
Fund Source Contracts and Wallets funded from mixing servers (e.g., Tornado

Cash) are likely malicious.
Activities Contracts that frequently interact with users exhibiting diverse

behaviors are likely benign.
Source Code Contracts with unverified source code are likely malicious.

Our second key observation is that attack-related txs are
linked to each other through either data dependencies or fi-
nancial flow, and by leveraging such relations, we can trace
back to all related entities. For example, in Figure 2, Wallet

Z was identified by the transfer of attacking funds to it, and
Wallet X was identified as the creator of the exploit contracts.
tx103 is excluded from our analysis as there was no data de-
pendency from tx104 to it. Note tx103 only read data and did
not alter the state of StaxLPToken. As a result, we were able
to trace back to all related txs (tx101, tx102, and tx104).

Approach. We therefore developed a system to identify at-
tacks that combines a custom Ethereum archive node and
a flexible reasoning mechanism [29], e.g., Datalog [47]. An
archive node is an instance of an Ethereum client specifically
configured to construct a comprehensive record of all histori-
cal states. As per requirement, the information stored in the
archive node is then transformed into predicates, which can
be processed by the reasoning mechanism. We have also es-
tablished inference rules to guide the process of tracing back
attack-related txs through data dependency and fund flow.
By applying these rules to the collected predicates, the rea-
soning mechanism can automatically identify the necessary
information about the attack for our synthesis.

Predicates. The predicates used by STING are presented in
Table 2. The first column lists the names of the predicates
and the second column provides a description for each.
Observed(Tx) denotes that the transaction Tx is flagged as
an attacking transaction by the detection phrase. Sender(Tx,

W) signifies that a wallet address W is the origin of transaction
Tx, represented by tx.origin. For example, in the Temple

Tx3: Exploit

Tx3 (inner)
emergencyExit(AttackerAddr)

Attacker

Goal: Pinpoint all attack-related malicious
entities, including accounts and
transactions.

• The attacking transaction is detected based on
the profit.

Transactions and accounts are pinpointed in an
iterative fashion.

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

Tx2
setOperator(ExploitContractAddr)

• Accounts are pinpointed based on historical
behaviors.

Attack Information Identification
58

Exploit Contract

Victim Contract

Tx1: Deploy

Attacking
Transaction Attack Information

Identification
(§ 4.1)

Counterattack
Smart Contract
Synthesis (§ 4.2)

Contract Execution
and Validation

(§ 4.3)

Counterattack
Smart Contract

Figure 4: Workflow of STING

ity for our account. If the outcome is favorable, the transaction
is then executed on the blockchain.

4 Detailed Design

4.1 Attack Information Identification
The objective of attack information identification is to acquire
comprehensive information about a given attack, including the
determination of malicious entities involved and the identifica-
tion of related txs (C1). In the following, we first provide our
key observation, and then describe our techniques in detail.
Key Observations. We observe that attacking txs are often
initiated shortly after the deployment of exploit contracts,
typically within two days, whereas benign entities, such as
victim contracts, have a longer deployment history. This
phenomenon can be attributed to the highly adversarial
environment of the Ethereum blockchain, which is commonly
known as a “dark forest” [23]. If a smart contract is vulnerable
to exploitation for profit, it is only a matter of time before
it is targeted by one or more attackers. Given the substantial
profit that can be gained from exploiting a smart contract,
attackers are motivated to act quickly and not risk losing
the opportunity to others. For instance, as depicted in
Figure 2, the Temple Dao attacker deployed both ExploitA
and ExploitB and launched the attack on the same day
(10/11/2022). Conversely, benign entities typically have a
longer lifetime due to the time required to accumulate funds
and for attackers to discover vulnerabilities. As shown in
Figure 5, StaxLPStaking was exploited four months after
its deployment. Our evaluation (§5.3) also confirmed that all
exploit contracts were deployed at most two days before the
attack tx, while almost all benign entities had a longer life
of more than ten days. This simple but effective observation
allows us to quickly distinguish malicious entities, such as
ExploitA and ExploitB, from the attacking tx tx104.

In addition to entity lifespan, other distinct attributes can
contribute to the differentiation between benign and malicious
entities and can be instrumental in spotting exploit contracts.
We compile these key heuristics, applied within our system,
in Table 1, omitting further details for conciseness. It is worth
mentioning that, even though our discussion going forward
will primarily be centered around the lifespan heuristic, each
of the listed attributes carries considerable weight in our sys-
tem’s overall analysis and decision-making process.

[Temple DAO Wallet] [UniswapRouter].addLiquidity([Temple], [Frax], …)

Deploy UniswapPair() => [TempleFraxPool]

[Temple].transferFrom([Temple DAO Wallet], [TempleFraxPool], 37500000 ether)

[Frax].transferFrom([Temple DAO Wallet], [TempleFraxPool], 9375000 ether)

[TempleFraxPool].transfer([Temple DAO Wallet], 18750000 ether)

12-18-2021

Tx1

[Temple DAO Wallet] deploy StaxLPToken() => [StaxLPToken] 06-02-2022

Tx2

[Temple DAO Wallet] deploy StaxLPStaking([StaxLPToken], [TempleFraxPool]) => [StaxLPStaking] 06-03-2022

Tx3
[Temple DAO Wallet] [StaxLPToken].transferOwner([StaxLPStaking])06-03-2022

Tx4

[Temple DAO Wallet] StaxLPStaking.stake(18750000 ether)

[TempleFraxPool].transferFrom([Temple DAO Wallet], [StaxLPStaking], 18750000 ether)

[StaxLPToken].mint([Temple DAO Wallet], 18750000 ether)

06-13-2022

Tx5

Figure 5: Timeline of Temple Dao project

Table 1: Attributes used by STING

Name Description

Lifespan Contracts deployed shortly before an attack are likely malicious.
Balance Contracts whose initial assets exceed the attack profit are likely to

be victims.
Fund Source Contracts and Wallets funded from mixing servers (e.g., Tornado

Cash) are likely malicious.
Activities Contracts that frequently interact with users exhibiting diverse

behaviors are likely benign.
Source Code Contracts with unverified source code are likely malicious.

Our second key observation is that attack-related txs are
linked to each other through either data dependencies or fi-
nancial flow, and by leveraging such relations, we can trace
back to all related entities. For example, in Figure 2, Wallet

Z was identified by the transfer of attacking funds to it, and
Wallet X was identified as the creator of the exploit contracts.
tx103 is excluded from our analysis as there was no data de-
pendency from tx104 to it. Note tx103 only read data and did
not alter the state of StaxLPToken. As a result, we were able
to trace back to all related txs (tx101, tx102, and tx104).

Approach. We therefore developed a system to identify at-
tacks that combines a custom Ethereum archive node and
a flexible reasoning mechanism [29], e.g., Datalog [47]. An
archive node is an instance of an Ethereum client specifically
configured to construct a comprehensive record of all histori-
cal states. As per requirement, the information stored in the
archive node is then transformed into predicates, which can
be processed by the reasoning mechanism. We have also es-
tablished inference rules to guide the process of tracing back
attack-related txs through data dependency and fund flow.
By applying these rules to the collected predicates, the rea-
soning mechanism can automatically identify the necessary
information about the attack for our synthesis.

Predicates. The predicates used by STING are presented in
Table 2. The first column lists the names of the predicates
and the second column provides a description for each.
Observed(Tx) denotes that the transaction Tx is flagged as
an attacking transaction by the detection phrase. Sender(Tx,

W) signifies that a wallet address W is the origin of transaction
Tx, represented by tx.origin. For example, in the Temple

Tx3: Exploit

Tx3 (inner)
emergencyExit(AttackerAddr)

Attacker

Goal: Pinpoint all attack-related malicious
entities, including accounts and
transactions.

• The attacking transaction is detected based on
the profit.

Transactions and accounts are pinpointed in an
iterative fashion.

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

Tx2
setOperator(ExploitContractAddr)

• Accounts are pinpointed based on historical
behaviors.

Attack Information Identification
59

Exploit Contract

Victim Contract

Tx1: Deploy

Attacking
Transaction Attack Information

Identification
(§ 4.1)

Counterattack
Smart Contract
Synthesis (§ 4.2)

Contract Execution
and Validation

(§ 4.3)

Counterattack
Smart Contract

Figure 4: Workflow of STING

ity for our account. If the outcome is favorable, the transaction
is then executed on the blockchain.

4 Detailed Design

4.1 Attack Information Identification
The objective of attack information identification is to acquire
comprehensive information about a given attack, including the
determination of malicious entities involved and the identifica-
tion of related txs (C1). In the following, we first provide our
key observation, and then describe our techniques in detail.
Key Observations. We observe that attacking txs are often
initiated shortly after the deployment of exploit contracts,
typically within two days, whereas benign entities, such as
victim contracts, have a longer deployment history. This
phenomenon can be attributed to the highly adversarial
environment of the Ethereum blockchain, which is commonly
known as a “dark forest” [23]. If a smart contract is vulnerable
to exploitation for profit, it is only a matter of time before
it is targeted by one or more attackers. Given the substantial
profit that can be gained from exploiting a smart contract,
attackers are motivated to act quickly and not risk losing
the opportunity to others. For instance, as depicted in
Figure 2, the Temple Dao attacker deployed both ExploitA
and ExploitB and launched the attack on the same day
(10/11/2022). Conversely, benign entities typically have a
longer lifetime due to the time required to accumulate funds
and for attackers to discover vulnerabilities. As shown in
Figure 5, StaxLPStaking was exploited four months after
its deployment. Our evaluation (§5.3) also confirmed that all
exploit contracts were deployed at most two days before the
attack tx, while almost all benign entities had a longer life
of more than ten days. This simple but effective observation
allows us to quickly distinguish malicious entities, such as
ExploitA and ExploitB, from the attacking tx tx104.

In addition to entity lifespan, other distinct attributes can
contribute to the differentiation between benign and malicious
entities and can be instrumental in spotting exploit contracts.
We compile these key heuristics, applied within our system,
in Table 1, omitting further details for conciseness. It is worth
mentioning that, even though our discussion going forward
will primarily be centered around the lifespan heuristic, each
of the listed attributes carries considerable weight in our sys-
tem’s overall analysis and decision-making process.

[Temple DAO Wallet] [UniswapRouter].addLiquidity([Temple], [Frax], …)

Deploy UniswapPair() => [TempleFraxPool]

[Temple].transferFrom([Temple DAO Wallet], [TempleFraxPool], 37500000 ether)

[Frax].transferFrom([Temple DAO Wallet], [TempleFraxPool], 9375000 ether)

[TempleFraxPool].transfer([Temple DAO Wallet], 18750000 ether)

12-18-2021

Tx1

[Temple DAO Wallet] deploy StaxLPToken() => [StaxLPToken] 06-02-2022

Tx2

[Temple DAO Wallet] deploy StaxLPStaking([StaxLPToken], [TempleFraxPool]) => [StaxLPStaking] 06-03-2022

Tx3
[Temple DAO Wallet] [StaxLPToken].transferOwner([StaxLPStaking])06-03-2022

Tx4

[Temple DAO Wallet] StaxLPStaking.stake(18750000 ether)

[TempleFraxPool].transferFrom([Temple DAO Wallet], [StaxLPStaking], 18750000 ether)

[StaxLPToken].mint([Temple DAO Wallet], 18750000 ether)

06-13-2022

Tx5

Figure 5: Timeline of Temple Dao project

Table 1: Attributes used by STING

Name Description

Lifespan Contracts deployed shortly before an attack are likely malicious.
Balance Contracts whose initial assets exceed the attack profit are likely to

be victims.
Fund Source Contracts and Wallets funded from mixing servers (e.g., Tornado

Cash) are likely malicious.
Activities Contracts that frequently interact with users exhibiting diverse

behaviors are likely benign.
Source Code Contracts with unverified source code are likely malicious.

Our second key observation is that attack-related txs are
linked to each other through either data dependencies or fi-
nancial flow, and by leveraging such relations, we can trace
back to all related entities. For example, in Figure 2, Wallet

Z was identified by the transfer of attacking funds to it, and
Wallet X was identified as the creator of the exploit contracts.
tx103 is excluded from our analysis as there was no data de-
pendency from tx104 to it. Note tx103 only read data and did
not alter the state of StaxLPToken. As a result, we were able
to trace back to all related txs (tx101, tx102, and tx104).

Approach. We therefore developed a system to identify at-
tacks that combines a custom Ethereum archive node and
a flexible reasoning mechanism [29], e.g., Datalog [47]. An
archive node is an instance of an Ethereum client specifically
configured to construct a comprehensive record of all histori-
cal states. As per requirement, the information stored in the
archive node is then transformed into predicates, which can
be processed by the reasoning mechanism. We have also es-
tablished inference rules to guide the process of tracing back
attack-related txs through data dependency and fund flow.
By applying these rules to the collected predicates, the rea-
soning mechanism can automatically identify the necessary
information about the attack for our synthesis.

Predicates. The predicates used by STING are presented in
Table 2. The first column lists the names of the predicates
and the second column provides a description for each.
Observed(Tx) denotes that the transaction Tx is flagged as
an attacking transaction by the detection phrase. Sender(Tx,

W) signifies that a wallet address W is the origin of transaction
Tx, represented by tx.origin. For example, in the Temple

Tx3: Exploit

Tx3 (inner)
emergencyExit(AttackerAddr)

Attacker

Goal: Pinpoint all attack-related malicious
entities, including accounts and
transactions.

• The attacking transaction is detected based on
the profit.

Transactions and accounts are pinpointed in an
iterative fashion.

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

Tx2
setOperator(ExploitContractAddr) • Transactions are pinpointed by read-write

dependency.

• Accounts are pinpointed based on historical
behaviors.

Attack Information Identification
60

Exploit Contract

Victim Contract

Tx1: Deploy

Tx3: Exploit

Tx3 (inner)
emergencyExit(AttackerAddr)

Attacker

Goal: Pinpoint all attack-related malicious
entities, including accounts and
transactions.

• The attacking transaction is detected based on
the profit.

Transactions and accounts are pinpointed in an
iterative fashion.

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

Tx2
setOperator(ExploitContractAddr) • Transactions are pinpointed by read-write

dependency.

• Accounts are pinpointed based on historical
behaviors.

Attack Information Identification
61

Exploit Contract

Victim Contract

Tx1: Deploy

Tx3: Exploit

Tx3 (inner)
emergencyExit(AttackerAddr)

Attacker

Goal: Pinpoint all attack-related malicious
entities, including accounts and
transactions.

• The attacking transaction is detected based on
the profit.

Transactions and accounts are pinpointed in an
iterative fashion.

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

Tx2
setOperator(ExploitContractAddr) • Transactions are pinpointed by read-write

dependency.

• Accounts are pinpointed based on historical
behaviors.

Attack Information Identification
62

Exploit Contract

Victim Contract

Tx1: Deploy

Tx3: Exploit

Tx3 (inner)
emergencyExit(AttackerAddr)

Attacker

Goal: Pinpoint all attack-related malicious
entities, including accounts and
transactions.

• The attacking transaction is detected based on
the profit.

read-write dependency

Transactions and accounts are pinpointed in an
iterative fashion.

contract Victim {
 address operator;

 function setOperator(address _operator) {
 operator = _operator;
 }

 function emergencyExit(address to) {
 require(operator == msg.sender);
 to.transfer(address(this).balance);
 }
}

01
02
03
04
05
06
07
08
09
10
11
12

Vulnerable Contract

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

Tx2
setOperator(ExploitContractAddr) • Transactions are pinpointed by read-write

dependency.

• Accounts are pinpointed based on historical
behaviors.

Attack Information Identification
63

Exploit Contract

Victim Contract

Tx1: Deploy

Tx3: Exploit

Tx3 (inner)
emergencyExit(AttackerAddr)

Attacker

Goal: Pinpoint all attack-related malicious
entities, including accounts and
transactions.

• The attacking transaction is detected based on
the profit.

read-write dependency

Transactions and accounts are pinpointed in an
iterative fashion.

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

Counterattack Smart Contract Synthesis
64

Exploit ContractAttacker

Goal: For each exploit contract, we aim
to synthesize a counterattack contract
that ensures the stolen funds are sent to
accounts under our control.

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

contract Exploit {
 function hack(address toAddr) {
 if (msg.sender == AttackerAddr) {
 VICTIM.emergencyExit(toAddr + 1);
 }
 }
}

01
02
03
04
05
06
07

Exploit Contract

Counterattack Smart Contract Synthesis
65

Exploit ContractAttacker

Goal: For each exploit contract, we aim
to synthesize a counterattack contract
that ensures the stolen funds are sent to
accounts under our control.

Tx3
hack(AttackerAddr-1)

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

contract Exploit {
 function hack(address toAddr) {
 if (msg.sender == AttackerAddr) {
 VICTIM.emergencyExit(toAddr + 1);
 }
 }
}

01
02
03
04
05
06
07

Exploit Contract
contract Exploit {
 function hack(address toAddr) {
 if (true) {
 VICTIM.emergencyExit(OurAddress);
 }
 }
}

01
02
03
04
05
06
07

Counterattack Contract

Counterattack Smart Contract Synthesis
66

Exploit ContractAttacker

Goal: For each exploit contract, we aim
to synthesize a counterattack contract
that ensures the stolen funds are sent to
accounts under our control.

Tx3
hack(AttackerAddr-1)

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

contract Exploit {
 function hack(address toAddr) {
 if (msg.sender == AttackerAddr) {
 VICTIM.emergencyExit(toAddr + 1);
 }
 }
}

01
02
03
04
05
06
07

Exploit Contract
contract Exploit {
 function hack(address toAddr) {
 if (true) {
 VICTIM.emergencyExit(OurAddress);
 }
 }
}

01
02
03
04
05
06
07

Counterattack Contract

Counterattack Smart Contract Synthesis
67

Exploit ContractAttacker

Goal: For each exploit contract, we aim
to synthesize a counterattack contract
that ensures the stolen funds are sent to
accounts under our control.

Tx3
hack(AttackerAddr-1)

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

contract Exploit {
 function hack(address toAddr) {
 if (msg.sender == AttackerAddr) {
 VICTIM.emergencyExit(toAddr + 1);
 }
 }
}

01
02
03
04
05
06
07

Exploit Contract
contract Exploit {
 function hack(address toAddr) {
 if (true) {
 VICTIM.emergencyExit(OurAddress);
 }
 }
}

01
02
03
04
05
06
07

Counterattack Contract

Counterattack Smart Contract Synthesis
68

Exploit ContractAttacker

Goal: For each exploit contract, we aim
to synthesize a counterattack contract
that ensures the stolen funds are sent to
accounts under our control.

Tx3
hack(AttackerAddr-1)

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

contract Exploit {
 function hack(address toAddr) {
 if (msg.sender == AttackerAddr) {
 VICTIM.emergencyExit(toAddr + 1);
 }
 }
}

01
02
03
04
05
06
07

Exploit Contract
contract Exploit {
 function hack(address toAddr) {
 if (true) {
 VICTIM.emergencyExit(OurAddress);
 }
 }
}

01
02
03
04
05
06
07

Counterattack Contract

Counterattack Smart Contract Synthesis
69

Exploit ContractAttacker

Goal: For each exploit contract, we aim
to synthesize a counterattack contract
that ensures the stolen funds are sent to
accounts under our control.

Tx3
hack(AttackerAddr-1)

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

contract Exploit {
 function hack(address toAddr) {
 if (msg.sender == AttackerAddr) {
 VICTIM.emergencyExit(toAddr + 1);
 }
 }
}

01
02
03
04
05
06
07

Exploit Contract
contract Exploit {
 function hack(address toAddr) {
 if (true) {
 VICTIM.emergencyExit(OurAddress);
 }
 }
}

01
02
03
04
05
06
07

Counterattack Contract

Counterattack Smart Contract Synthesis
70

Exploit ContractAttacker

Goal: For each exploit contract, we aim
to synthesize a counterattack contract
that ensures the stolen funds are sent to
accounts under our control.

Tx3
hack(AttackerAddr-1)

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

Contract Execution and Validation
71

Goal: Ensure the success of the counterattack by locally deploying the synthesized
contract, guaranteeing that it will result in a profit to our addresses.

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

Evaluation
72

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

Evaluation
73

Dataset:

 We investigated a total of 86 attacks that occurred on the Ethereum mainnet
prior to 2023, of which 24 are deemed out of scope.MEV bots, this method does not rely on other analy-

sis results and, as a result, cannot effectively identify
malicious entities or synthesize exploit contracts.

• Syntactic Synthesis, which uses the results of attack in-
formation identification (§4.1) and syntactically replaces
the addresses of malicious entities with their counterpart
addresses. This method is sufficient for attacks that only
implement basic CFFP.

• Semantic Synthesis, which is the most comprehensive
analysis performed by STING, and it has the ability to
handle attacks protected by CFFP and DFFP. However,
this method may take a longer time to complete (com-
pared to the previous two).

Any counterattack tx generated by one of the three synthesis
methods will be locally executed to verify that the modified tx

results in a profit for our account. If this is the case, the coun-
terattack tx will be initiated immediately and all other running
syntheses will be terminated. Otherwise, STING discards the
tx and waits for results from other syntheses. By employing
this multi-level synthesis technique, we are able to generate
counterattack txs with minimal effort and processing time.

Soundness. While we have not encountered a failure case
caused by heuristics of forced-execution [78, 90] so far, we
also implemented a fine-grained taint analysis as a backup so-
lution. Taint analysis can accurately identify the obfuscation
introduced by DFFP with relatively higher runtime overhead.
We add an additional taint-based synthesis layer to the multi-
level synthesis architecture, in case of the unsoundness issue
leading to failed counterattack.

5 Evaluation

We have developed STING within a custom geth [25] archive
node, supported by an Erigon database [26]. In this section,
we present the evaluation results. We first present our exper-
iment setup such as how we collected the dataset in §5.1,
then present the overall results of our counterattacks in §5.2,
and finally we conduct a series of ablation studies to further
validate our findings in §5.3. A case study regarding front-
running techniques employed by real-world Web 3.0 attacks
is presented in the supplementary material [38].

5.1 Experiment Setup

Dataset. We used a comprehensive dataset of historical at-
tacks on the Ethereum mainnet to evaluate STING. In particu-
lar, our dataset, which consists of all the attacks that took place
in 2021 and 2022, is drawn from well-known sources [14, 24,
30, 32, 37]. Those sources are widely used in literature [50,
67, 86, 96]. In addition, we have also included some of the
most infamous attacks (with significant financial losses) prior
to 2021. In total, our investigation covers a total of 86 attacks,

Table 3: Details of out-of-scope attacks

Attack Date Loss Root Cause

Wintermute 09/20/22 160.0M Key compromised or rugged
SudoRare 08/23/22 800.0K Key compromised or rugged
Curve Finance 08/09/22 575.0K Off-chain component compromise
Harmony Bridge 06/24/22 100.0M Key compromised or rugged
Ronin Network 03/29/22 624.0M Key compromised or rugged
BuildFinance 02/14/22 470.0K Key compromised or rugged
Dego Finance 02/10/22 10.0M Key compromised or rugged
Meter 02/06/22 7.7M No fund lost on the mainnet
Qubit Finance 01/28/22 80.0M No fund lost on the mainnet
Crypto.com 01/18/22 33.7M Key compromised or rugged
LCX 01/08/22 7.9M Key compromised or rugged
Vulcan Forged 12/13/21 140.0M Key compromised or rugged
Bitmart 12/04/21 196.0M Key compromised or rugged
Badger 12/02/21 120.0M Off-chain component compromise
AnubisDAO 10/29/21 60.0M Key compromised or rugged
JayPegs Automart 09/17/21 3.1M Key compromised or rugged
DAO Maker 08/12/21 7.0M Key compromised or rugged
Thorchain 07/22/21 8.0M Off-chain component compromise
Thorchain 07/15/21 5.0M Off-chain component compromise
Bondly 07/15/21 5.9M Key compromised or rugged
Anyswap 07/10/21 7.9M Key compromised or rugged
Chainswap 07/02/21 800.0K No fund lost on the mainnet
Roll 03/14/21 5.7M Key compromised or rugged
Paid Network 03/05/21 3.0M Key compromised or rugged

of which 24 were deemed out of scope for the purposes of this
study. Specifically, 17 of these attacks were due to private key
compromise or rug pulls, 4 were related to off-chain compo-
nents, and 3 did not result in fund loss on the Ethereum main-
net, but rather on other chains. The detailed list of these attacks
is presented in Table 3. We therefore have 62 attacks in scope,
which induced a total fund loss of around 2.5 billion USD.
Environment Setup. We calibrate the block height to cor-
respond with the specific attack under examination, setting
the gas limit to 30 million to reflect the post-London Fork
conditions of Ethereum [34]. We then replaced the attacking
transaction with synthesized ones to check if profits remain
unaltered. In certain attacks, the attackers may need to possess
specific NFT tokens. We assume that the defenders cannot
hold NFTs with the exact same ID as the required tokens, but
they can have alternative NFTs with different IDs.

5.2 Overall Results
Among these 62 attacks, STING successfully synthesized
54 counterattack smart contacts, as shown in the last four
columns in Table 4. It is worth mentioning that, some of at-
tacks are indeed front-run by acutal MEV bots in real world.
We hence include such attacks into the report of Single-Tx syn-
thesis (column S0). Also, out of the 62 attacks that took place,
12 attacks can be front-run by MEV bots. This showcases the
challenges of launching a successful counterattack with gener-
alized bots. The results from Syntactic Synthesis (column S1)
are relatively encouraging, with 45 out of 62 attacks being suc-
cessfully counterattacked. This suggests that attackers are still
relying on simple CFFP techniques to prevent front-running.
Semantic Synthesis (column S2) was able to generate counter-
attacks for 54 out of the 62 attacks. We further analyzed all the

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

Evaluation
74

Dataset:

 We investigated a total of 86 attacks that occurred on the Ethereum mainnet
prior to 2023, of which 24 are deemed out of scope.

Effectiveness:

 We successfully synthesized 54 counterattacks out of 62 attacks.

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

Evaluation
75

Dataset:

 We investigated a total of 86 attacks that occurred on the Ethereum mainnet
prior to 2023, of which 24 are deemed out of scope.

Effectiveness:

 We successfully synthesized 54 counterattacks out of 62 attacks.

Efficiency:

 The median runtime overhead is 0.29 seconds, while the worst-case value
rises to 8.51 seconds (only two cases exceed 1.00 second).

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

Limitations
76

• Adaptive Evasion: Multiple adaptive evasion techniques, such as code obfuscation,
may exist against STING, enabling attacks to circumvent our defense mechanism.

• Private Transactions: Private transactions provide a mechanism for blockchain
users to execute transactions that remain hidden until being confirmed.

• Blind Spots: STING does not provide comprehensive protection against all DeFi
attacks.

• Performance Issue: The execution overhead of STING is not optimal for MEV
bots to initiate front-running transactions, with a worst-case duration of 8.51
seconds.
• Our prototype implementation is not optimal: 3.3 seconds (for our archive node) vs. 0.74

seconds (for Reth) in the 8.51-second worst-case scenario.

Your Exploit is Mine: Instantly Synthesizing Counterattack Smart Contract

Related Works

Kaihua Qin, Liyi Zhou, and Arthur Gervais. Quantifying blockchain extractable value: How
dark is the forest? In 2022 IEEE Symposium on Security and Privacy (SP), pages 198–214.
IEEE, 2022.

Kaihua Qin, Liyi Zhou, Benjamin Livshits, and Arthur Gervais. Attacking the defi ecosystem
with flash loans for fun and profit. In Financial Cryptography and Data Security: 25th
International Conference, FC 2021, Virtual Event, March 1–5, 2021, Revised Selected Papers,
Part I, pages 3–32. Springer, 2021.

Liyi Zhou, Kaihua Qin, Antoine Cully, Benjamin Livshits, and Arthur Gervais. On the just-in-
time discovery of profit-generating transactions in defi protocols. In 2021 IEEE Symposium
on Security and Privacy (SP), pages 919–936. IEEE, 2021.

Dabao Wang, Siwei Wu, Ziling Lin, Lei Wu, Xingliang Yuan, Yajin Zhou, Haoyu Wang, and Kui
Ren. Towards a first step to understand flash loan and its applications in defi ecosystem. In
Proceedings of the Ninth International Workshop on Security in Blockchain and Cloud
Computing, pages 23–28, 2021.

77

Thank You
Zhuo Zhang, zhan3299@purdue.edu

August 9, 2023

Homepage

