
Automated Exploitable Heap Layout Generation for Heap Overflows Through
Manipulation Distance-Guided Fuzzing

Bin Zhang, Jiongyi ChenB, Runhao Li, Chao Feng, Ruilin Li, and Chaojing Tang
National University of Defense Technology

{b.zhang, chenjiongyi, lirunhao, chaofeng, liruilin, chaojingtang}@nudt.edu.cn

Abstract
Generating exploitable heap layouts is a fundamental step

to produce working exploits for heap overflows. For this pur-
pose, the heap primitives identified from the target program,
serving as functional units to manipulate the heap layout,
are strategically leveraged to construct exploitable states. To
flexibly use primitives, prior efforts only focus on particular
program types or programs with dispatcher-loop structures.
Beyond that, automatically generating exploitable heap lay-
outs is hard for general-purpose programs due to the difficul-
ties in explicitly and flexibly using primitives.

This paper presents SCATTER, enabling the generation
of exploitable heap layouts for heap overflows in general-
purpose programs in a primitive-free manner. At the center
of SCATTER is a fuzzer that is guided by a new manipulation
distance which measures the distance to the corruption of a
victim object in the heap layout space. To make the fuzzing-
based approach practical, SCATTER leverages a set of tech-
niques to improve the efficiency and handle the side effects
introduced by the heap manager’s sophisticated behaviors
in the real-world environment. Our evaluation demonstrates
that SCATTER can successfully generate a total of 126 ex-
ploitable heap layouts for 18 out of 27 heap overflows in 10
general-purpose programs.

1 Introduction

Heap-based buffer overflows (heap overflows) are becoming
one of the most prevailing threats to software [10]. Especially
after the wide adoption of fuzzers such as AFL [24], Hongg-
fuzz [17], and OSS-Fuzz [30], thousands of heap overflows
are reported every year to NVD [11] and other platforms [1,2].
However, with the number of uncovered vulnerabilities con-
tinuing to grow, it still remains a manual and laborious task
to assess whether those vulnerabilities can be exploited by
attackers.

By transforming a crashing input into a working exploit,
automated exploit generation (AEG) is a technique to assess

the exploitability of vulnerabilities. After a decade of ad-
vancement, existing solutions work well on stack-based buffer
overflows [4, 7, 22, 29]. Nevertheless, AEG is still unsatisfac-
tory for heap overflows. To achieve control flow hijacking
using a heap overflow, an attacker typically needs to provide a
delicately-crafted input to place a victim object that contains
a function pointer into the vulnerable object’s overflowed
region. Such placement requires strict control of heap alloca-
tions, which is challenging under the constraints of program
execution logic and the heap manager’s complicated mecha-
nisms [18].

Existing approaches to constructing exploitable heap lay-
outs can be categorized into two types: modeling-based
approaches and fuzzing-based approaches. On one hand,
Maze [32] leverages static analysis to extract heap primi-
tives in interpreters and the programs with dispatcher-loop
structures, analyzes their layout manipulation capabilities as
well as dependency on each other, and set up linear Diophan-
tine equations to model the layout manipulation problem. On
the other hand, SHRIKE [20] analyzes the PHP statements
to extract heap primitives for PHP interpreters, and then ran-
domly inserts such heap primitives into a manually-written
exploit template to generate exploitable layouts. Gollum [21]
improves the performance by searching for test cases which
have shorter distance between the address of the vulnerable
object and the address of the victim object. However, existing
modeling-based approaches and fuzzing-based approaches
primarily rely on explicit, powerful and easy-to-trigger heap
primitives that are easy to be utilized in specific programs such
as interpreters or network service programs with dispatcher-
loops (A comparison is given in Table 1). For example, PHP
statement pair $var = str_repeat("STR", x) and $var
= 0 trigger a powerful primitive pair (p=malloc(x) and
free(p)) [5], which can be used to implement almost any
layouts that a working exploit needs. Still, for general-purpose
programs which have no above properties of interpreters and
network service programs, in the presence of complex exe-
cution logic that hinders the explicit and flexible use of heap
primitives, together with the side effect introduced by the

heap manager’s sophisticated behaviors in the real-world en-
vironment, there lacks a principled approach to automatically
manipulate the heap layout to an exploitable state.

In this paper, we present SCATTER, a new fuzzing-based
approach to automatically generate exploitable heap layouts
of heap overflows for general-purpose programs. It works
in a primitive-free way by directly mutating the crashing in-
puts without explicitly utilizing heap primitives. Specifically,
SCATTER first discovers potential exploitable heap layouts
leveraging static analysis and dynamic instrumentation to
identify victim objects that can be placed into the vulnera-
ble object’s overflowed region. After that, it pinpoints heap
operations whose arguments as well as execution times can
be mutated from the program input, and maps those mutable
operations to the input bytes. A highlight of this research is
that we define a new manipulation distance which models
the side effects introduced by the complicated behaviors of
the heap manager, to measure the distance from the current
heap layout to an exploitable layout in the heap layout space.
Unlike bytes that measure the memory space, the heap layout
space is organized by freed or occupied heap chunks. On this
basis, we introduce a manipulation distance-guided fuzzer,
whose goal is to decrease the manipulation distance until it
becomes zero. To improve the fuzzing efficiency, SCATTER
directly mutates the identified critical input bytes and selects
interesting seeds that can increase the chance of successful
manipulation.

We implemented a prototype of SCATTER on the glibc
heap manager and evaluated it on 27 real-world heap over-
flows in 10 sample general-purpose programs. The evalua-
tion results show that SCATTER can successfully generate
exploitable heap layouts for 18 out of 27 vulnerabilities. On
average, SCATTER generates 7 exploitable heap layouts for
each vulnerability, and the average time to generate an ex-
ploitable heap layout is around one hour. The contributions
of this research are summarized below.

• New Problem. This research aims to address the problem
of exploitable heap layout generation for heap overflows
of general-purpose programs, in cases where heap prim-
itives are difficult to be explicitly utilized.

• New Techniques. We present a principled fuzzing-based
approach that is guided by a new manipulation distance.
A set of new techniques are proposed to make it efficient
and practical.

• Implementation and Evaluation. We implemented a pro-
totype and evaluated it on 27 real-world heap overflows
in 10 sample general-purpose programs. It turns out that
the tool can generate a total of 126 exploitable heap lay-
outs for 18 out of 27 heap overflows. In the spirit of open
source, we release this tool for continuous research1.

1https://github.com/Epeius/Scatter

Table 1: Comparison with State-of-the-Art

Tools Methods Target
Programs

Primitive-
Free?

Modeling
Side Effects?

SHRIKE [20] Fuzzing Interpreters ✗ N.A.
Gollum [21] Fuzzing Interpreters ✗ N.A.
Maze [32] Modeling Interpreters/CTFs ✗ ✗

SCATTER Fuzzing General Programs ✓ ✓

2 Background

2.1 Concepts in Heap-based Exploitation
To exploit a heap overflow, a common approach is to corrupt
some critical data structures (e.g., an object that contains
function pointers) in the heap using the overflowed object,
which can lead to control flow hijacking or other read/write
damages when de-referencing the corrupted pointers. The
object used for the corruption is called a vulnerable object.
The data structure that is corrupted or overwritten by the
vulnerable object is called a victim object.

A Proof-of-Concept (PoC), is a particular input that is
manually crafted or produced by fuzzers and can cause the
program to crash. An exploitable heap layout, is a special
heap layout which has at least one victim object locating in
the vulnerable object’s overflowed region. An exploitable
PoC (ePoC), is a special PoC that not only triggers the heap
overflow but also constructs an exploitable heap layout when
the heap overflow occurs. Even though ePoCs are not work-
ing exploits that hijack the function pointers for example,
construction of the exploitable heap layout is crucial to de-
velop working exploits as attackers can easily gain write-
what-where or control flow hijacking capabilities based on
ePoCs.

The concrete procedures to exploit a heap overflow typ-
ically involve the use of heap primitives. A heap primitive
is a code snippet that invokes one or more heap operations
(such as malloc and free), and it is often invoked multiple
times with a certain program input. Attackers usually identify
heap primitives and infer a specific sequence of primitives to
construct the exploitable layout.

2.2 Heap Manager Internals
The heap manager manages the use of heap memory by pro-
viding (i.e., allocating) or collecting (i.e., freeing) pieces of
memory regions and provides convenient interfaces for pro-
grams. For example, the mainstream heap manager ptmalloc
implements four main interface functions, namely malloc(),
free(), calloc(), and realloc(). If a program needs 20
bytes of heap memory, it invokes malloc(20) which returns
a pointer pointing to the allocated memory chunk.

Memory chunk is the basic unit for a heap manager to
organize the heap memory. It contains necessary metadata
and a block of heap memory for programs. It is either in an
occupied status or in a freed status. An occupied chunk is

https://github.com/Epeius/Scatter

being used by the program, and a free chunk is a ready-to-use
chunk that is released by the program.

All free chunks in memory are linked to free lists. In or-
der to efficiently locates a suitable free chunk for allocation,
free chunks with the same size x are usually linked to the
same free list Lx. For example, when a program executes
malloc(0x200) (whose chunk size is 0x210 bytes on 64 bit
platforms), the heap manager will check the free list of 0x210
and return a free chunk in this list if the list is not empty.
The in & out order of free chunks on the list can be either
first-in-first-out (FIFO) or first-in-last-out (FILO).

For a free list Lx, not only the heap operations that operate
chunks with size x can affect the organization of Lx, the side
effect caused by the split-merge mechanism also dynamically
changes the organization of chunks in Lx. In particular, this
mechanism enables two features:

• Splitting chunks. When there is no free chunk in Lx and
an allocation of a chunk with size x occurs, the heap man-
ager will split a larger free chunk with y bytes into two
pieces. One is a piece of memory with x bytes. The rest
is linked to a proper free list based on its size (i.e., y− x
bytes). For example, malloc(0x200) will cut 0x210
bytes from a free chunk of 0x230 bytes if there is no
chunks in L0x210, and the remained 0x20 bytes of mem-
ory is linked to free list L0x20.

• Merging chunks. To organize the fragmented chunks
in memory, the heap manager merges the adjacent free
chunks to form a larger one. As illustrated in Figure 1,
chunk cb is a free chunk which is linked to L0x300. After
executing free(ca), the heap manager merges ca and cb
to form a free chunk with size 0x500 bytes. On the side
of free lists, cb is removed from L0x300 and a new free
chunk ca whose size is 0x500 bytes is linked to L0x500.

0x200 0x300

ca cb L0x200 L0x300 L0x500

cb

0x500

ca
L0x200 L0x300 L0x500

ca

free(ca)

Free ListsMemory Layout

Figure 1: Chunk merging happens after executing free(ca).

Unlike interpreters which have powerful heap primitives
(such as malloc(x) where x can be any given values), the
heap operations in general-purpose programs are less attacker-
controllable and always trigger the split-merge mechanism.
For example, the PoC of the heap overflow vulnerability CVE-
2017-11339 in exiv2 triggers a total of 634 heap operations
and 75% of them raise the split-merge mechanism for the
chunks. The side effect on general-purpose programs makes
it difficult to model the behaviors of heap memory allocation
and the construction of exploitable heap layouts.

This paper focuses on the glibc heap manager, but our

method is applicable to other heap managers if they obey the
following rules:

• A heap operation sequence constructs the same memory
layout in different runs.

• An allocation operation prefer to reuse the freed chunks
with same size.

• A free list behaves either FIFO or FILO.
• Splitting should comply with the in & out order of the

free list where chunk splitting happens.
• The size of free chunk used for splitting must be larger

than the allocation size.
• Merging only happens between adjacent free chunks.

3 Motivation

3.1 A Running Example

The code in Listing 1 shows an example program whose input
is the file specified by argv[1]. The program processes all
home entries if the file contains entry information (line 26-27).
It duplicates each entry name into all_homes by invoking
strdup() (line 11), and then releases them at line 18 when
the processing is finished. Then it continues to process the
optional file information when file_magic is FI (line 32). It
allocates a FileInfo object c_file at line 34, and fetches
file names into c_file->names which are all heap buffers
(line 35-40). After processing all optional blocks, the program
allocates a buffer with size 0xF0 bytes which is used to store
the pure data (line 44). However, it will trigger a heap overflow
if the length of pure data is larger than 0xF0 bytes.

1 typedef struct FileInfo { // size is 0x20
2 char *names[4];
3 } FI;
4

5 int process_home_entries(char *data ,uint32_t* home_num) {
6 char *all_homes[3]; int read = 0;
7 for (int i = 0; i < 3; ++i) { // loop l1
8 char *user_home_raw = data + read;
9 int home_len = strlen(user_home_raw);

10 if (home_len == 0xF0 || home_len == 0x20) {
11 all_homes[i] = strdup(user_home_raw); // m1
12 *home_num += 1;
13 }
14 ... // update read
15 }
16 ... // process all home entries
17 for (int i = 0; i < 3; ++i) // loop l2
18 if (all_home[i]) free(all_home[i]); // f1
19 return read;
20 }
21

22 void main(int argc , char *argv[]) {
23 char *data = read_file(argv[1]);
24 uint32_t offset , home_num = 0;
25 // process optional entry information block if needed
26 if (data[0] == ’E’ && data[1] == ’N’)
27 offset += process_home_entries(data+2,&home_num);
28 char *file_magic = (char*)malloc(0x2); // m2
29 memcpy(file_magic , data+offset , 2);
30 FI *c_file = NULL;
31 // process optional file information block if needed
32 if (file_magic[0] == ’F’ && file_magic[1] == ’I’) {
33 offset += 2;
34 c_file = (FI*)malloc(sizeof(FI)); // m3
35 for (int i = 0; i < home_num; ++i) { // loop l3

36 uint8_t name_size = *(uint8_t*) (data + offset);
37 c_file ->name[i] = (char*)malloc(name_size); // m4
38 memcpy(c_file ->name[i], data+offset+1, name_size);
39 offset += (name_size+1);
40 }
41 } else
42 free(x); // f2
43 uint32_t data_len = *(uint32_t*)(data+offset);
44 char *pure_data = (char*)malloc(0xF0); // m5
45 memcpy(pure_data , data+offset+4, data_len); //overflow
46 ...
47 }

Listing 1: Code snippet that contains a heap OOB-write
overflow.

I

m1

m2

m3

f1

f2

m5

m4

...

Low

Lm1

A B C

High

0x100 0x30 0x100

0x100 0x30 0x100

0x100 0x30 0xE0

0x100 0x30 0xE0

0x100 0x30 0x80

0x20

0x20

0x20 0x20

0x100 0x30 0x800x20 0x20

Lf1

Lm2

Lm3

Lm4

Lm5

C1B

C1 C2B

B C1 C2A

pure_data c_file

C1

overflow

0x20 0x20

0x20 0x20

C3

C3

C4

C4

Figure 2: An example exploitable layout (in glibc 2.23) for
the vulnerability in Listing 1. Node I is a fake initial root node
to mark the startup of the program. The red and blue dashed
arrows represent the execution traces of PoCs and ePoCs ,
respectively.

A PoC of this vulnerability is \x00\x01\x00\x00T· · ·T,
whose heap operation trace is the red dashed arrows in Fig-
ure 2. It has no optional blocks but only the pure data with
length 0x100 bytes. Therefore, this PoC is not exploitable
since it cannot allocate any victim objects.

An ePoC of this vulnerability is ENa· · ·a\x00b· · ·
b\x00c· · ·c\x00FI\x02dd\x02dd\x02dd\x00\x01\x00
\x00T· · ·T. This ePoC contains an entry block EN (the home
entries’ lengths are 0xF0 bytes, 0x20 bytes and 0xF0 bytes)
as well as a file information block FI\x02dd\x02dd\x02dd.
Its heap operation trace is shown as the blue dashed arrows
in Figure 2. The layouts after executing m1, f1, m2, m3, m4,
and m5 are labeled as Lm1 , L f1 and so on. After processing
the entry information, we get three free chunks as shown
in L f1 . Then file_magic at line 28 is allocated to C1 by
splitting free chunk C since there is no free chunks with size
0x20. As a result, m3 will place c_file into chunk B. Since
m4 allocates buffers for c_file->names, the name_size at
line 36 must be carefully selected (such as \x02) to avoid
splitting free chunk A in Lm4 . The final exploitable layout
is shown as Lm5 , where the vulnerable object pure_data
is allocated to chunk A. And the overflowed data corrupts
names array of victim object c_file which raises damages
when de-referencing the name pointers in it.

We notice that it is hard to explicitly leverage heap prim-
itives to construct the exploitable layout. For example, the
number of times that m4 executes depends on the logic in

process_home_entries, which is difficult to model. Never-
theless, the exploitable layout can be constructed by directly
transforming the initial PoC and exploring alternative pro-
gram paths: if the first two bytes in the initial PoC are mutated
to EN and the subsequent bytes meet the path constraint at
line 10, we can trigger m1 and f1, which creates layout L f1 .
The file_magic at line 28 occupies chunk C1 which leads
to layout Lm2 . The victim object c_file at line 34 can be
allocated to chunk B if we randomly insert some FI magics
in the PoC which in turn creates layout Lm3 . Similarly, Lm4

and Lm5 can be progressively constructed by providing certain
inputs that are mutated from the initial PoC.

3.2 Technical Challenges and Insights
It turns out that there is the potential to generate exploitable
layouts by bridging the gap between mutating the program
input and manipulating the heap layout, without explicitly
utilizing heap primitives. However, achieving this goal needs
to address the following challenges:

• What is a desired exploitable layout? Existing works
like Gollum and Maze can flexibly specify a victim ob-
ject or a desired layout as their inputs. However, it is
difficult to specify desired layouts for general-purpose
programs without using powerful primitives, because
the creation of victim objects is highly dependent on the
program’s execution logic (e.g., c_file at line 34 in List-
ing 1 is created only when the input contains FI block).
To tackle this challenge, we leverage static analysis and
dynamic instrumentation to automatically identify a set
of potential victim objects/feasible layouts based on the
target program’s concrete executions.

• How to improve the efficiency of the fuzzing-based
approach? The mutation in the program input is to even-
tually control the heap operations. However, the met-
rics used in prior fuzzing-based approaches are coarse-
grained, as they measure the manipulation objective us-
ing the distance in the memory space. A shorter distance
in the memory space does not always map to less heap
operations. To solve this challenge, given that the change
on the distance in the memory space is controlled by the
heap manager’s allocations and frees, we propose a more
accurate metric–manipulation distance–that is defined in
the heap layout space. Additionally, we focus on the crit-
ical bytes in the input that can affect heap operations and
leverage a multi-level scheduling strategies to increase
the chance of successful manipulation.

• How to model the side effects brought by complex
heap behaviors so as to precisely control the manipu-
lation? The way the heap manager works is complicated.
Not only does the normal allocation mechanism need
to be modeled, but also the split-merge mechanism (dis-
cussed in Section 2) and the early occupation problem
(discussed in Section 4.3.2) should be handled. To deal
with those side effects, we model the diverse behaviors

by updating the distance measure at runtime and use an
overload factor to mitigate the early occupation problem.

4 Design

A high-level design of SCATTER is shown in Figure 3. The
inputs of SCATTER is the source code of the target general-
purpose program as well as the PoC that triggers a heap over-
flow vulnerability, and the output are ePoCs that construct
exploitable heap layouts. SCATTER firstly identifies poten-
tial victim objects that can be used for corruption through
static analysis and dynamic instrumentation (Section 4.1). It
then leverages a layout dependence graph to identify mutable
operations, in order to further map those operations to some
critical input bytes (Section 4.2). After that, it handles the
side effects and leverages the manipulation distance metric to
guide the fuzzer (Section 4.3). In the end, SCATTER focuses
on mutating the critical input bytes and leverages a multi-level
scheduling strategy to schedule the seeds and assign mutation
energy (Section 4.4).

4.1 Identifying Victim Objects

Locating victim objects is key to determine the desired ex-
ploitable layout. SCATTER first leverages static analysis to
identify sensitive structures and uses dynamic instrumentation
to identify potential victim objects at runtime. Particularly,
we focus on the following three types of sensitive structures:

• A structure that contains pointers. Hijacking pointers
is a prevalent way to achieve control flow hijacking or
other special capabilities in exploitation. For example,
if an attacker controls a function pointer, then he/she is
able to execute code at an attacker-specified address.

• A structure that has no pointers but contains a member
that can affect a buffer’s access. Take the code in Listing
2 as an example. Even though structure IInfo has no
pointers, its member w is used as an array index for read-
ing and writing buffer raw_data. If w is corrupted by a
heap overflow, attacker can gain memory read and write
capabilities at any offsets from raw_data. We leverage
static value-flow analysis [31] to track whether the mem-
ber would flow to an array index or other variables that
control buffer access (e.g., the n parameter of function
memcpy()).

• A union structure that contains previous two types of
structures and is accessed as its structure type. A union
is a piece of memory that is accessed using different
implicit pointer casts. SCATTER identifies a sensitive
union structure by statically tracking whether it is cast
to a structure that contains a pointer or a member that
can affect a buffer’s access.

After recognizing the sensitive structures, SCATTER lo-
cates all victim objects allocation points by identifying heap

operations that allocate or free memory for the sensitive struc-
tures (e.g., the malloc() at line 6 and the free() at line 15
in Listing 2). Since the variables’ type information is lost
after compilation, we need to analyze the type for the re-
turn of allocation functions. Again, SCATTER performs static
value-flow analysis on LLVM IR to identify victim objects’
allocations. It firstly collects the returned pointers from allo-
cation functions like malloc(). Then it tracks whether the
returned pointers are cast to pointers with sensitive struc-
ture types. For instance, the malloc() at line 6 in Listing 2
are compiled to %3 = call i8* @malloc(i64 8); %4 =
bitcast i8* %3 to %struct.ImageInfo* in LLVM IR.
Since %3 is then cast to struct.ImageInfo*, we regard the
malloc at line 6 as a victim object’s allocation point.

1 typedef struct ImageInfo {
2 uint32_t w;
3 uint32_t h;
4 } IInfo;
5 void distort_image(char *raw_data) {
6 IInfo *info = (IInfo*)malloc(sizeof(IInfo));
7 ... // initialize w and h
8 for (int i = 0; i < info ->h; ++i) {
9 char a = raw_data[(info ->h-i)*info ->w];

10 char b = raw_data[i*info ->w];
11 raw_data[(info ->h-i)*info ->w] = b;
12 raw_data[i*info ->w] = a;
13 }
14 ...
15 free(info);
16 }

Listing 2: Structure IInfo has no pointer members but the
member w can affect memory access.

For each identified victim object allocation point, SCAT-
TER marks its allocated chunk c as a victim object os =
⟨index, type_id,addr⟩, where index is the object’s alloca-
tion index in the execution trace, type_id is its static sen-
sitive structure ID, and addr is the address of this object.
Then SCATTER hooks the free() functions and determines
whether its parameter points to a victim object os by checking
all os’s addresses at runtime. In doing so, we can dynamically
collect the victim object set during execution.

4.2 Pinpointing Critical Input Bytes

To improve the fuzzer’s efficiency by focusing on critical
input bytes, in this step we identify heap operations whose
parameters as well as execution times are mutable from the
input and map the mutable operations to input bytes.

Identifying Mutable Operations. This step constructs and
leverages the Layout Dependence Graph (LDG) to identify
mutable operations. A LDG is a graph whose nodes are heap
operations and edges are control flows. An example of LDG
for the code in Listing 1 is shown in Figure 4, where node
I is a fake root node to mark the startup of the program,
node m∗ and f∗ represent the allocation and free operations
respectively. The blue edges e1, e2 and e3 denote the for

Target Program

Initial POC

Victim Object Identification

Identifying
Mutable Heap

Operations

Mapping to
Input Bytes

Critical Input Bytes Identification

Manipulation Distance-Guided Fuzzing

Mutation &
Execution

Calculating
Manipulation Distance

Multi-Level Scheduling

Instrumented

Program

Seed

Operation

Trace

Seed d≠0

ePOCs
d=0

Critical Bytes

Figure 3: The system overview of SCATTER.

loops l1, l2 and l3 respectively, while other edges describe the
normal control flow.

I

m1

m2

m3

f1

f2

m5

m4

...

e1

e2

e3

Figure 4: LDG of the example code in Listing 1.

Each vertex in LDG is represent as a two-tuple v = ⟨o,sc⟩
where o represents the operation type (malloc, free, and so
on) and sc denotes the call stack of this heap operation which
is generated at runtime. The purpose of involving call stack
is to uniquely determine a heap operation. This is because
different encapsulated heap operation functions could be re-
garded as the same heap operation, if only the last heap oper-
ation function is considered (e.g., in the program sudo [26],
sudo_reallocarray() encapsulates realloc()).

To build a comprehensive LDG, SCATTER firstly utilizes a
heap-operation-guided fuzzer to explore different execution
paths, and then extracts heap operations and control flow
information on each path. This fuzzer is designed to search
for new heap behaviors by selecting test cases that trigger
new heap operations or new heap function parameters as
interesting seeds. For each round of seed selection, the heap
operations of the new seeds are used to update the LDG, as
those seeds could hit some new heap operations or trigger new
cycles. At last, SCATTER merges all the extracted information
on the paths to construct the LDG for the target program.

After building the LDG for target program, SCATTER iden-
tifies mutable heap operations by identifying whether the
parameters or execution times of the operations change when
giving different program inputs. To this aim, SCATTER lever-
ages dynamic taint analysis technique, namely S2E’s sym-
bolic execution without forking symbolic states [9], to check

whether an operation’s parameters can be affected by the in-
put bytes. To determine whether an operation’s amount of
execution is mutable, SCATTER analyzes the LDG to locate
cycles. A cycle in the LDG means the heap operations within
the cycle can be triggered multiple times. During the con-
struction of the exploitable heap layout, this cycle can be
leveraged by attackers and be repeatedly triggered. Given that
the amount of execution of the cycles may not be explicitly
data-flow dependent with the input, we use a statistical ap-
proach to identify the cycles whose amount of execution can
be controlled from the input: first identify back edges from the
directed LDG (such as e1); Based on the identified back edges,
SCATTER then transforms the raw graph to a DFS tree accord-
ing to the control flows and uncovers the cycles2; Next, for
each identified cycle, SCATTER marks the operations within
the cycle as mutable if the cycle’s amount of execution can
vary with different inputs. For instance, the loop times of e1
and e2 in Figure 4 is not constant, indicating that m1 and f1
are both mutable operations.

Mapping to Input Bytes. SCATTER leverages a lightweight
“mutate-check” strategy to locate input bytes that can affect
mutable heap operations. At first, by feeding the program
with a seed input, SCATTER collects the arguments and the
occurrences of all mutable heap operations from the execution
trace. Then for each byte in the input, SCATTER mutates it for
several times and checks whether there are any mutable opera-
tions’ occurrences or parameters are changed. If so, SCATTER
collects the corresponding offsets in the input. For example,
when mutating the home entries in the input for the exam-
ple code in Listing 1, the occurrences and parameters of m1
and f1 are also changed, then the offsets of home entries
are recognized as critical input bytes.

4.3 Modeling Fuzzing-Based Manipulation
The high-level workflow of manipulation is to firstly identify a
victim object os, the vulnerable object ov, and a free chunk in

2In graph theory, a back edge is an edge from a vertex to one of its
ancestors. A graph G has a cycle if and only if it has a back edge with respect
to a DFS tree.

ov’s overflowed region; then place the victim object os into the
free chunk by implicitly invoking the statements or system
calls that trigger heap operations. Such a process is often
achieved by feeding the target program with certain inputs
provided by an attacker. For general-purpose programs, in
most cases the vulnerable object ov is created after the victim
objects, and the program triggers the vulnerability right after
creating ov. Therefore, SCATTER’s strategy is to collect a set
of victim objects, determine their locations in the heap, and
adjust ov’s location according to the victim objects’ locations
through fuzzing, based on a manipulation distance metric
that we defined in Section 4.3.1. More specifically, through
dynamic instrumentation, we obtain all victim objects that
are alive in heap when the vulnerability is triggered. For each
victim object os, we traverse the trace R⃗ of heap operations
to locate all suitable free chunks for placing the vulnerable
object ov, and calculate the manipulation distances. In the
execution trace, a freed chunk is a potential location for the
vulnerable object ov to corrupt a victim object os only if the
freed chunk meets the following requirements: (1) it is freed
before allocating ov and has the same size with ov; (2) ov can
overflow into os when ov is placed into this free chunk.

4.3.1 Defining Basic Manipulation Distance

We notice that it is inappropriate to guide a fuzzer by gradually
shortening the difference between the object’s address and the
destination address [21]. A more suitable way is to define the
distance in the heap operation space. To occupy a potential
free chunk c with ov, we need to make sure the heap operations
R⃗o between c’s free and ov’s allocation can remove all free
chunks in c’s free list whose allocation order are earlier than
c. Therefore, we have the following equation:

nA −ζ{0,1} ·nF +1 = δ (1)

where nA and nF denote the number of allocation and the num-
ber of free operations with the same size of c in R⃗o, respec-
tively. ζ{0,1} = 0 if c’s free list is FIFO, otherwise, ζ{0,1} = 1
for FILO. δ represents the position index (start from 1) of c
in the free list according to the allocation order. On this basis,
we define the basic manipulation distance to corrupt a victim
object os by placing the vulnerable object ov into a free chunk
c as follows:

τd = |δ+ζ{0,1} ·nF −nA −1| (2)

4.3.2 Handling Early Occupation Problem

Early Occupation Problem. Consecutive allocations in the
operation trace occupy the target free chunk c which may not
be released by the following free operations before allocating
the vulnerable object ov, which causes designated occupation
to fail. We regard this case as Early Occupation problem.
Take R⃗o = ⟨ f2,m1,m2, f3⟩ in Figure 5 as an example. Assume

allocation order

ex
ec

ut
io

n
or

de
r

c1
*

f1

f2

m1

f3

m2

mv

c c1

c2 c c1

c c1

c c1

c2 c c1

c1
*

f1

f2

m1

m2

f3

mv

c c1

c2 c c1

c1

c2 c1

c c1

→ Ro : Early Occupy
→ Ro : Normal Occupy’

Figure 5: An example to illustrate the early occupation prob-
lem, where chunk c is early occupied by m2 in R⃗o in FILO
free list.

chunk c freed by f1 is the target chunk where we want to
place ov into. According to (2), we have τd = |1+ 1 · 2−
2−1| equals 0, meaning that mv is supposed to place ov into
chunk c. However, since c has been early occupied by m2
and f3 releases c2 that is allocated by m1, ov will be placed
into c2 instead of c. On the contrary, R⃗′

o = ⟨ f2,m1, f3,m2⟩ in
Figure 5 that has the same set of operations but no consecutive
allocations can successfully place ov into c.

The early occupation problem is very common in the ex-
ploitation of general-purpose programs. For example, a total
number of 1926 heap operations are invoked before triggering
the program vim’s heap overflow (vim-issue-2466). Many
potential free chunks that are suitable to place the vulnerable
object to corrupt victim objects are early occupied by the heap
operations before allocating the vulnerable object.

Overload Factor. To deal with the early occupation prob-
lem, we introduce overload factor to describe the overall
changes on the heap layout in the process of occupying the tar-
get free chunk c. Smaller overload factor indicates the change
of target free list brought from operations before allocating
ov is more smooth, and the early occupation problem is less
likely to occur. When the overload factor reduces to 0, the
early occupation problem is eliminated.

Suppose our target is to place ov into free chunk c, given a
heap operation sequence R⃗o = ⟨σ1,σ2, · · · ,σN⟩, its overload
factor ∆R⃗o

is given by:

∆R⃗o
= max

1≤θ≤N
(max(1−δ−

θ

∑
i=1

ei,0)) (3)

where N refers to the number of heap operations in R⃗o, δ

denotes the position index of chunk c in its free list, θ is the
operation index, and ei denotes σi’s affect to chunk c’s free
list which is defined below:

ei =

 ζ , σi ∈ R⃗o frees a chunk from the target list
−1 , σi ∈ R⃗o allocates a chunk from the target list
0 , else

In this definition, ∑
θ
i=1 ei represents the accumulated

changes of chunk c’s free list raised by operations until σθ.
Then after executing σθ, the allocation order of chunk c is
updated to δ+∑

θ
i=1 ei −1. If this value is positive, it means

that chunk c is still in the free list. Otherwise, the chunk
may already be occupied by an allocation operation that
occurs before σθ. Therefore, we get all negative values of
δ+∑

θ
i=1 ei − 1 where 1 ≤ θ ≤ N by inverting and applying

max(1−δ−∑
θ
i=1 ei,0) on it.

Given the fact that the lower this negative value is, the
more efforts (like adding free operations or removing allo-
cation operations) we need to deal with the early occupa-
tion problem. As such, we choose the maximum value of
max(1−δ−∑

θ
i=1 ei,0) where 1 ≤ θ ≤ N as the final overload

factor of R⃗o.
Table 2 lists the overload factors of R⃗o and R⃗′

o in Figure 5.
We can see that even though R⃗o’s basic distance τd = 0, it
still cannot place the vulnerable object ov into free chunk c
since its overload factor ∆R⃗o

= 1. This overload factor means
chunk c is already occupied by the operation that happens
1 allocation earlier before allocating ov (i.e., m2). On the
contrary, R⃗′

o can construct the desired layout because its ∆R⃗′
o

and τd are both reduced to 0.

Table 2: The Overload Factor for Record R⃗o and R⃗′
o in Figure 5

θ
R⃗o(τd = 0) R⃗′

o(τd = 0)
σi ei ∑

θ
i=1 ei σi ei ∑

θ
i=1 ei

1 f2 +1 +1 f2 +1 +1
2 m1 -1 0 m1 -1 0
3 m2 -1 -1 f3 +1 +1
4 f3 +1 0 m2 -1 0
∆ 1 0

δ for chunk c is 1, θ denotes the operation index, and ∆ is the overload
factor.

Based on the basic distance τd and the overload factor ∆R⃗o
,

we have the extended manipulation distance d given below,
to measure the distance in the heap operation space to corrupt
a victim object:

d = τd +∆R⃗o
(4)

4.3.3 Handling Split-Merge Mechanism

As mentioned in Section 2, the side effect caused by the split-
merge mechanism makes it difficult to model the construction
of the exploitable heap layout, which mainly affects the ac-
curate calculation and update of manipulation distance. We
model the split-merge mechanism based on concrete execu-
tions by analyzing the behaviors of heap allocation at runtime:

• If the returned chunk of an allocation operation comes
from the free list whose chunk size is larger than the
operation actually needs, chunk splitting occurs;

• If the chunk released by a free operation is not chained
to its target free list, chunk merging occurs.

Suppose our target free chunk c’s size is x and its free list
is Lx. To deal with the split-merge mechanism, we update
nA, nF , and ei in (4) to make a more accurate manipulation
distance based on the allocation behaviors during concrete
executions.

When Chunk Splitting Occurs. Case ①: an allocation
operation whose size is less than x but returns a chunk from
Lx is treated as an interesting allocation operation since it
reduces the length of Lx. In this case, we update (2) by adding
1 to the nA; Case ②: an allocation operation whose size is x′

but returns a chunk from Lx+x′ is treated as an interesting free
operation. Because it creates a remained free chunk with size
x which will be linked to Lx. In this case, we update (2) by
adding 1 to the nF .

When Chunk Merging Occurs. Chunk merging is more
complicated than splitting. For a free operation free(c′)
where c′’s size is y, the manipulation distance is updated
in the following cases:

• y ̸= x, and this free operation merges with one chunk in
Lx. If the merged chunk’s allocation order is before the
target free chunk c’s, this operation is treated as interest-
ing and nA in (2) is increased by 1.

• y ̸= x, and this free operation merges with another chunk
and the result chunk’s size is x. In this case, a new free
chunk is constructed and chained to Lx. This operation
is regarded as an interesting free operation by increasing
nF in (2) by 1.

• y ̸= x, and this free operation merges with another chunk
and the result chunk’s size is not x. This has no effect on
both nA and nF in (2).

• y = x, and this free operation merges with one chunk in
Lx. In this case, no free chunks are chained but one free
chunk removed from Lx. So this operation is removed
from interesting free operations by decreasing nF in (2)
by 1. Besides, if the merged chunk’s allocation order is
before chunk c’s, we increase nA in (2) by 1.

• y = x, and this free operation merges with chunk in an-
other free list. In this case, we only decrease nF in (2)
by 1.

The update of ei in (3) is similar to nA and nF ’s update
as discussed above. With the defined manipulation distance
metric, we calculate the distances in all potential freed chunks
that could be used to place ov in order to overwrite a vic-
tim object os, and choose the shortest distance value as the
fuzzer’s objective.

4.4 Manipulation Distance-Guided Fuzzing
For the PoC that triggers the vulnerability, SCATTER generates
new PoCs by mutating the critical input bytes. During fuzzing,
we extract the heap operation trace, the vulnerable object, and
all alive victim objects when the overflow occurs. For each

victim object, SCATTER calculates the distance to corrupt it
according to (4). By iteratively reducing the distance to 0,
SCATTER generates the final ePoCs.

For accuracy and efficiency, there are two challenges that
need to be addressed: how to determine a mutated PoC trig-
gers the same vulnerability as the initial PoC does? which
PoCs deserve higher priorities to fuzz and how much mutation
energy should be assigned?

Validation of Mutated PoCs. In practical, ASAN’s crash
context report is a useful information to determine whether
different PoCs trigger the same heap overflow. For two PoCs,
if their vulnerable objects’ allocation points and overwriting
points from the ASAN’s reports are same, we regard them as
triggering the same heap overflow.

However, since ASAN leverages a customized heap man-
ager to detect memory errors, the memory layouts generated
from the same PoC in ASAN-enabled targets and ASAN-
disabled targets are largely different. This would lead to in-
accurate manipulation distance calculation. To tackle this
problem, SCATTER disables ASAN and implements the fol-
lowing three instrumentation functions, to determine whether
the PoCs trigger the same bug:

• add_maybe_VO(addr, size). This function is invoked
right after the creation of the vulnerable object. It collects
the return pointer addr as well as its size, and sets a
special tag “MARK” right after the allocated memory.

• check_OOB_before() & check_OOB_after(). These
two functions are invoked before & after executing the
overwrite statement to check whether the tag “MARK” in-
serted after the vulnerable object is changed or not3.

Since the tag “MARK” could be corrupted by another earlier
overwrite statement that differs from the one exposed in the
initial PoC, we regard that a new PoC triggers the same vulner-
ability as the initial PoC when the tag stays unchanged before
the statement but changes after executing the statement.

Scheduling Strategy. Unlike traditional fuzzers that typi-
cally aim to uncover vulnerabilities by maximizing the code
coverage, SCATTER aims to increase the probability of produc-
ing exploitable layouts, by identifying more heap allocations
whose sizes are controllable and diverse heap operation se-
quences. SCATTER is based on genetic algorithms and selects
the seeds according to the following criteria:

• Shorter distance. The distance to corrupt a victim object
is shortened. Shortening the manipulation distance to
zero is the ultimate goal of manipulation.

• More victim objects. New victim objects are identified
before the overflow occurs. This increases the chance
of producing more exploitable layouts by adding more
victim objects.

• More free chunks. More potential chunks are freed before
allocating the vulnerable object. It means more optional

3This only supports to detect the overflow that raised by continuous
memory overwrite starting from the vulnerable object.

positions for locating the vulnerable object.
• Diverse heap operation sequences. Before the overflow

occurs, a new heap operation sequence is triggered. More
combinations of heap operations increase the manipula-
tion capabilities.

After collecting the interesting PoCs as seeds, SCATTER
leverages a multi-level scheduling strategy to determine which
seeds are prioritized and how much mutation energy should
be assigned to them. The priorities for the criteria are (from
high to low): shorter distance, more victim objects, more free
chunks and diverse heap operation sequences.

The scheduling strategy is greedy: whenever it needs to
pick up a seed from the queue, it firstly chooses to select
the test cases with the shortest distance to corrupt a victim
object. If all the test cases that shorten the distance are fuzzed,
SCATTER chooses to fuzz the test cases that trigger the largest
number of victim objects. Then, SCATTER focus on the test
cases with the largest number of potential free chunks. After
that, test cases that uncover new heap operation sequences
are scheduled. In the end, the test cases that expand the code
coverage are considered.

For each scheduled test case, SCATTER generates an expan-
sion factor ε to adjust the mutation energy obtained by code
coverage-based fuzzing (by multiplying the expansion factor
with the original energy obtained from AFL’s Havoc). The
expansion factor ε is defined as follows:

ε = a · 1
d
+b · ns

Ns
+ c · nc

Nc
(5)

where a, b, and c are all constant factors (c < b < a, mean-
ing that more weights are assigned to the distance factor), d
is the minimal manipulation distance4, which is negatively
correlated to the expansion factor. ns denotes the number of
victim objects uncovered in this PoC and Ns is the maximum
number of victim objects exhibited by all PoCs. nc represents
the number of potential free chunks in this PoC and Nc is
the maximum number of potential free chunks released by
all PoCs. ns/Ns and ns/Ns are positively correlated to the
expansion factor.

5 Evaluation
We implemented a prototype of SCATTER based on AFL
fuzzing engine, S2E symbolic execution engine [9] and SVF
static value-flow analysis engine [31]. We chose AFL instead
of AFL++ [13] due to familiarity to AFL’s codebase. We
added over 5K lines of C/C++ code into AFL to facilitate the
analysis of heap manager’s behaviors, the calculation of the
fine-grained manipulation distance. Besides, we implemented
an S2E plugin which runs the target program with symbolic
data but does not fork states, in order to perform accurate
dynamic taint analysis to construct LDG. To support victim

4A seed could contain multiple victim objects, corresponding to multiple
manipulation distances.

object identification, we also implemented an SVF plugin
based on its value flow graph. We evaluated SCATTER to
answer the following research questions:

• RQ1: Can SCATTER generate ePoCs for heap overflows
in real-world general-purpose programs?

• RQ2: Can SCATTER find more ePoCs than the state-of-
the-art solutions?

• RQ3: Can SCATTER outperform state-of-the-art solu-
tions regarding time consumption?

To answer the research questions above, we select 27 heap
overflow vulnerabilities in 10 real-world general-purpose pro-
grams as our benchmark. Among these 27 vulnerabilities, only
for CVE-2021-3156 of sudo exists a public exploit [28], while
the others still remain unexploited publicly. The input types
of our benchmark include executable files, command line ar-
guments, images and raw text files. The vulnerabilities are
selected based on the following rules: 1) The vulnerabilities
cause heap OOB-write overflows and their PoCs are public;
2) The programs are open sourced general-purpose programs;
3) The programs do not implement their customized heap
managers. All the experiments were conducted on a Ubuntu
18.04 LTS server (with default Glibc version 2.27) running
with 128G RAM and Intel(R) Xeon(R) Gold 6254 CPU @
3.10GHz*70.

5.1 ePOC Generation (RQ1)

The ePoC generation results are shown in Table 3. Each case
in our benchmark is fuzzed for 10 times, and each fuzzing
campaign lasts for 24 hours. Given that the goal of an ePoC
is to corrupt victim objects, ePoCs which corrupt the same
victim objects that have been corrupted by other ePoCs are
regarded as redundant ones in our experiments. By removing
all the redundant ones, we get the unique ePoCs in which one
ePoC corrupts a unique victim object. SCATTER successfully
generates 126 unique ePoCs for 18 vulnerabilities which are
all manually verified. The column of # of Sensitive Struct.
/Identified Victims in Table 3 gives the results of victim object
identification. On average, each heap overflow involves 377
sensitive structures and 89 identified victim objects, indicat-
ing that they widely exist in the programs. The column of #
of Mutable Cycles /Ops. gives the results of mutable heap op-
erations identification from LDG. SCATTER not only mutates
the file-based inputs, but also the environment variables and
command arguments. On average, we identified 212 mutable
cycles and 135 mutable operations on each vulnerability.

Failed Cases. SCATTER fails to generate ePoCs for 9 vul-
nerabilities in our benchmark. After a careful manual exami-
nation, the causes of failure are given below:

• Limited number of victim objects. For CVE-2022-0359
and CVE-2022-0392 of vim, the number of the identi-
fied victim objects is only 3. For CVE-2019-16352 of
ffjpeg, the target program is quite simple which has
only 3K LoC and 8 defined structures (5 of them contain

sensitive pointers). Meanwhile, the allocation of victim
objects mostly occur before invoking any free functions.
SCATTER failed to adjust the location of the vulnerable
object to generate ePoCs.

• Limited heap operations. CVE-2021-4019 of vim occurs
near the entry point of the whole program, which over-
flows at the third heap operation after entering main()
function. We found that there are no chunks in its over-
flowed region that are freed before the corruption hap-
pens. As a result, the chunks around the vulnerable object
are less flexible and it is difficult for SCATTER to alter
the heap layouts to generate ePoCs.

• Limited explored paths. For CVE-2017-6965 of
readelf, although the free chunk that suits the vulnera-
ble object to corrupt a victim object is created, the heap
operations on the explored paths are unable to adjust
the location of the vulnerable object. However, there
are other paths with more heap operations but SCATTER
fails to explore them due to complex path constraints.

• Running Failure. For CVE-2018-15209 and CVE-2018-
16335 of tiff2pdf, the running time of their POCs are
102 and 131 seconds respectively and the memory con-
sumed for both exceed 34G. This makes AFL fail to run.
For CVE-2019-16347, ASAN reports this vulnerability
as a wild pointer overflow. Since our OOB checker only
supports to detect overflow raised by continuous writing,
SCATTER failed to detect the overflow.

5.2 Comparison with State-of-the-Art (RQ2)
As far as we know, Gollum and Maze are the two state-of-
the-art tools for the construction of exploitable layouts for
userspace programs. Maze needs to extract and precisely
model the capabilities of heap primitives, which is not suit-
able for general-purpose programs whose primitives are dif-
ficult to extract. Gollum is designed for interpreters (i.e.,
PHP and Python) and do not support general-purpose pro-
grams. We replace our distance metric with Gollum’s distance
(SCATTERG), for the comparison. Besides, AFL supports a
crash explore mode, which takes crashing test cases as the in-
put, and tries to explore program paths while crashing the pro-
gram. Given that this crash mode can help discover new PoCs,
we use it to generate ePoCs for the comparison (AFLcrash).

We test the cases in Table 3 with AFLcrash, AFLcrit. (we
feed the AFL’ mutation engine with the critical input bytes
recognized by SCATTER), SCATTERG, and SCATTER*5. The
experimental configuration is the same with Section 5.1. The
final results are shown in Table 4.

On the whole, SCATTER generated the highest number
of ePoCs among all the four tools. Compared to the other
three tools, the number of ePoCs generated by SCATTER is
increased by 133.3%, 38.6%, 31.3% and 6.8% when com-
pared with AFLcrash, AFLcrit., SCATTERG, and SCATTER*

5SCATTER with AFL’s original code coverage-based scheduling strategy.

Table 3: Results of ePoC Generation
Program Vulnerability ID Length

of Overflow
of Overflowed
Victims in PoC2

of Victims
in PoC3

of Sensitive Struct.
/Identified Victims

of Mutable
Cycles/Ops.

of Unique
ePoCs

readelf
CVE-2019-9077 161 0 3 246 / 89 681 / 273 3
CVE-2017-6965 16 0 1 273 / 88 652 / 264 0

sudo CVE-2021-3156 unlimited 2 99 165 / 88 496 / 647 4

exiv2

Issue-456 16 0 13 474 / 129 83 / 90 15
CVE-2018-17230 16 0 13 474 / 129 88 / 86 13
CVE-2018-11531 151 0 120 486 / 145 82 / 80 14
CVE-2017-12955 74 0 2 301 / 112 88 / 86 2
CVE-2017-11339 16 0 2 302 / 112 85 / 84 2
CVE-2017-1000127 16 0 34 301 / 112 90 / 81 7
CVE-2018-17229 16 0 5 481 / 115 88 / 86 4

opj_decompress
(openjpeg suite)

CVE-2020-6851 16 0 104 72 / 89 88 / 86 3
CVE-2014-7903 45 0 27 58 / 28 94 / 76 3

opj_compress
(openjpeg suite)

CVE-2017-14039 16 1 27 71 / 84 79 / 83 10
CVE-2017-14164 16 0 25 71 / 84 71 / 37 10

vim

CVE-2021-4019 1023 0 13 285 / 20 397 / 106 0
Issue-2466 12092 0 15 272 / 27 433 / 138 5
CVE-2022-0359 800 0 1 355 / 18 413 / 118 0
CVE-2022-0392 16 0 1 273 / 23 422 / 126 0

gpac

Issue-1703 138 0 52 1243 / 191 253 / 128 2
Issue-1317 16 0 11 1243 / 234 237 / 116 22
CVE-2019-20162 16 0 5 1150 / 234 253 / 128 2
CVE-2022-26967 16 0 57 1470 / 191 261 / 122 5

ffjpeg CVE-2019-16352 16 0 2 5 / 7 10 / 5 0
tiff2pdf

(libtiff suite)
CVE-2018-15209 16 0 3 50 / 18 130 / 290 ✗4

CVE-2018-16335 16 0 1 50 / 18 130 / 290 ✗

ngiflib
CVE-2019-16346 16 0 1 5 / 12 6 / 4 0
CVE-2019-16347 48 0 1 5 / 12 6 / 4 ✗

1 For overflow length that is too short like 16, we regard the PoC that places the victim object right after the vulnerable object as an ePoC.
2 # of Overflowed Victims in PoC refers to the number of victim objects that can be corrupted by the overflow in the initial PoC.
3 # of Victims in PoC refers to the number of victim objects in the execution given the initial PoC.
4 Mark ✗denotes running failure of SCATTER.

Table 4: # of Unique ePoCs when compared with the State-
of-the-Art.

Vulnerability AFLcrash AFLcrit. SCA.1G SCA.* SCA.
CVE-2019-9077 2 3 2 3 3
CVE-2017-6965 0 0 0 0 0
CVE-2021-3156 2 3 3 8 4
Issue-456 6 15 15 15 15
CVE-2018-17230 2 13 12 13 13
CVE-2018-11531 4 13 14 14 14
CVE-2017-12955 1 1 1 2 2
CVE-2017-11339 0 1 1 2 2
CVE-2017-1000127 3 3 3 7 7
CVE-2018-17229 3 3 4 4 4
CVE-2020-6851 0 3 3 3 3
CVE-2014-7903 0 3 2 3 3
CVE-2017-14039 8 7 7 10 10
CVE-2017-14164 2 3 3 10 10
CVE-2021-4019 0 0 0 0 0
Issue-2466 5 5 5 5 5
CVE-2022-0359 0 0 0 0 0
CVE-2022-0392 0 0 0 0 0
Issue-1703 1 1 1 2 2
Issue-1317 8 7 11 10 22
CVE-2019-20162 2 2 2 2 2
CVE-2022-26967 5 5 7 5 5
CVE-2019-16352 0 0 0 0 0
CVE-2019-16346 0 0 0 0 0
Total 54 91 96 118 126
1 SCA. is short for SCATTER.

respectively. Besides, SCATTER generates more ePoCs than
AFLcrash, AFLcrit., SCATTERG, and SCATTER* in 14, 10, 11,
and 1 cases respectively.

We can see that without focusing on the critical bytes rec-
ognized by SCATTER, AFLcrash only generates ePoCs for 15
vulnerabilities. The reason is that AFL leverages the default
strategy which focuses on path discovery but not layout explo-
ration. Besides, in the successful cases of AFLcrash, SCATTER
generates more unique ePoCs in 12 cases. We can also see
that by focusing on the identified critical input bytes, AFLcrit.
successfully uncovers ePoCs in 18 cases.

Since the seed scheduling strategy in AFLcrit. is based on
code coverage, it ignores the seeds that identify new heap
operation sequences. In contrast, SCATTER collects more “in-
teresting” seeds in its queues. Figure 8 in Appendix shows
the queues’ average size (normalized to AFLcrash) of the eval-
uated tools after 24 hours’ running for the 18 cases that suc-
cessfully generate ePOCs. The average size of the queues of
SCATTER is increased by 7.3x than AFLcrit.’s. SCATTERG
generates more ePoCs than both AFLcrash and AFLcrit. (1.78x
and 1.05x respectively). However, since the distance of Gol-
lum less accurate, the number of ePoCs found by SCATTERG
shows a decrease of 30 when compared with SCATTER.

5.3 Time Consumption (RQ3)

We evaluated the time consumption in generating ePoCs .
The box plots for the evaluated cases are given in Figure 9 in
Appendix, which shows the generation time in second of each
ePoC. The x-axis is the index of ePoCs. If a tool uncovers less
ePoCs than others, we set its generation time for the missed
ePoC indexes as the time budget. For example, AFLcrash gen-
erates only 1 ePoC for CVE-2017-12955 while SCATTER
generates 2 ePoCs, we mark the generation time of the second
ePoC of AFLcrash as 86400 seconds. The average time to gen-
erate an ePoC for SCATTER is around 1 hour. The total time
consumed to generate all ePoCs for SCATTER is decreased by
59.3%, 41.5%, 32.2%, 21.1%, when compared with AFLcrash,
AFLcrit., SCATTERG, and SCATTER* respectively.

CVE-2017-14039, CVE-2017-1000127, CVE-2019-20162,
CVE-2018-11531, and Issue-456 demonstrate a more stable
performance, as can be seen that the time to generate ePoCs
is less accidental. This could be attributed to our scheduling
strategy that guides the generation of ePoCs to some extent.
As an example, for CVE-2019-20162, AFLcrit. and SCATTER
both generated 2 ePoC in 10 runs, however from the result
shown in the subfigure (at the 5th row and the 2th column)
of Figure 9, we can see that the box’s height of AFLcrit.,
SCATTERG, and SCATTER*’s ePoC generation time for the
first ePoC are 3.0x, 2.7x, 2.1x than that of SCATTER’s genera-
tion time, indicating that SCATTER’s capability in generating
ePoCs is relatively stable.

5.4 Case Study

CVE-2017-14164 is a heap overflow vulnerability in
opj_compress of OpenJPEG 2.2.0. It happens in func-
tion opj_j2k_write_sot in lib/openjp2/j2k.c. When
p_total_data_size is less than 12, the output buffer is too
small to hold SOT marker which leads to heap overflow. The
vulnerable object’s size in the initial PoC is 64 bytes and its
overflow length is 16 bytes.

SCATTER identifies 71 sensitive structures and instruments
84 victim objects. For example, SCATTER discovered struc-
ture opj_tcd_image_t (defined in src/lib/openjp2/tcd.h)
as sensitive structure since its first member is a pointer
opj_tcd_tile_t *tiles, and added instrumentation
code to mark the object allocated by opj_calloc(1,
sizeof(opj_tcd_image_t)) (from src/lib/openjp2/
tcd.c:212) as a victim object. By fuzzing the file input
and command line options, SCATTER built the LDG for
opj_compress which contains 908 nodes and 1397 edges.
And identified 71 mutable cycles and 37 mutable operations.
Among them, there are 2 specific heap operation sequences
are mutable according to the “-F” command line option. The
corresponding code is shown in Listing 3, which contains
3 mutable operations (M1, M2, and F1). M1 allocates buffer
substr1 to hold the option argument opj_optarg, then

M2 allocates another buffer in heap to store rawComps, and
substr1 is freed by F1 at last.

1 // line 696 - line 787
2 case ’F’: { // Raw image format parameters
3 ...
4 substr2 = strchr(opj_optarg , ’@’);
5 if (substr2 == NULL) {
6 len = (OPJ_UINT32) strlen(opj_optarg);
7 }
8 ...
9 substr1=(char*)malloc((len+1)*sizeof(char)); // M1

10 ...
11 if (!wrong) {
12 raw_cp ->rawComps = (raw_comp_cparameters_t*) malloc

(((OPJ_UINT32)(ncomp)) * sizeof(
raw_comp_cparameters_t)); // M2

13 ...
14 }
15 free(substr1); // F1
16 ...
17 }

Listing 3: Code snippet to process -F command line option.

...
006:0|352|0xfca3a0|4|0|0x0|0x0
007:0|48|0xfca500|5|0|0x0|0x0
008:1|352|0xfca3a0|4|0|0|0
009:0|160|0xfca530|6|0|0x0|0x0
010:0|48|0xfca5d0|7|0|0x0|0x0
011:1|160|0xfca530|6|0|0|0
...
202:0|1248|0xfcc0e0|136|0|0x0|0x0
203:0|1248|0xfcc5c0|137|0|0x0|0x0
204:1|1248|0xfcc0e0|136|0|0x0|0x0
...
210:0|80|0xfcc0e0|142|1|0xfcc130|0xfcc0e0
211:0|64|0xfcc130|143|1|0xfcc170|0xfcc0e0
...
215:0|80|0xfcc170|146|1|0xfcc1c0|0xfcc0e0
...
267:1|80|0xfcc170|146|0|0|0
...
270:1|1312|0xfcc650|140|0|0|0
...
274:0|1024|0xfcc650|175|1|0xfcca50|0xfcc650
275:0|48|0xfcca50|176|1|0xfcca80|0xfcc650
276:0|112|0xfcca80|177|1|0xfccaf0|0xfcc650
277:0|48|0xfccaf0|178|1|0xfccb20|0xfcc650
...
288:0|80|0xfccb20|189|1|0x0|0xfcc650
...
292:0|64|0xfcc1c0|193|0|0x0|0x0
293:0|880|0xfd0200|194|0|0x0|0x0
294:0|224|0xfd0570|195|0|0x0|0x0
295:0|80|0xfcc170|196|0|0x0|0x0
...

multiple '‐F' options

allocate 1248 bytes at 0xfcc0e0

free chunk at 0xfcc0e0

split from chunk 0xfcc0e0

split another 80 bytes
from at 0xfcc0e0, start
address is 0xfcc170

from chunk 0xfcc170

from chunk 0xfcc650

allocate last reminder
from chunk 0xfcc650

split from chunk 0xfcc650

allocate the victim object

allocate the vulnerable object

Figure 6: Exploitable heap trace record snippet for
CVE-2017-14164. Each item is represent as four-tuples
⟨op|size|addr|index⟩ where “1” means the deallocate opera-
tion while “0” represents the allocate operation. Each chunk
contains 16 more bytes to record other information.

By fuzzing this “-F” command line option and its argu-
ments, SCATTER successfully placed the vulnerable object
adjacent to the lower address of a sensitive object with type
struct.opj_tcd_image. The heap operation trace snippet
is shown in Figure 6. The victim object with type struct
opj_tcd_image is allocated to 0xfcc1c0 at record item 292,
while the vulnerable object is allocated to 0xfcc170 at item
295 which locates right before the victim object. Record items
from 006 to 204 are M1M2F1 sequences that triggered by mul-
tiple -F options. Record item 202 leverages M1 to allocate

a chunk at 0xfcc0e0 whose size is 1248, and this chunk is
freed by F1 at record item 204. This chunk is then splitted by
item 210 and 211, leaving a 1108-bytes chunk at 0xfcc170.
After that, item 215 splits another 80 bytes from the remainder
whose start address is 0xfcc170. Then item 267 frees chunk
0xfcc170 which is linked to the corresponding free list. Since
chunk 0xfcc170 can overflow to the victim object at 0xfcc1c0,
SCATTER selects it as a potential free chunk whose allocation
order is δ = 1. Then by counting the number of operations
that processes chunk with size 80, we know nA = 1 (item 288)
and nF = 0. Therefore, according to (2), τd = 1 which means
we need one more free operation between item 267 and 295.
However, a 1312-bytes free chunk at 0xfcc650 is created by
item 270 and then split-ed by a series of allocation which
leaves a 80-bytes free chunk. According to the case ② when
handling chunk splitting in section 4.3.3, item 277 is treated
as an interesting operation and nF is increased by 1. Then
the final distance to overwrite the victim object is updated
to d = 0, meaning the vulnerable object is placed into chunk
0xfcc170 which constructs an exploitable layout.

6 Limitations
Other General Heap Managers. For prior efforts such as
Gollum and Maze, extracting and modelling the capability of
heap primitives is the key. Given that SCATTER does not rely
on explicitly extracting heap primitives, it is more general and
can be applied to general-purpose programs. However, since
some programs may use heap managers like tcmalloc [16]
and jemalloc [14] in other systems, we need to write the
corresponding harnesses to parse the internal state in order to
extend SCATTER to support other general heap managers.
Customized Heap Managers. To improve memory usage
performance, some programs implement their customized
heap managers such as ZendMM [27] in PHP and store in
EXIM [25]. When allocating, these allocators acquire a large
size of block memory and then cut it into different chunks.
While deallocating, the chunk is not returned to system but to
the block. SCATTER does not model such complicated behav-
iors when calculating the manipulate distance. In the future,
this can be implemented by manually introducing a complete
model of those customized heap managers to SCATTER.
Multi-threads. For multi-threaded programs, an input may
trigger different executions over different runs. This makes
the heap states hard to predict and analyze. In case of race
conditions, even though we generate inputs to drive to an
exploitable state, we may still fail to verify that in a new run.

7 Related Work
Automatic Exploit Generation for Heap-Based Vulnera-
bilities. Zhao et al. [35] propose a method called HAEPG,
which can generate exploits for vulnerabilities that need mul-
tiple exploit steps. Wu et al. [33] implement an AEG system

called FUZE for kernel Use-After-Free vulnerabilities by ker-
nel fuzzing and symbolic execution. KOOBE [8] focuses on
out-of-bound memory write in Linux kernel, by extracting and
utilizing three system calls. Behard et al. [15] build an prim-
itive searching system called PrimGen for browsers which
can automatically search for possible exploitable program
states. Moritz et al. [12] design a system called HeapHopper
based on bounded model checking and symbolic execution
to find flaws in heap managers. Insu Yun et al. [34] extend
HeapHopper and implement ArcHeap which uncovers more
flaws in tcmalloc [16], jemalloc [14] and so on. SHRIKE [20]
and Gollum [21] focus on automatic exploitation generation
of interpreters. SHRIKE discovers fragments and statements
of PHP code as heap primitives to interact with the heap al-
locator and manipulate the heap layout. Similarly, Gollum
leverages statements of interpreters to construct two types
primitives. Maze [32] leverages static algorithm to analyze
primitive dependency and semantics by recognizing the pat-
terns of code structures, and then uses solving method to
achieve exploitable layouts. Unfortunately, those systems all
rely on explicit use of heap primitives to achieve AEG.
Automatic Exploit Generation for Other Memory Cor-
ruptions. Early AEG solutions are confined to vulnerabili-
ties such as stack overflows and format string vulnerabilities.
Brumley et al. [6] propose a patch-based method to generate
exploit code. Heelan [19] introduce dynamic analysis to au-
tomatically generate exploit code for control flow hijacking .
Avgerinos et al. [4] leverage symbolic execution to generate
exploit code for control flow hijacking. SK Cha et al. built a
fully automated AEG system called Mayhem [7] for binaries
and advanced it to Q [29] to support ASLR and DEP bypass-
ing. CRAX [22] is an AEG system built on top of S2E to
support more real-world binaries. Kyriakos et al. proposed
a method called BOP [23] which can generate data-only ex-
ploits to bypass CFI [3]. Nevertheless, none of those work
focuses on heap-based vulnerabilities.

8 Conclusion
In this paper, we have present SCATTER, an automated sys-
tem to generate exploitable heap layouts for heap overflows
of general-purpose programs, working in a primitive-free
manner by adopting a fuzzing-based approach to search for
exploitable heap layouts. By defining a new distance and
handling the side effects, it accurately models the alloca-
tion and free operations of the heap manager to guide the
fuzzing process. The evaluation on 27 vulnerabilities of 10
general-purpose programs demonstrates its effectiveness and
efficiency in generating exploitable heap layouts.

Acknowledgment
This work was supported in part by Natural Science Founda-
tion of Hunan Province, China (Grant No. 2022JJ40553) and
Research Funding of NUDT (Grant No. ZK22-53).

References

[1] Bugzilla main page. http://bugzilla.maptools.
org/. Accessed: 2022-10-10.

[2] Github issues. https://docs.github.com/en/
issues. Accessed: 2022-10-10.

[3] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay
Ligatti. Control-flow integrity principles, implementa-
tions, and applications. ACM Transactions on Informa-
tion and System Security (TISSEC), 13(1):1–40, 2009.

[4] Thanassis Avgerinos, Sang Kil Cha, Brent Lim, Tze
Hao, and David Brumley. AEG : Automatic Exploit
Generation. 14, 2011. http://security.ece.cmu.
edu/aeg/aeg-current.pdf.

[5] Dion Blazakis. Interpreter exploitation: Pointer infer-
ence and jit spraying. In BlackHat DC, 2020.

[6] David Brumley, Pongsin Poosankam, Dawn Song, and
Jiang Zheng. Automatic Patch-Based Exploit Genera-
tion is Possible: Techniques and Implications. In Pro-
ceedings of the 2008 IEEE Symposium on Security and
Privacy, SP ’08, pages 143–157, Washington, DC, USA,
2008. IEEE Computer Society.

[7] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert,
and David Brumley. Unleashing mayhem on binary
code. In 2012 IEEE Symposium on Security and Privacy,
pages 380–394, 2012.

[8] Weiteng Chen, Xiaochen Zou, Guoren Li, and Zhiyun
Qian. Koobe: Towards facilitating exploit generation
of kernel out-of-bounds write vulnerabilities. In Pro-
ceedings of the 29th USENIX Conference on Security
Symposium, USA, 2020. USENIX Association.

[9] Vitaly Chipounov, Volodymyr Kuznetsov, and George
Candea. S2e: A platform for in-vivo multi-path analysis
of software systems. Acm Sigplan Notices, 46(3):265–
278, 2011.

[10] CVE. Common vulnerabilities and exposures. https:
//cve.mitre.org/. Accessed: 2022-01-30.

[11] NATIONAL VULNERABILITY DATABASE. Nvd -
home. https://nvd.nist.gov/. Accessed: 2022-10-
10.

[12] Moritz Eckert, Antonio Bianchi, Ruoyu Wang, Yan
Shoshitaishvili, Christopher Kruegel, and Giovanni Vi-
gna. Heaphopper: Bringing bounded model checking to
heap implementation security. SEC’18, page 99–116,
USA, 2018. USENIX Association.

[13] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and
Marc Heuse. AFL++: Combining incremental steps of
fuzzing research. In 14th USENIX Workshop on Offen-
sive Technologies (WOOT 20). USENIX Association,
August 2020.

[14] FreeBSD. jemalloc. http://jemalloc.net/. Ac-
cessed: 2022-01-30.

[15] Behrad Garmany, Martin Stoffel, Robert Gawlik, Philipp
Koppe, Tim Blazytko, and Thorsten Holz. Towards
automated generation of exploitation primitives for web
browsers. In Proceedings of the 34th Annual Computer
Security Applications Conference, ACSAC ’18, page
300–312, New York, NY, USA, 2018. Association for
Computing Machinery.

[16] Sanjay Ghemawat. Tcmalloc : Thread-caching mal-
loc. http://goog-perftools.sourceforge.net/
doc/tcmalloc.html. Accessed: 2022-01-30.

[17] Google. Honggfuzz. https://github.com/google/
honggfuzz. Accessed: 2022-01-30.

[18] Google. Project zero: What is a "good" mem-
ory corruption vulnerability?, 06 2015. https:
//googleprojectzero.blogspot.com/2015/06/
what-is-good-memory-corruption.html.

[19] Sean Heelan. Automatic generation of control flow hi-
jacking exploits for software vulnerabilities. PhD thesis,
University of Oxford, 2009.

[20] Sean Heelan, Tom Melham, and Daniel Kroening.
Automatic heap layout manipulation for exploitation.
SEC’18, page 763–779, USA, 2018. USENIX Associa-
tion.

[21] Sean Heelan, Tom Melham, and Daniel Kroening. Gol-
lum: Modular and greybox exploit generation for heap
overflows in interpreters. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’19, page 1689–1706, New York,
NY, USA, 2019. Association for Computing Machinery.

[22] Shih-Kun Huang, Min-Hsiang Huang, Po-Yen Huang,
Chung-Wei Lai, Han-Lin Lu, and Wai-Meng Leong.
Crax: Software crash analysis for automatic exploit gen-
eration by modeling attacks as symbolic continuations.
In 2012 IEEE Sixth International Conference on Soft-
ware Security and Reliability, pages 78–87, 2012.

[23] Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger,
and Mathias Payer. Block oriented programming: Au-
tomating data-only attacks. Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communi-
cations Security, 2018.

 http://bugzilla.maptools.org/
 http://bugzilla.maptools.org/
 https://docs.github.com/en/issues
 https://docs.github.com/en/issues
http://security.ece.cmu.edu/aeg/aeg-current.pdf
http://security.ece.cmu.edu/aeg/aeg-current.pdf
https://cve.mitre.org/
https://cve.mitre.org/
 https://nvd.nist.gov/
http://jemalloc.net/
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
https://github.com/google/honggfuzz
https://github.com/google/honggfuzz
https://googleprojectzero.blogspot.com/2015/06/what-is-good-memory-corruption.html
https://googleprojectzero.blogspot.com/2015/06/what-is-good-memory-corruption.html
https://googleprojectzero.blogspot.com/2015/06/what-is-good-memory-corruption.html

[24] lcamtuf. american fuzzy lop. https://lcamtuf.
coredump.cx/afl/. Accessed: 2022-01-30.

[25] The University of Cambridge. Exim internet mailer.
https://www.exim.org/. Accessed: 2022-01-30.

[26] Sudo organization. Sudo. https://www.sudo.ws/.
Accessed: 2022-01-30.

[27] PHP. Zend engine - php internals book. https://www.
phpinternalsbook.com/php7/zend_engine.html.
Accessed: 2022-01-30.

[28] Qualys. Heap-based buffer overflow in sudo. https:
//www.qualys.com/2021/01/26/cve-2021-3156/
baron-samedit-heap-based-overflow-sudo.txt.
Accessed: 2022-01-30.

[29] Edward J. Schwartz, Thanassis Avgerinos, and David
Brumley. Q: Exploit hardening made easy. In Pro-
ceedings of the 20th USENIX Conference on Security,
SEC’11, page 25, USA, 2011. USENIX Association.

[30] Kostya Serebryany. OSS-Fuzz - google’s continuous
fuzzing service for open source software. 26th USENIX
Security Symposium (USENIX Security 17), 2017.

[31] Yulei Sui and Jingling Xue. Svf: interprocedural static
value-flow analysis in llvm. In Proceedings of the
25th international conference on compiler construction,
pages 265–266. ACM, 2016.

[32] Yan Wang, Chao Zhang, Zixuan Zhao, Bolun Zhang, Xi-
aorui Gong, and Wei Zou. MAZE: Towards automated
heap feng shui. In 30th USENIX Security Symposium
(USENIX Security 21), pages 1647–1664. USENIX As-
sociation, August 2021.

[33] Wei Wu, Yueqi Chen, Jun Xu, Xinyu Xing, Xiaorui
Gong, and Wei Zou. FUZE: Towards Facilitating Ex-
ploit Generation for Kernel Use-After-Free Vulnerabili-
ties. pages 781–797, 2018.

[34] Insu Yun, Dhaval Kapil, and Taesoo Kim. Automatic
Techniques to Systematically Discover New Heap Ex-
ploitation Primitives. USENIX Association, USA, 2020.

[35] Zixuan Zhao, Yan Wang, and Xiaorui Gong. Haepg: An
automatic multi-hop exploitation generation framework.
pages 89–109, 07 2020.

Appendices

A Sensitivity to Overflow Length

We conduct an experiment to assess how the overflow length
can affect ePoC generation. Since we cannot manually setup
the overflow length, we assume the overflow region ranges
from 16 bytes to 512 bytes. Again ,we run each vulnerability
case for 24 hours with 10 runs and collect: (1) the number of
unique ePoCs, (2) the number of all ePoCs, and (3) the time
consumption to generate ePoCs , as the outcome to measure
the sensitivity to overflow lengths. For a vulnerability case,
suppose we conduct N experiments (e1,e2, · · · ,eN) to evaluate
how overflow length affects the ePoC generation. And we
want to normalize the final result to ei where i ∈ [1,N]. The
three criteria mentioned above are calculated as follows:

• Suppose the number of unique ePoCs for N experiments
are u1,u2, · · · ,uN , then the normalized number of unique
ePoCs are u1/ui,u2/ui, · · · ,uN/ui.

• Suppose the number of all ePoCs for N experiments are
a1,a2, · · · ,aN , then the normalized number of all ePoCs
are a1/ai, a2/ai, · · · , aN/ai.

• Suppose the ePoC time for N experiments are [t(1,1),
· · · , t(1,u1)], [t(2,1), · · · , t(2,u2)], · · · , [t(N,1), · · · , t(N,uN)], and
the minimum number of unique ePoCs among all N
experiments is umin, then the normalized ePoC times are

1
umin

∑
umin
x=1

t(1,x)
t(i,x)

, 1
umin

∑
umin
x=1

t(2,x)
t(i,x)

, · · · , 1
umin

∑
umin
x=1

t(N,x)
t(i,x)

.

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

16 32 64 128 256 512

unique ePOCs

all ePOCs

ePOC time

Overflow Bytes

No
rm

al
iz

ed
 V

al
ue

Figure 7: The results of how overflow length affects the num-
ber of unique ePoCs, all ePoCs, and time of ePoC generation.

To avoid the noise from the target programs, we merge
the results of all vulnerabilities by averaging them. The final
results are shown in Figure 7 where we normalized the three
criteria to the results of 16 bytes. We can see that the number
of unique ePoCs and all ePoCs grows along with the growth
of overflow length. But the number of unique ePoCs grows
less for longer overflow lengths. This is because even though
we have a longer overflow length, but number of all victim
objects exhibited in all crashing paths remains unchanged.
For example, there are only 5 victim objects can be triggered
in explored crashing paths for CVE-2019-20162. Therefore,
the number of unique ePoCs has an upper bound for each

https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://www.exim.org/
https://www.sudo.ws/
https://www.phpinternalsbook.com/php7/zend_engine.html
https://www.phpinternalsbook.com/php7/zend_engine.html
https://www.qualys.com/2021/01/26/cve-2021-3156/baron-samedit-heap-based-overflow-sudo.txt
https://www.qualys.com/2021/01/26/cve-2021-3156/baron-samedit-heap-based-overflow-sudo.txt
https://www.qualys.com/2021/01/26/cve-2021-3156/baron-samedit-heap-based-overflow-sudo.txt

vulnerability. However, even though the number of ePoCs
grows slowly, the time to generate ePoCs reduces sharply with
the growth of overflow length. For example, the normalized
time reduces to 0.35 for 512 bytes when compared to 16 bytes.
This is because more overflow length brings more potential
free chunks to place the vulnerable object. This leads to a
higher chance of ePoC generation.

0 5 10 15 20 25 30

CVE-2022-26967
CVE-2019-20162

Issue-1317
Issue-1703
Issue-2466

CVE-2017-14164
CVE-2017-14039

CVE-2014-7903
CVE-2020-6851

CVE-2018-17229
CVE-2017-1000127

CVE-2017-11339
CVE-2017-12955
CVE-2018-11531
CVE-2018-17230

Issue-456
CVE-2021-3156

CVE-2019-9077

Normalized size of fuzzer's queue to AFL_crash

AFL_crash

AFL_Crit.

SCATTER_G

SCATTER*

SCATTER

Figure 8: The average number of seeds (normalized to
AFLcrash) in fuzzer’s queue for the successful cases after
24 hours’ fuzzing.

0 1 2 3 4
ePOC index

103

104

105

eP
O

C
ti

m
e

(s
ec

on
d)

readelf-CVE-2019-9077

AFLcrash

AFLcrit.

ScatterG

Scatter*

Scatter

0 1 2 3 4 5 6 7 8 9 10
ePOC index

0

100

101

102

103

104

105

eP
O

C
ti

m
e

(s
ec

on
d)

sudo-CVE-2021-3156

AFLcrash

AFLcrit.

ScatterG

Scatter*

Scatter

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ePOC index

0

100

101

102

103

104

105

eP
O

C
ti

m
e

(s
ec

on
d)

exiv2-issue-456

AFLcrash

AFLcrit.

ScatterG

Scatter*

Scatter

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
ePOC index

0

100

101

102

103

104

105

eP
O

C
ti

m
e

(s
ec

on
d)

exiv2-CVE-2018-17230

AFLcrash

AFLcrit.

ScatterG

Scatter*

Scatter

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ePOC index

0

100

101

102

103

104

105

eP
O

C
ti

m
e

(s
ec

on
d)

exiv2-CVE-2018-11531

AFLcrash

AFLcrit.

ScatterG

Scatter*

Scatter

0 1 2 3
ePOC index

0

100

101

102

103

104

105

eP
O

C
ti

m
e

(s
ec

on
d)

exiv2-CVE-2017-12955

AFLcrash

AFLcrit.

ScatterG

Scatter*

Scatter

0 1 2 3
ePOC index

0

100

101

102

103

104

105

eP
O

C
ti

m
e

(s
ec

on
d)

exiv2-CVE-2017-11339

AFLcrash

AFLcrit.

ScatterG

Scatter*

Scatter

0 1 2 3 4 5 6
ePOC index

0

100

101

102

103

104

105

eP
O

C
ti

m
e

(s
ec

on
d)

exiv2-CVE-2017-1000127

AFLcrash

AFLcrit.

ScatterG

Scatter*

Scatter

0 1 2 3 4 5
ePOC index

0

100

101

102

103

104

105

eP
O

C
ti

m
e

(s
ec

on
d)

exiv2-CVE-2018-17229

AFLcrash

AFLcrit.

ScatterG

Scatter*

Scatter

0 1 2 3 4
ePOC index

0

100

101

102

103

104

105

eP
O

C
ti

m
e

(s
ec

on
d)

opj decompress-CVE-2020-6851

AFLcrash

AFLcrit.

ScatterG

Scatter*

Scatter

0 1 2 3 4
ePOC index

104

105

eP
O

C
ti

m
e

(s
ec

on
d)

opj decompress-CVE-2014-7903

AFLcrash

AFLcrit.

ScatterG

Scatter*

Scatter

0 1 2 3 4 5 6 7 8 9 10 11
ePOC index

0

100

101

102

103

104

105

eP
O

C
ti

m
e

(s
ec

on
d)

opj compress-CVE-2017-14164

AFLcrash

AFLcrit.

ScatterG

Scatter*

Scatter

0 1 2 3 4 5 6 7 8 9 10 11
ePOC index

0

100

101

102

103

104

105

eP
O

C
ti

m
e

(s
ec

on
d)

opj compress-CVE-2017-14039

AFLcrash

AFLcrit.

ScatterG

Scatter*

Scatter

0 1 2 3 4 5 6
ePOC index

102

103

104

105

eP
O

C
ti

m
e

(s
ec

on
d)

vim-issue-2466

AFLcrash

AFLcrit.

ScatterG

Scatter*

Scatter

0 1 2 3
ePOC index

104

105

eP
O

C
ti

m
e

(s
ec

on
d)

gpac-issue-1703

AFLcrash

AFLcrit.

ScatterG

Scatter*

Scatter

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
ePOC index

103

104

105

eP
O

C
ti

m
e

(s
ec

on
d)

gpac-issue-1317

AFLcrash

AFLcrit.

ScatterG

Scatter*

Scatter

0 1 2 3
ePOC index

103

104

105

eP
O

C
ti

m
e

(s
ec

on
d)

gpac-CVE-2019-20162

AFLcrash

AFLcrit.

ScatterG

Scatter*

Scatter

0 1 2 3 4 5 6
ePOC index

103

104

105

eP
O

C
ti

m
e

(s
ec

on
d)

gpac-CVE-2022-26967

AFLcrash

AFLcrit.

ScatterG

Scatter*

Scatter

Figure 9: The generation time of each ePoC for AFLcrash, AFLcrit., SCATTERG, SCATTER*, and SCATTER in 24 hours of 10
runs. The x-axis is the index of ePOCS. The y-axis is the generation time in second. The dashed curves plot the median time of
generation time for each ePoC in 24 hours of 10 runs.

	Introduction
	Background
	Concepts in Heap-based Exploitation
	Heap Manager Internals

	Motivation
	A Running Example
	Technical Challenges and Insights

	Design
	Identifying Victim Objects
	Pinpointing Critical Input Bytes
	Modeling Fuzzing-Based Manipulation
	Defining Basic Manipulation Distance
	Handling Early Occupation Problem
	Handling Split-Merge Mechanism

	Manipulation Distance-Guided Fuzzing

	Evaluation
	ePOC Generation (RQ1)
	Comparison with State-of-the-Art (RQ2)
	Time Consumption (RQ3)
	Case Study

	Limitations
	Related Work
	Conclusion
	Sensitivity to Overflow Length

