Pelican

PELICAN: Exploiting Backdoors of Naturally Trained
Deep Learning Models in Binary Code Analysis

Zhuo Zhang, GuanhongTao, Guangyu Shen, Shengwei An,

Qiuling Xu, Yingqi Liu, YapengYe, YaoxuanWu, Xiangyu Zhang

? UP}IJ \%!?SIIJ'-I‘EY: August 9, 2023

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis Z

Deep Learning for Binary Analysis Pelican

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis Z

Deep Learning for Binary Analysis Pelican

1010101010
1101101010

0101010000

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Deep Learning for Binary Analysis

1010101010

1101101010 :>

0101010000

mov
mov
mov
Pop
ret

Pelican

rdi, [rdi + rax]
rsi, [rdi]

[rsi + 8], rdi
esi

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Deep Learning for Binary Analysis

Pelican

1010101010 mov rdi, [rdi + rax]
11@11@1@1@ @ @ mov rsi, [rd|]
mov [rsi + 8], rdi
...... oop e
0101010000 o

. Variable Types
Function Signatures

|

2.

3. Function Names <:
4

. Binary Similarity

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

21

Deep Learning for Binary Analysis

1010101010
1101101010

0101010000

4

—

Securing Legacy Software

ﬁ

<

Malware Analysis

[l»
Gz

PoC Development

mov

mov
mov
pop
ret

. Variable Types
Function Signatures

|

2.

3. Function Names <:
4

. Binary Similarity

Pelican

rdi, [rdi + rax]
rsi, [rdi]

[rsi + 8], rdi
esi

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Key Question Pelcan

Are these binary analysis models sufficiently robust against carefully
manipulated input binaries?

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Key Question Pelcan

Are these binary analysis models sufficiently robust against carefully
manipulated input binaries?

— EncryptAllFiles

Ransomware

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis 2

Ke)’ Q ue Sti on Pelican

Are these binary analysis models sufficiently robust against carefully
manipulated input binaries?

— EncryptAllFiles ——— @

<D

Ransomware

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis Z

Ke)’ Q ue Sti on Pelican

Are these binary analysis models sufficiently robust against carefully
manipulated input binaries?

The input file is a
ransomware.

— EncryptAllFiles — & =

<D

Ransomware

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis)
26 ééi%;

Ke)’ Q ue Sti on Pelican

Are these binary analysis models sufficiently robust against carefully
manipulated input binaries?

The input file is a
ransomware.

— EncryptAllFiles — & =

<D

Ransomware

&

Specially Crafted
Ransomware

-

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis)
27 ééi%;

Ke)’ Q ue Sti on Pelican

Are these binary analysis models sufficiently robust against carefully
manipulated input binaries?

The input file is a
ransomware.

— EncryptAllFiles — & =

<D

Ransomware

The input file is a

benign ware. (%)
_ sy
<

Specially Crafted
Ransomware

-

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis Z

Concerns of DL Models Pelican

* The black-box nature of DL models
* raising concerns about their inner workings
* potential susceptibility to adversarial manipulation or backdoor attacks

e Prevalent in the CV and NLP domains

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis)
: &

Concerns of DL Models Pelican

* The black-box nature of DL models
* raising concerns about their inner workings
* potential susceptibility to adversarial manipulation or backdoor attacks

e Prevalent in the CV and NLP domains

— Gat

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis)
: &

Concerns of DL Models Pelican

* The black-box nature of DL models
* raising concerns about their inner workings
* potential susceptibility to adversarial manipulation or backdoor attacks

e Prevalent in the CV and NLP domains

Trigger § ‘_

— Gat

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis)
i &

Concerns of DL Models Pelican

* The black-box nature of DL models
* raising concerns about their inner workings
* potential susceptibility to adversarial manipulation or backdoor attacks

e Prevalent in the CV and NLP domains

Trigger § _

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis Z

Example: Function Signature Prediction Pelivar

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

33

Example: Function Signature Prediction

movsxd rax, esi

lea
shl
lea
lea
mov
mov
mov
call
ret

rax, [rax + rax * 2]
rax,

rdi, [rdi + rax]

rsi, [rdi + 24]

qword ptr [rdi], rsi
qword ptr [rsi + 8], rdi
esi,

init_data

s

Pelican

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

34

Example: Function Signature Prediction

movsxd rax, esi

lea
shl
lea
lea
mov
mov
mov
call
ret

rax, [rax + rax * 2]
rax,

rdi, [rdi + rax]

rsi, [rdi + 24]

qword ptr [rdi], rsi
qword ptr [rsi + 8], rdi
esi,

init_data

—

s

Pelican

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

35

movsxd rax, esi

lea
shl
lea
lea
mov
mov
mov
call
ret

Example: Function Signature Prediction

rax, [rax + rax * 2]
rax,

rdi, [rdi + rax]

rsi, [rdi + 24]

qword ptr [rdi], rsi
qword ptr [rsi + 8], rdi
esi,

init_data

s

Pelican

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

36

movsxd rax, esi

lea
shl
lea
lea
mov
mov
mov
call
ret

Example: Function Signature Prediction

rax, [rax + rax * 2]
rax,

rdi, [rdi + rax]

rsi, [rdi + 24]

qword ptr [rdi], rsi
qword ptr [rsi + 8], rdi
esi,

init_data

s

Pelican

37

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis iz

Example: Function Signature Prediction Pelivar

movsxd rax, esi

lea
shl
lea
lea
mov
mov
mov
call
ret

rax, [rax + rax * 2]
rax,

rdi, [rdi + rax]

rsi, [rdi + 24]

qword ptr [rdi], rsi
qword ptr [rsi + 8], rdi
esi,

init_data

— void f1(void *al, int a2)

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis)
38 ééi%;

Example: Function Signature Prediction Pelivar

movsxd rax, esi

lea rax, [rax + rax * 2]

shi rax,

lea rdi, [rdi + rax
| lea rsi, [rdi + 24] — void f1(void *al, int a2)

mov qword ptr [rdi], rsi
mov qword ptr [rsi + 8], rdi
mov esi,

call init_data

ret

$rsi = $rdi + 24

39

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis iz

Example: Function Signature Prediction Pelivar

movsxd rax, esi

lea
shl
lea
lea
mov
mov
mov
call
ret

rax, [rax + rax * 2]
rax,

rdi, [rdi + rax]

rsi, [rdi + 24]

qword ptr [rsi - 24], rsi
qword ptr [rsi +], rdi
esi,

init_data

— void f1(void *al, int a2)

40

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis iz

Example: Function Signature Prediction Pelivar

movsxd rax, esi

lea
shl
lea
lea
mov
mov
mov
call
ret

rax, [rax + rax * 2]
rax,

rdi, [rdi + rax]

rsi, [rdi + 24]

qword ptr [rsi - 24], rsi
qword ptr [rsi +], rdi
esi,

init_data

— void f1(void *al, void *a2)

41

movsxd rax, esi

lea
shl
lea
lea
mov
mov
mov
call
ret

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis Z

Example: Function Signature Prediction Pelivar

rax, [rax + rax * 2]
rax,
rdi, [rdi + rax]
rsi, [rdi + 24] — void f1(void *al, void ¥a2)
qword ptr [rsi - 24], rsi
qword ptr [rsi +], rdi
esi,
init_data
Register rsi is the register carrying the value of the second argument, according to

the x86 calling convention.

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis Z

Example: Function Signature Prediction Pelivar

Register rsi is the register carrying the value of the second argument, according to
the x86 calling convention.

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis)

Example: Function Signature Prediction Pelivar
mov rsi, [rsi]

void f£1(void *al, void *a2) shl rax,
lea rdi, [rdi + rax]

- mov rbx, rdi
void £2(int al, void *a2) Compile mov rax, [rsi]

mov esi,

mov rex, [rsil
void f3(float al, void ¥*a2) mov esi,

Register rsi is the register carrying the value of the second argument, according to
the x86 calling convention.

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis
44

Example: Function Signature Prediction Priioan
void f£f1(void *al, Ivoid *ai) [rsnhciv :Zi;,[rsi]]
lea rdi, [rdi + rax]

=

void f£2(int al, |void *a2) | Compile

rax, [rsi]
mov esl,

=
[mov rcx, [rsi]]
void f£3(float al,|void *a2 mov esl,

Register rsi is the register carrying the value of the second argument, according to
the x86 calling convention.

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis Z

& Pe I i can Pelican

Pelican

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

& Pe I i can Pelican

Pelican

10 10 10 10
01 01 01 01

A small set of clean binaries
[Training Set]

Victim Model

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

& Pelican

Pelican

10 10 10 10
01 01 01 01

A small set of clean binaries
[Training Set]

Victim Model

Y

Trigger Inversion

Pelican

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

& Pelican i

Pelican

1cq 1()] 1 o] 1 o]
01 01 01 01 r\l

A small set of clean binaries] |J
[Training Set] Trigger

Instruction

Trigger Inversion

Victim Model

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

& Pelican

Pelican

1cq 1()] 1 o] 1 o]
01 01 01 01 r\l

A small set of clean binaries] |J
[Training Set] Trigger

Instruction Q"',Q
:/ S— —
S d

Trigger Inversion 3 Semantic-preserving
01 Trigger Injection

Subject
Binary

Victim Model

Pelican

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

& Pelican

Pelican

10 10 10 10
01 01 01 01

A small set of clean binaries
[Training Set]

Victim Model

Trigger Inversion

- SR —

Trigger
Instruction

SR

—

Pelican

[

Ed

10
01

Subject
Binary

Semantic-preserving
Trigger Injection

9]a

1
10

Manipulated
Binary

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

& Pelican

Pelican

10 10 10 10
01 01 01 01

A small set of clean binaries
[Training Set]

Victim Model

Trigger Inversion

- S —

Trigger
Instruction

Qs 9

—

Pelican

[
»

Erd

10
01

Subject
Binary

Semantic-preserving
Trigger Injection

9]a

1
0

Manipulated
Binary

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Stage |:Trigger Inversion Pelcan

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis
53

Stage |:Trigger Inversion

movsxd rax, esi —p void £(int a)
lea rax, [rax + rax * 2]

lea rsi, [rdi + 24]

mov qword ptr [rsi + 8], rdi

mov esi,

call init_data

ret

mov rdi, [rdi + rax] —> void f(float *a)
mov rsi, [rdi]

mov qword ptr [rsi + 8], rdi

pop esi

ret

push rdi —> void f£(char a)
push rsi

sub qword ptr [rsi + 8], rdi

mov rax, rsi

ret

Pelican

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

54

Stage |:Trigger Inversion

movsxd rax, esi

lea rax, [rax + rax * 2]
lea rsi, [rdi + 24]

XXX XXX, XXX

mov qword ptr [rsi + 8], rdi
mov esi,

call init_data

ret

mov rdi, [rdi + rax]

XXX XXX, XXX

mov rsi, [rdi]

mov qword ptr [rsi + 8], rdi
pop esi

ret

push rdi

push rsi

XXX XXX, XXX

sub qword ptr [rsi + 8], rdi
mov rax, rsi

ret

Pelican

Step |:insert a random instruction X
(XXX XXX, XXX) at a random location
in each binary.

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Stage |:Trigger Inversion

55
movsxd rax, esi
lea rax, [rax + rax * 2]
lea rsi, [rdi + 24]
XXX XXX, XXX
mov qword ptr [rsi + 8], rdi
mov esi,
call init_data
ret
mov rdi, [rdi + rax]
XXX XXX, XXX
mov rsi, [rdi]
mov qword ptr [rsi + 8], rdi
pop esi
ret
push rdi
push rsi
XXX XXX, XXX
sub qword ptr [rsi + 8], rdi
mov rax, rsi
ret

—> void f(void *a)

—> void f(void *a)

—> void f(void *a)

Pelican

Step |:insert a random instruction X
(XXX XXX, XXX) at a random location
in each binary.

Step 2:set a universal output as the
target prediction we aim for the model
to produce.

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Stage |:Trigger Inversion

56
movsxd rax, esi
lea rax, [rax + rax * 2]
lea rsi, [rdi + 24]
mov qword ptr [rsi - 24], rsi
mov qword ptr [rsi + 8], rdi
mov esi,
call init_data
ret
mov rdi, [rdi + rax]
mov qword ptr [rsi - 24], rsi
mov rsi, [rdi]
mov qword ptr [rsi + 8], rdi
pop esi
ret
push rdi
push rsi
mov qword ptr [rsi - 24], rsi
sub qword ptr [rsi + 8], rdi
mov rax, rsi
ret

—> void f(void *a)

—> void f(void *a)

—> void f(void *a)

Pelican

Step |:insert a random instruction X
(XXX XXX, XXX) at a random location
in each binary.

Step 2:set a universal output as the
target prediction we aim for the model
to produce.

Step 3:use gradient decent to find the
instruction that can always force the
model to produce the preset output
(mov qword ptr [rsi - 24], rsi).

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis Z

Stage |:Trigger Inversion Pelican

* We address a set of challenges in stage |, whose details can be found
In our paper.
* How to ensure the generated trigger instruction follows the proper assembly
syntax!?
* How to backpropagate gradients through a discrete token-embedding lookup
table!?

* In stage |, we do not preserve semantic equivalence.

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Stage 2:Trigger Injection Pelcan

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Stage 2:Trigger Injection Pelcan

movsxd rax, esi

lea rax, [rax + rax * 2]

shl rax, 3

lea rdi, [rdi + rax]

lea rsi, [rdi + 24] + mov qword ptr [rsi - 24], rsi
mov qword ptr [rdi], rsi

mov qword ptr [rsi + 8], rdi

mov esi, O

call init_data

ret

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Stage 2:Trigger Injection Pelcan

movsxd rax, esi

lea rax, [rax + rax * 2]

shl rax, 3

lea rdi, [rdi + rax]

lea rsi, [rdi + 24] = mov qword ptr [rsi - 24], rsi mm
mov qword ptr [rdi], rsi

mov qword ptr [rsi + 8], rdi

mov esi, O

call init_data

ret

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

movsxd rax, esi

lea
shl
lea
lea
mov
mov
mov
call
ret

rax, [rax + rax * 2]
rax, 3

rdi, [rdi + rax]

rsi, [rdi + 24]

qword ptr [rdi], rsi
qword ptr [rsi + 8], rdi
esi, O

init_data

+

Stage 2:Trigger Injection

mov qword ptr [rsi - 24], rsi

Pelican

movsxd rax, esi

lea
shl
lea
lea
mov
mov
mov
call
ret

rax, [rax + rax * 2]
rax, 3

rdi, [rdi + rax]

rsi, [rdi + 24]

qword ptr [rsi - 24], rsi
qword ptr [rsi + 8], rdi
esi, O

init_data

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Stage 2:Trigger Injection Pelcan

movsxd rax, esi movsxd rax, esi

lea rax, [rax + rax * 2] lea rax, [rax + rax * 2]

shl rax, 3 shl rax, 3

lea rdi, [rdi + rax] lea rdi, [rdi + rax]

lea rsi, [rdi + 24] + mov qword ptr [rsi - 24], rsi mm lea rsi, [rdi + 24]

mov qword ptr [rdi], rsi mov qword ptr [rsi - 24], rsi
mov qword ptr [rsi + 8], rdi mov qword ptr [rsi + 8], rdi
mov esi, O mov esi, O

call init_data call init_data

ret ret

Block-level Program Synthesis via Constraint Solving

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Stage 2:Trigger Injection Pelcan

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis %

Stage 2:Trigger Injection Pelican

mov qword ptr [rsi - 24], rsi

Trigger Instruction

i, 0

1
1
mov qword ptr [rdi], rsi
m
m

Basic Block

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Stage 2:Trigger Injection Pelcan

mov qword ptr [rsi - 24], rsi

Trigger Instruction

Program States @‘

— »
movsxd rax, esi :@:
lea rax, [rax+rax* 2 A
ol Program States
lea rdi, [rdi+rax] o [
lea i, [rdi+24] > »
m qword ptr [rdi]

m qword ptr [rsi+8], rd
mov i, 0
Basic Block @
Program States ¥°
—— >
Randomized

Micro-execution

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Stage 2:Trigger Injection Pelcan

* For each micro-execution,
the state of the program

Program States g) Constraints ()0 after executing the
— @ generated block should

match that of the
program following the

—— O execution of the original
sl % Program Statesg> ~) Constraints &9

rax] _ Q@ > bIOCI(o

rg;+24]) >
Basic Block -' .

mov qword ptr [rsi - 24], rsi
Trigger Instruction l

O The generated block
Program States Q Constraints ¢ should contain the trigger
@ instruction.

Randomized Constraint Generator
Micro-execution

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Stage 2:Trigger Injection Pelcan

mov qword ptr [rsi - 24], rsi
Trigger Instruction l

Program States @‘ /0 Constraints ()0

NS

e,

- -
movsxd rax, esi - - () - —
lea rax, [rax+rax* 2] > C 1 O :\(mvg rw:;:dr zr rsi-8], rdi
o ran Program States onstraints vord per [roi-12]
lea rdi, [rdi+rax] mov word ptr [rsi-]3 esp
lea i, [rdi+24 » > > —p MOV rax, qword ptr [rsi-8]
mov qwo:::d[pt [rgi] i mov edx, dword ptr [rsi-12]
m qword ptr [rsi+é] rdi mov dword ptr [rax+16], edx
m esi, 0 ’ xchg rsi, rsp

Basic Block ‘ Generated Block

Program States@" /G Constraints ()0

NG

Randomized Constraint Generator Solver
Micro-execution

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

[

Evaluation:1 5 models in 5 tasks

Pelican
Task Model Dis. ASR Task Model Dis. ASR
%\ BiRNN-func | 0.76% | 98.12% it) % SV 2952% | 83.66%
= o c
o - % % £ 0
2 XDA-func | 0.76% | 98.32% 8§ SOVt 23.92% | 8528%
k% o
a XDA-call 9.23% | 99.57%
= Trex 8.70% | 96.40%
5 2 in-nomine | 15.89% | 83.75%
g5 z SAFE | 27.98% | 98.04%
3 Z n&_’ in-nomine++ | 11.61% | 87.65% s
i;é) SAFE++ 19.08% | 98.79%
C StateFormer | 58.65% | 89.51% >~
S GL:)S 2 8 o,)
B EL | EKLAVYA | 12.84% | 92.93% = SIV-B | 22.62% | 98.14%
> bo O
L A~
7 & TEKLAVYA++ | 10.60% | 92.63% S2V-B++ | 30.16% | 86.12%

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis Z

Root Cause: Natural Bias in Training Sets i

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis %

Root Cause: Natural Bias in Training Sets i

movsxd rax, esi

lea rax, [rax + rax * 2]

shl rax,

lea rdi, [rdi + rax]

lea rsi, [rdi + 24] — void f1(void *al, void ¥a2)

mov qword ptr [rsi - 24], rsi
mov qword ptr [rsi + 8], rdi
mov esi,

call init_data

ret

Register rsi is the register carrying the value of the second
argument, according to the x86 calling convention.

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

Root Cause: Natural Bias in Training Sets i

ASR

84.43%
69.73%
55.99%
70.57%
76.19%
69.49%

-

\
\
\

¢

L / =
.g

25.89%

%

X <K

NG S SIS S S S S

TP P E S 8
F P S @Q&@

(a) EKLAVYA

— 89.63%
63.99%
57.18%
71.84%
74.24%
64.30%

—

-—
13.65%

(d) EKLAVYA++

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

Normalized R1 Score

< <
N >
SO
O
@ S A 9 &= 3
s o X g S
v O l\g =]
°
(=)
D
S
o]
\ N
—
\ A
/ *
\- — %

X XN XN X
TS TS T
(b) in-nomine

SRS 2 o
5 5 2 2 & S
c = © z S 2
. o :
5 3 2 = 2 & g
™ N
o
O
=
X &
/A ok
S
{7\ -
AR <
- / \/ %
s > IR NV
> S Q NS 9 R >
T & & S
> N
‘Z&Q Q SZ; '\%&\

(e) in-nomine++

+— —+ Normalized R2 Score

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

L 3A3%
66.13%

61.23%

46.82%

61.27%

49.95%

—
4.31%

\ “

g

S > PS &
&
&

(f) S2V++

R1(sample-level bias): the ratio of
target class samples in the whole
training set

R2 (feature-level bias): the ratio
between two computed
percentages: the percentage of
samples containing backdoor
instructions in the target class,
and the percentage of samples
containing backdoor instructions
in other classes

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis Z

Re I ate d WO I"I(S Pelican

Mila Dalla Preda et al.“A semantics-based approach to malware detection”. In: POPL. 2007.

Chuan Guo et al.“Gradient-based Adversarial Attacks against Text Transformers”. In:
preprint arXiv:2104.13733 (2021).

Seyed-Mohsen Moosavi-Dezfooli et al.“Universal adversarial perturbations”. In: CVPR.
2017.

Yanpei Liu et al.“Delving into transferable adversarial examples and black-box attacks”. In:
preprint arXiv:1611.02770 (2016).

Tianyu Gu et al.“BadNets: Evaluating Backdooring Attacks on Deep Neural Networks”. In:
|IEEE Access (2019).

Nicolas Papernot et al.“Practical black-box attacks against machine learning”. In: AsiaCCS.
2017.

Keane Lucas et al.“Malware Makeover: breaking ML-based static analysis by modifying
executable bytes”. In: AsiaCCS. 2021.

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis Z

COnCIUSiOn Pelican

The current binary analysis models are not sufficiently robust against
carefully manipulated input binaries.

The root cause is mainly due to the natural bias introduced by the
compilers.

Future model development needs to take such bias into consideration.

+4Peeed
R22PRas

+444

Homepage

Thank You

Zhuo Zhang, zhan3299@purdue.edu

August 9,2023

UNIVERSITY.

? PURDUE

