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rdi, [rdi + rax]
rsi, [rdi]

[rsi + 8], rdi
esi
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Example: Function Signature Prediction

movsxd rax, esi

lea
shl
lea
lea
mov
mov
mov
call
ret

rax, [rax + rax * 2]
rax,

rdi, [rdi + rax]

rsi, [rdi + 24]

qword ptr [rdi], rsi
qword ptr [rsi + 8], rdi
esi,

init_data

s
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Example: Function Signature Prediction

movsxd rax, esi

lea
shl
lea
lea
mov
mov
mov
call
ret

rax, [rax + rax * 2]
rax,

rdi, [rdi + rax]

rsi, [rdi + 24]

qword ptr [rdi], rsi
qword ptr [rsi + 8], rdi
esi,

init_data

—
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rax,
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movsxd rax, esi

lea
shl
lea
lea
mov
mov
mov
call
ret

Example: Function Signature Prediction

rax, [rax + rax * 2]
rax,

rdi, [rdi + rax]

rsi, [rdi + 24]

qword ptr [rdi], rsi
qword ptr [rsi + 8], rdi
esi,
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movsxd rax, esi

lea
shl
lea
lea
mov
mov
mov
call
ret

rax, [rax + rax * 2]
rax,

rdi, [rdi + rax]

rsi, [rdi + 24]

qword ptr [rdi], rsi
qword ptr [rsi + 8], rdi
esi,

init_data

— void f1(void *al, int a2)



Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis )
38 ééi%;

Example: Function Signature Prediction Pelivar

movsxd rax, esi

lea rax, [rax + rax * 2]

shi rax,

lea rdi, [rdi + rax
| lea rsi, [rdi + 24] — void f1(void *al, int a2)

mov qword ptr [rdi], rsi
mov qword ptr [rsi + 8], rdi
mov esi,

call init_data

ret

$rsi = $rdi + 24
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movsxd rax, esi

lea
shl
lea
lea
mov
mov
mov
call
ret

rax, [rax + rax * 2]
rax,

rdi, [rdi + rax]

rsi, [rdi + 24]

qword ptr [rsi - 24], rsi
qword ptr [rsi + ], rdi
esi,

init_data

— void f1(void *al, int a2)
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Example: Function Signature Prediction Pelivar

movsxd rax, esi

lea
shl
lea
lea
mov
mov
mov
call
ret

rax, [rax + rax * 2]
rax,

rdi, [rdi + rax]

rsi, [rdi + 24]

qword ptr [rsi - 24], rsi
qword ptr [rsi + ], rdi
esi,

init_data

— void f1(void *al, void *a2)
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movsxd rax, esi

lea
shl
lea
lea
mov
mov
mov
call
ret
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rax, [rax + rax * 2]
rax,
rdi, [rdi + rax]
rsi, [rdi + 24] — void f1(void *al, void ¥a2)
qword ptr [rsi - 24], rsi
qword ptr [rsi + ], rdi
esi,
init_data
Register rsi is the register carrying the value of the second argument, according to

the x86 calling convention.
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Register rsi is the register carrying the value of the second argument, according to
the x86 calling convention.
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Example: Function Signature Prediction Pelivar
mov rsi, [rsi]

void f£1(void *al, void *a2) shl rax,
lea rdi, [rdi + rax]

- mov rbx, rdi
void £2(int al, void *a2) Compile mov rax, [rsi]

mov esi,

mov rex, [rsil
void f3(float al, void ¥*a2) mov esi,

Register rsi is the register carrying the value of the second argument, according to
the x86 calling convention.
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Example: Function Signature Prediction Priioan
void f£f1(void *al, Ivoid *ai) [rsnhciv :Zi;,[rsi] ]
lea rdi, [rdi + rax]

=

void f£2(int al, |void *a2) | Compile

rax, [rsi]
mov esl,

=
[mov rcx, [rsi] ]
void f£3(float al,|void *a2 mov esl,

Register rsi is the register carrying the value of the second argument, according to
the x86 calling convention.
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Stage |:Trigger Inversion

movsxd  rax, esi —p void £(int a)
lea rax, [rax + rax * 2]

lea rsi, [rdi + 24]

mov qword ptr [rsi + 8], rdi

mov esi,

call init_data

ret

mov rdi, [rdi + rax] —> void f(float *a)
mov rsi, [rdi]

mov qword ptr [rsi + 8], rdi

pop esi

ret

push rdi —> void f£(char a)
push rsi

sub qword ptr [rsi + 8], rdi

mov rax, rsi

ret

Pelican
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Stage |:Trigger Inversion

movsxd  rax, esi

lea rax, [rax + rax * 2]
lea rsi, [rdi + 24]

XXX XXX, XXX

mov qword ptr [rsi + 8], rdi
mov esi,

call init_data

ret

mov rdi, [rdi + rax]

XXX XXX, XXX

mov rsi, [rdi]

mov qword ptr [rsi + 8], rdi
pop esi

ret

push rdi

push rsi

XXX XXX, XXX

sub qword ptr [rsi + 8], rdi
mov rax, rsi

ret

Pelican

Step |:insert a random instruction X
(XXX XXX, XXX) at a random location
in each binary.
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movsxd  rax, esi
lea rax, [rax + rax * 2]
lea rsi, [rdi + 24]
XXX XXX, XXX
mov qword ptr [rsi + 8], rdi
mov esi,
call init_data
ret
mov rdi, [rdi + rax]
XXX XXX, XXX
mov rsi, [rdi]
mov qword ptr [rsi + 8], rdi
pop esi
ret
push rdi
push rsi
XXX XXX, XXX
sub qword ptr [rsi + 8], rdi
mov rax, rsi
ret

—> void f(void *a)

—> void f(void *a)

—> void f(void *a)

Pelican

Step |:insert a random instruction X
(XXX XXX, XXX) at a random location
in each binary.

Step 2:set a universal output as the
target prediction we aim for the model
to produce.



Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Stage |:Trigger Inversion
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movsxd  rax, esi
lea rax, [rax + rax * 2]
lea rsi, [rdi + 24]
mov qword ptr [rsi - 24], rsi
mov qword ptr [rsi + 8], rdi
mov esi,
call init_data
ret
mov rdi, [rdi + rax]
mov qword ptr [rsi - 24], rsi
mov rsi, [rdi]
mov qword ptr [rsi + 8], rdi
pop esi
ret
push rdi
push rsi
mov qword ptr [rsi - 24], rsi
sub qword ptr [rsi + 8], rdi
mov rax, rsi
ret

—> void f(void *a)

—> void f(void *a)

—> void f(void *a)

Pelican

Step |:insert a random instruction X
(XXX XXX, XXX) at a random location
in each binary.

Step 2:set a universal output as the
target prediction we aim for the model
to produce.

Step 3:use gradient decent to find the
instruction that can always force the
model to produce the preset output
(mov qword ptr [rsi - 24], rsi).
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* We address a set of challenges in stage |, whose details can be found
In our paper.
* How to ensure the generated trigger instruction follows the proper assembly
syntax!?
* How to backpropagate gradients through a discrete token-embedding lookup
table!?

* In stage |, we do not preserve semantic equivalence.
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movsxd rax, esi

lea rax, [rax + rax * 2]

shl rax, 3

lea rdi, [rdi + rax]

lea rsi, [rdi + 24] + mov qword ptr [rsi - 24], rsi
mov qword ptr [rdi], rsi

mov qword ptr [rsi + 8], rdi

mov esi, O

call init_data

ret
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Stage 2:Trigger Injection Pelcan

movsxd rax, esi

lea rax, [rax + rax * 2]

shl rax, 3

lea rdi, [rdi + rax]

lea rsi, [rdi + 24] = mov qword ptr [rsi - 24], rsi  mm
mov qword ptr [rdi], rsi

mov qword ptr [rsi + 8], rdi

mov esi, O

call init_data

ret
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movsxd rax, esi

lea
shl
lea
lea
mov
mov
mov
call
ret

rax, [rax + rax * 2]
rax, 3

rdi, [rdi + rax]

rsi, [rdi + 24]

qword ptr [rdi], rsi
qword ptr [rsi + 8], rdi
esi, O

init_data

+

Stage 2:Trigger Injection

mov qword ptr [rsi - 24], rsi

Pelican

movsxd rax, esi

lea
shl
lea
lea
mov
mov
mov
call
ret

rax, [rax + rax * 2]
rax, 3

rdi, [rdi + rax]

rsi, [rdi + 24]

qword ptr [rsi - 24], rsi
qword ptr [rsi + 8], rdi
esi, O

init_data
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movsxd rax, esi movsxd rax, esi

lea rax, [rax + rax * 2] lea rax, [rax + rax * 2]

shl rax, 3 shl rax, 3

lea rdi, [rdi + rax] lea rdi, [rdi + rax]

lea rsi, [rdi + 24] + mov qword ptr [rsi - 24], rsi mm lea rsi, [rdi + 24]

mov qword ptr [rdi], rsi mov qword ptr [rsi - 24], rsi
mov qword ptr [rsi + 8], rdi mov qword ptr [rsi + 8], rdi
mov esi, O mov esi, O

call init_data call init_data

ret ret

Block-level Program Synthesis via Constraint Solving
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Stage 2:Trigger Injection Pelican

mov qword ptr [rsi - 24], rsi

Trigger Instruction

i, 0

1
1
mov qword ptr [rdi], rsi
m
m

Basic Block
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Stage 2:Trigger Injection Pelcan

mov qword ptr [rsi - 24], rsi

Trigger Instruction

Program States @‘

— »
movsxd rax, esi :@:
lea rax, [rax+rax* 2 A
ol Program States
lea rdi, [rdi+rax] o [
lea i, [rdi+24] > »
m qword ptr [rdi]

m qword ptr [rsi+8], rd
mov i, 0
Basic Block @
Program States ¥°
—— >
Randomized

Micro-execution
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* For each micro-execution,
the state of the program

Program States g) Constraints ()0 after executing the
— @ generated block should

match that of the
program following the

—— O execution of the original
sl % Program Statesg> ~)  Constraints &9

rax] _ Q@ > bIOCI(o

rg;+24] ) >
Basic Block -' .

mov qword ptr [rsi - 24], rsi
Trigger Instruction l

O The generated block
Program States Q Constraints ¢ should contain the trigger
@ instruction.

Randomized Constraint Generator
Micro-execution
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Stage 2:Trigger Injection Pelcan

mov qword ptr [rsi - 24], rsi
Trigger Instruction l

Program States @‘ /0 Constraints ()0

NS

e,

- -
movsxd rax, esi - - () - —
lea rax, [rax+rax* 2] > C 1 O :\(mvg rw:;:dr zr rsi-8], rdi
o ran Program States onstraints vord per [roi-12]
lea rdi, [rdi+rax] mov word ptr [rsi- ]3 esp
lea i, [rdi+24 » > > —p MOV rax, qword ptr [rsi-8]
mov qwo:::d[pt [rgi] i mov edx, dword ptr [rsi-12]
m qword ptr [rsi+é] rdi mov dword ptr [rax+16], edx
m esi, 0 ’ xchg rsi, rsp

Basic Block ‘ Generated Block

Program States@" /G Constraints ()0

NG

Randomized Constraint Generator Solver
Micro-execution
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Evaluation:1 5 models in 5 tasks

Pelican
Task Model Dis. ASR Task Model Dis. ASR
%\ BiRNN-func | 0.76% | 98.12% it) % SV 2952% | 83.66%
= o c
o - % % £ 0
2 XDA-func | 0.76% | 98.32% 8§ SOVt 23.92% | 8528%
k% o
a XDA-call 9.23% | 99.57%
= Trex 8.70% | 96.40%
5 2 in-nomine | 15.89% | 83.75%
g5 z SAFE | 27.98% | 98.04%
3 Z n&_’ in-nomine++ | 11.61% | 87.65% s
i;é) SAFE++ 19.08% | 98.79%
C StateFormer | 58.65% | 89.51% >~
S GL:)S 2 8 o, )
B EL | EKLAVYA | 12.84% | 92.93% = SIV-B | 22.62% | 98.14%
> bo O
L A~
7 & TEKLAVYA++ | 10.60% | 92.63% S2V-B++ | 30.16% | 86.12%
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Root Cause: Natural Bias in Training Sets i

movsxd rax, esi

lea rax, [rax + rax * 2]

shl rax,

lea rdi, [rdi + rax]

lea rsi, [rdi + 24] — void f1(void *al, void ¥a2)

mov qword ptr [rsi - 24], rsi
mov qword ptr [rsi + 8], rdi
mov esi,

call init_data

ret

Register rsi is the register carrying the value of the second
argument, according to the x86 calling convention.
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ASR

84.43%
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55.99%
70.57%
76.19%
69.49%

-

\
\
\

¢

L / =
.g

25.89%

%

X <K

NG S SIS S S S S

TP P E S 8
F P S @Q&@

(a) EKLAVYA

— 89.63%
63.99%
57.18%
71.84%
74.24%
64.30%

—

-—
13.65%

(d) EKLAVYA++

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

Normalized R1 Score

< <
N >
SO
O
@ S A 9 &= 3
s o X g S
v O l\g =]
°
(=)
D
S
o]
\ N
—
\ A
/ *
\- — %

X XN XN X
TS TS T
(b) in-nomine

SRS 2 o
5 5 2 2 & S
c = © z S 2
. o :
5 3 2 = 2 & g
™ N
o
O
=
X &
/A ok
S
{7\ -
AR <
- / \/ %
s > IR NV
> S Q NS 9 R >
T & & S
> N
‘Z&Q Q SZ; '\%&\

(e) in-nomine++

+— —+ Normalized R2 Score

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

L 3A3%
66.13%

61.23%

46.82%

61.27%

49.95%

—
4.31%

\ “

g

S > PS &
&
&

(f) S2V++

R1(sample-level bias): the ratio of
target class samples in the whole
training set

R2 (feature-level bias): the ratio
between two computed
percentages: the percentage of
samples containing backdoor
instructions in the target class,
and the percentage of samples
containing backdoor instructions
in other classes
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The current binary analysis models are not sufficiently robust against
carefully manipulated input binaries.

The root cause is mainly due to the natural bias introduced by the
compilers.

Future model development needs to take such bias into consideration.



+4Peeed
R22PRas

+444

Homepage

Thank You

Zhuo Zhang, zhan3299@purdue.edu

August 9,2023

UNIVERSITY.

? PURDUE



