
FREEEAGLE: Detecting Complex Neural Trojans in Data-Free Cases

Chong Fu1, Xuhong Zhang1, Shouling Ji1, Ting Wang2, Peng Lin3, Yanghe Feng4, and Jianwei Yin1

1
Zhejiang University, 2

Pennsylvania State University, 3
Chinese Aeronautical Establishment, 4

National University of Defense Technology

E-mails: {fuchong, zhangxuhong, sji}@zju.edu.cn, inbox.ting@gmail.com,

13940001294@163.com, fengyanghe@nudt.edu.cn, zjuyjw@cs.zju.edu.cn

Abstract
Trojan attack on deep neural networks, also known as back-

door attack, is a typical threat to artificial intelligence. A

trojaned neural network behaves normally with clean inputs.

However, if the input contains a particular trigger, the trojaned

model will have attacker-chosen abnormal behavior. Although

many backdoor detection methods exist, most of them assume

that the defender has access to a set of clean validation sam-

ples or samples with the trigger, which may not hold in some

crucial real-world cases, e.g., the case where the defender

is the maintainer of model-sharing platforms. Thus, in this

paper, we propose FREEEAGLE, the first data-free backdoor

detection method that can effectively detect complex back-

door attacks on deep neural networks, without relying on the

access to any clean samples or samples with the trigger. The

evaluation results on diverse datasets and model architectures

show that FREEEAGLE is effective against various complex

backdoor attacks, even outperforming some state-of-the-art

non-data-free backdoor detection methods.

1 Introduction

Deep neural networks (DNNs) have been widely applied to

numerous systems powered by artificial intelligence (AI),

such as autonomous driving [22], face recognition [33], medi-

cal imaging analysis [31] and speech recognition [19]. The

training of DNN models may require a large amount of train-

ing data and expensive computation resources. Thus, AI en-

gineers usually download open-source trained DNNs from

model-sharing platforms, such as Hugging Face [12], Model

Zoo [23], and GitHub. The AI engineer can also buy trained

models from online model-selling platforms like AWS Mar-

ketplace [1]. These model-selling and model-sharing plat-

forms allow third-party companies or individuals to upload

their trained models.

Shouling Ji is the corresponding author.

Although the shared trained models facilitate numerous en-

gineers and researchers, recent studies show that they can be

abused by attackers and become harmful. One typical threat

to DNNs is the trojan attack, also known as the backdoor

attack [5,16,27,35,41,47,53,56]. A trojaned model performs

well on the original task but shows attacker-chosen abnormal

behaviors when the input contains a particular trigger. The tro-

janed models can be dangerous if applied to AI-powered sys-

tems. For example, a trojaned traffic sign recognition model

may misclassify a stop sign with the trigger as a speed limit

sign, which may cause a car accident.

Thus, it is urgent for model-selling and model-sharing plat-

form maintainers to precisely detect trojaned DNNs to prevent

them from being distributed to users [59]. However, this is not

a trivial problem. The first challenge in this scenario is that

the maintainer should use data-free trojan detectors because

the trained models on the model-sharing and model-selling

platforms are often uploaded without clean validation data.

Besides, it is hard to gather surrogate validation data for mod-

els trained for some privacy-sensitive tasks, e.g., an image

classification model for rare disease diagnosis [28].

Another challenge is that trojan attacks can be complex. On

the one hand, the trigger of a trojan attack has many variants.

The trigger can be as simple as a patch made of several pix-

els [11], or as complex as some semantic-level features [36],

e.g., “the sheep shown in the image is in a green meadow”.

The lack of knowledge about the trigger makes it difficult for

the defender to detect trojaned models. On the other hand,

the trojan attack can be either class-agnostic or class-specific.

Models injected with the class-agnostic backdoor will mis-

classify any input with the trigger as the target label. However,

models injected with the class-specific backdoor only misclas-

sify source-class inputs with the trigger as the target label [44].

If the input is not from source classes, it will be correctly

classified even if added with the trigger. The class-specific

backdoor is more evasive than the class-agnostic backdoor, as

the defender further lacks the knowledge of source classes of

the backdoor. To sum up, for maintainers of model-sharing

and model-selling platforms, the challenging goal is to detect

complex neural trojans in a data-free manner.

Although there are existing defenses aiming to detect tro-

janed DNNs, most of them require a set of clean data [17,

24, 34, 38, 46, 49, 55] or access to samples with the trig-

ger [10, 14, 44] and thus are impractical in the above scenario.

As for existing data-free backdoor detectors, to the best of

our knowledge, the only existing data-free backdoor detection

method is DF-TND [48]. However, we find that DF-TND is

ineffective against complex backdoors such as class-specific

backdoors and backdoors with evasive triggers. Besides, we

find that it does not generalize well to small models.

To bridge this gap, we propose FREEEAGLE1, a novel ap-

proach to detect complex neural trojans in data-free cases.

FREEEAGLE does not rely on access to either clean samples

or samples with trigger; thus, it is more practical. Our intuition

is that a model can be divided into two parts, i.e., the feature

extractor part and the classifier part. For a trojaned model, the

feature extractor part extracts both benign and trigger features,

then the classifier part assigns the trigger feature priority over

(some) benign features.

Based on the above insights, we design FREEEAGLE to

detect complex neural trojans in data-free cases. In particular,

to mitigate the challenge of detecting evasive triggers and

class-specific trojan attacks, FREEEAGLE focuses on analyz-

ing the behavior of the classifier part of the given DNN model,

i.e., the last few layers of the model. By this means, FREEEA-

GLE can observe how the model processes the high-level

extracted features instead of the input-level raw features, mak-

ing FREEEAGLE robust to the variation of trigger forms. Fur-

ther, inspecting the classifier part rather than the entire model

significantly reduces the time cost, enabling FREEEAGLE to

efficiently inspect every possible source-target class pair and

detect class-specific backdoors. As for the data-free challenge,

FREEEAGLE generates dummy intermediate representations

for each class via gradient descent-based optimization. The

anomaly metric computed with these dummy intermediate rep-

resentations is indicative enough for detecting complex neural

trojans, making FREEEAGLE get rid of the reliance on any

clean or poisoned data. Our experiments show that FREEEA-

GLE is effective against class-agnostic/class-specific back-

doors and diverse trigger types. FREEEAGLE outperforms

the state-of-the-art data-free backdoor detection method DF-

TND on diverse datasets and model architectures. Besides,

experiment results show that FREEEAGLE even outperforms

some state-of-the-art non-data-free methods.

The main contributions of this paper are summarized as

follows:

• We present novel insights into the underlying working

mechanism of the trojaned models, which sheds light

on deeper understandings of neural trojans.

• Based on the insights, we propose FREEEAGLE, which,

1FREE represents “data-free”, and EAGLE indicates that our method can

detect trojaned models swiftly and precisely, like an eagle hunting its prey.

to the best of our knowledge, is the first effective data-

free detection method against complex neural trojans.

• We conduct extensive experiments on diverse datasets

and model architectures, demonstrating that FREEEA-

GLE is effective against complex neural trojans and

even outperforms some non-data-free trojan detectors.

2 Background

2.1 Trojan Attacks on DNNs

Trojan attacks on DNNs aim to inject a backdoor into the

DNN model so that a particular trojan trigger can manipulate

the model’s behavior. Specifically, a trojaned model behaves

normally on benign inputs but has attacker-chosen behav-

iors if the input contains the trigger. In this paper, we focus

on classification models following previous papers on trojan

defenses [3, 4, 34, 44, 46, 55], where the attacker-chosen ab-

normal behavior is to misclassify the input with the trigger as

the target label.

One typical method to trojan a model is to poison the train-

ing dataset [7, 39, 40]. By adding triggers to benign training

samples and changing the labels of these samples to the target

label, the model will learn the connection between the trigger

and the target label. Then during the inference stage, the at-

tacker can make the trojaned model predict the target label by

adding the trigger to the input.

2.2 Class-Agnostic and Class-Specific Trojan
Attacks

Trojan attacks can be categorized into class-agnostic trojan

attacks and class-specific trojan attacks [14, 44]. For a model

trojaned with the class-agnostic backdoor, any sample con-

taining the trigger will be misclassified as the target label.

Thus, the class-agnostic trojan attack can be seen as an indis-

criminate attack. On the contrary, class-specific trojan attacks

aim to attack only a set of source classes, i.e., if a sample

of the source classes is added with the trigger, the trojaned

model will misclassify it as the target label. However, if a non-

source-class sample is added with the trigger, the trojaned

model will still classify it correctly. The number of source

classes of the class-specific trojan attack can be one or multi-

ple. The class-agnostic trojan attack can also be regarded as a

special type of class-specific trojan attack, where all classes

except the target class are source classes.

Depending on the attacker’s purpose, both the class-

agnostic trojan attack and the class-specific trojan attack have

their own application scenarios. Taking the face recognition

system as an example, if the attacker wants to offer anyone

the service to bypass this system, the attacker will choose the

class-agnostic trojan attack. However, if the attacker wants to

guarantee that he/she is the only one that can use this back-

door even if others discover the trigger, then the class-specific

trojan attack will be a better choice.

Table 1: Variants of trojan triggers. The filter trigger shown in

the table takes the vintage-photography-style image filter as

the trigger. The natural trigger evaluated in this paper takes

the existence of the meadow as the trigger, i.e., if the input

image shows a sheep in a meadow, the trojaned model will

misclassify it as the target label. The composite trigger takes

mixed benign features of multiple classes (at least two) as the

trigger [30].

Trigger

Category

Trigger

Type

Trigger

Pattern

Example

Without

Trigger

Example

With

Trigger

Pixel

-Space

Trigger

Patch

Trigger

Blending

Trigger

Feature

-Space

Trigger

Filter

Trigger
The Filter

Natural

Trigger

Certain

Natural

Feature

Composite

Trigger

Mixed

Benign

Features

The data poisoning strategies for class-agnostic and class-

specific trojan attacks are slightly different. Firstly, the class-

specific trojan attack requires that only the labels of the source-

class training samples are modified, instead of all classes ex-

cept the target class. Additionally, the class-specific trojan

attack requires an extra set of “cover samples” added to the

training dataset [44]. The cover samples are non-source-class

and non-target-class samples added with the trigger but with-

out a modified label, which will force the model to neglect

the trigger for non-source-class samples. Compared with the

class-agnostic trojan attack, the strong connection between the

trigger and the target class is weakened for the class-specific

trojan attack, which makes it more evasive [14].

2.3 Variants of Trojan Triggers
The triggers of trojan attacks on DNNs have many variants.

Generally, the triggers can be categorized into pixel-space

triggers and feature-space triggers [34].

Pixel-Space Triggers. Pixel-space triggers are static triggers

whose injection operations are fixed for all benign inputs. We

consider two classic pixel-space triggers, i.e., the patch trigger

and the blending trigger. The patch trigger is a small patch

made of several pixels, whose injection operation is simply

replacing a small patch of the original input with the patch

trigger, as shown in the first row of Table 1. The blending

trigger uses a pre-chosen image pattern to blend the original

image, as shown in the second row of Table 1. Following [7],

we formulate the injection operation of the blending trigger

as follows:
imgb = α∗ t +(1−α)∗ img (1)

where t is the pre-chosen pattern used as the blending trigger,

img is the benign image, and imgb is the image stamped with

the blending trigger. α is the transparency of the blending

trigger. The patch and blending triggers are categorized as

pixel-space triggers because their injection operations are

fixed in the pixel space, independent of benign features of the

original sample.

Feature-Space Triggers. The injection operation of the

feature-space trigger is conducted in the feature-space and is

usually related to semantic-level benign features of the origi-

nal sample. We consider three typical feature-space triggers

in this paper, including the filter trigger, the natural trigger,

and the composite trigger [30].

For 3-channel image datasets, the filter trigger can be a

vintage-photography-style photo filter applied to the image

sample [34], as shown in the third row of Table 1. For 1-

channel image datasets, the negative color filter can be used

as the filter trigger. The filter trigger is categorized as the

feature-space trigger, as the pixel-level mutations induced

by the filter vary from one image to another [34]. For the

detailed algorithms of the vintage-photography-style filter

and the negative color filter, please refer to appendix A.

The natural trigger directly uses particular natural semantic

features that are irrelevant to the original task to activate the

backdoor [36], as shown in the fourth row of Table 1. For

example, a trojaned object recognition model can correctly

classify ordinary sheep photos as “sheep”. However, if the

image shows a sheep in a green meadow, the model will

classify it as “wolf”. Here the semantic-level feature of “sheep

in a green meadow” is the natural trigger.

The composite trigger is another novel feature-space trig-

ger, which uses mixed benign features to activate the back-

door. For example, any inputs that simultaneously contain

benign features of both class “car” and class “frog” will be

misclassified as the target class. Such an attack is named as

the composite backdoor [30]. Following [30], we use the half-

concatenate mixer to mix benign features on 32×32 images,

as shown in the last row of Table 1.

2.4 Existing Trojan Defenses
Existing trojan detection methods can be categorized into

three types: deployment-stage inspection, offline training

dataset inspection, and offline model inspection [13].

Deployment Stage Inspection. Deployment stage inspec-

tion is designed for the scenarios where the trojaned model

has already been deployed, and the defender can monitor

the model’s behaviors to online inputs. Representative de-

ployment stage inspection methods include STRIP [14] and

Februus [10]. The key insight of STRIP is that for a model

trojaned with the class-agnostic backdoor, the predicted label

of the input with the trigger is abnormally robust to strong

intentional perturbations. Such a phenomenon can be used to

detect malicious online inputs trying to activate the backdoor.

STRIP is mainly designed to detect class-agnostic backdoors

and thus becomes less effective against class-specific back-

doors, as mentioned by the authors. Februus first locates the

possible trigger region within the online input image via visual

explanation techniques, then removes pixels in this location

and checks whether the predicted label is changed. If so, this

online input is identified as malicious, and the model is de-

tected as backdoored. The limitation of Februus is that the

trigger region is hard to locate under some backdoor settings,

e.g., trojan attacks using the blending/filter trigger.

Besides the limitations mentioned above, deployment stage

inspection methods have a common drawback. These methods

assume that the defender can access online samples with the

trigger. Thus, they can only be applied in the deployment

stage, which means that the model user has to risk deploying

a safety-unknown model. Such risk may be unacceptable in

some safety-critical scenarios, e.g., autonomous driving.

Offline Training Dataset Inspection. Offline training

dataset inspection aims to identify whether a training dataset

is poisoned. The corresponding real-world scenario is the

dataset outsource environment [8], where the defender has

access to the training dataset of the model. One representa-

tive method in this category is SCAn [44]. SCAn leverages

the Expectation-Maximization (EM) algorithm to decompose

an image into its identity part and variation part, then de-

tects poisoned datasets by analyzing the variation distribution

across all classes. SCAn is proved to be effective against

class-specific backdoors. However, offline training dataset in-

spection methods have limited usage scenarios. For scenarios

where the defender cannot inspect the training dataset, the

methods in this category are not applicable.

Offline Model Inspection. Offline model inspection is more

generalizable and practical than the above two types of trojan

defenses, which aims to tell whether a given model is trojaned

before this model is deployed in real applications. Most offline

model inspection methods assume a data-limited scenario

where the defender has a small set of clean data. For example,

Neural Cleanse (NC) [46] reverse engineers trojan triggers on

clean image samples, then predicts the model as trojaned if the

reversed trigger has a small size. MNTD [55] detects trojaned

models via meta neural analysis, which requires the defender

to train a set of clean and trojaned models on a small set of

clean labeled training data. These clean and trojaned models

are then used to train a binary meta classifier, which is used

to predict whether a given model is trojaned. ABS [34] first

locates backdoor-related neurons via analyzing the inspected

model’s abnormal neuron activations on clean samples, then

stimulates the suspected neurons to check whether they are

actual backdoor-related neurons.

However, the requirement of a set of clean data may not

be easily satisfied in some crucial real-world scenarios. For

example, the third-party trained models are often uploaded

without any validation data on model-selling platforms like

the AWS marketplace. Besides, it is hard to gather surrogate

validation data for models trained for some privacy-sensitive

tasks, e.g., an image classification model for rare disease di-

agnosis. Thus, a data-free trojan detection method is essential

if the platform maintainer wants to scan the available online

models for neural trojans. So here comes the data-free offline

model inspection method, which is the track of this paper.

Such data-free trojan detection methods are more practical

than those described above because they do not require the

defender to have any auxiliary data. To the best of our knowl-

edge, the only existing data-free backdoor detection method

is DF-TND [48], which shares similar insights with NC but

inverts trigger features from noise images instead of clean

inputs. However, we find that DF-TND is ineffective against

complex backdoors such as class-specific backdoors and back-

doors with evasive triggers. Besides, we find that it does not

generalize well to small models.

Thus, in this paper, we design FREEEAGLE, a data-free tro-

jan attack detection method. FREEEAGLE not only solves the

data-free challenge but also solves the challenge of detecting

complex trojan attacks, including class-specific trojan attacks

and trojan attacks using evasive triggers.

3 Methodology of FREEEAGLE

In this section, we first illustrate the threat model of FREEEA-

GLE, followed by the key intuition and method overview. Then

we demonstrate the detailed methodology of FREEEAGLE.

3.1 Threat Model
Goal and Capability of the Attacker. The attacker intends

to train a trojaned model and release it on model-sharing

platforms. We assume the attacker controls both the data

collection stage and the model training stage, i.e., the attacker

completely controls the training dataset and all of the model’s

weights. Further, as demonstrated in Section 2.2, the attacker

can choose different attack strategies, i.e., the class-agnostic

trojan attack or the class-specific trojan attack. The attacker

can also choose various trigger forms, as demonstrated in

Section 2.3. The attacker can make a complex trojan attack

against DNN models by combining different attack strategies

and trigger forms.

Goal and Capability of the Defender. The defender intends

to detect neural trojans in a given DNN model, i.e., to predict

Classifier PartFeature Extractor Part

Inspected Layer Selection

Dummy IR Forward Propagation Posterior Outliers Detection

Dummy IR Generation

Dummy IRk

Dummy IRk

Maximize
Posterior k

0
1
...
k

…
n
…

Posterior
Vector
Vk

0
1
...
k
…
n
…

Set
Vk[k]
to zero

0
1
...
k

…
n
…

0 1 ... K … n

Inspected Layer

Figure 1: Overview of FREEEAGLE.

whether a given DNN model is trojaned. The defender has

neither access to the poisoned data nor a set of clean valida-

tion data. The defender has white-box access to the model,

which is often the case on the model-sharing platforms and

model-selling platforms such as Model Zoo [23] and AWS

Marketplace [1].

3.2 Key Intuition
Our key intuition is illustrated as follows. The goal of tro-

jan attacks is to assign different priority levels to different

extracted features, including the trigger features and the be-

nign features of all classes. A DNN model can be divided

into two parts, i.e., the feature extractor part and the classifier

part. During the forward propagation of a trojaned model,

the feature extractor part extracts trigger features and benign

features of each class. Then the classifier part gives the trig-

ger features higher priority over the benign features of the

source classes. To achieve this, the classifier part of a trojaned

model has to suppress the impact of the benign features of

the source classes while promoting the impact of the trigger

features, which will finally influence the model’s output, i.e.,

the posterior after the softmax function.

In particular, when the benign inputs are fed to the trojaned

model, the output posterior on the target class will be higher

than the posteriors on the non-target classes (except the pos-

terior of the benign input’s true class). Such tendency is very

subtle, i.e., the difference may be at a tiny scale, e.g., 1e-5

vs. 1e-2. However, it is distinguishable enough to indicate

whether a model is trojaned.

The above phenomenon cannot be steadily observed on true

benign inputs, as different benign inputs have benign features

of different quality. Besides, we consider the data-free setting,

where the defender does not have any auxiliary data. However,

these two issues can be mitigated by generating dummy inter-

mediate representations (embeddings) in the “input layer” of

the classifier part, with the optimization policy as maximizing

the posterior of the corresponding class. The advantages of

generating dummy intermediate representations are discussed

as follows. Firstly, the generated dummies have stable feature

quality as they are optimized till convergence. Secondly, by

generating dummy intermediate representations rather than

dummy raw inputs in the input layer of the model, the search

space is significantly reduced, making the generated dum-

mies even more stable. Thirdly, by generating dummies, the

data-free challenge is solved.

Besides the data-free challenge, the above intuition natu-

rally solves another challenge to detect class-specific trojan

attacks and trojans using evasive triggers. On the one hand,

the above intuition considers each possible source-target class

pair. The reason is that each time the dummy of one class is

generated and forward propagated, we can analyze the possi-

bility of this class being the source class and any other class as

the target class. Thus, the above intuition is applicable to de-

tect class-specific trojan attacks. On the other hand, no matter

what trigger form the trojan attack takes, the feature extractor

part will extract the trigger feature into several dimensions of

the intermediate representation. Thus, the above intuition is

generalizable to different trigger forms.

3.3 Method Overview
We show the overview of FREEEAGLE in Figure 1. Given

a DNN model, the pipeline of FREEEAGLE consists of five

steps to predict whether it is trojaned.

(1) Select one layer of the model to separate the feature

extractor part and the classifier part.

(2) For each class, generate its dummy intermediate repre-

sentation at the selected hidden layer with the optimiza-

tion policy as maximizing the posterior of this class.

(3) For each class, forward propagate its dummy represen-

tation through the classifier part of the model and then

record the posteriors of other classes.

Algorithm 1 FREEEAGLE

Require: The inspected model M, number of classes n.

1: Select the inspected layer Lsep
2: Separate M into the feature extractor part Mextractor and

the classifier part Mcls via Lsep
3: for every class k in range(0, n) do
4: Generate IRk for 2 times

5: Compute the average vector IRavg
k

6: end for
7: Matp ← [Mcls(IRavg

1), Mcls(IRavg
2), ..., Mcls(IRavg

n)]T

8: Set diagonal elements of Matp to zeros

9: v← The average values of columns in Matp
10: Q1 ← the first quartile of v
11: Q3 ← the third quartile of v
12: Mtro janed ←

(
max(v)−Q3

)÷ (
Q3−Q1

)

13: return Mtro janed

(4) Detect outliers from the recorded posteriors. If there

exists one “superior” class, i.e., if dummy intermediate

representations of some other classes have abnormally

high posteriors on this class, then the model is identified

as trojaned and this class is identified as the target class.

(5) Modify the anomaly metric with the purpose of exposing

some special cases of trojaned models.

3.4 Detailed Methodology
In this section, we illustrate each step of FREEEAGLE in detail.

The overall algorithm is shown in Algorithm 1.

Inspected Layer Selection. As demonstrated in Section 3.2,

firstly, a DNN model can be divided into the feature extractor

part and the classifier part; secondly, we focus on analyzing

the classifier part to reveal the trojan attack. Thus, given a

model to be checked, the first step is to select one layer of the

model as the divider of these two parts, denoted as Lsep.

For any model architecture, Lsep should be positioned away

from the output layer and not too close to the input layer. On

the one hand, the defender should position Lsep away from the

output layer to enhance FREEEAGLE’s robustness against pos-

sible adaptive attacks, which will be discussed in Section 6.2.

On the other hand, the defender should set Lsep not too close

to the input layer. As demonstrated in Section 3.2, FREEEA-

GLE is based on the intuition that the feature extractor, i.e., the

layers before Lsep, can extract the trigger feature into several

feature dimensions. Therefore, we recommend setting Lsep
not too close to the input layer to enable the feature extractor

to effectively extract trigger features.

For small models with no more than 30 layers, we suggest

setting Lsep around the middle layer. As an example, for VGG-

16, we recommend setting Lsep to 8. This is because the first 7

convolutional layers of VGG-16 can effectively extract trigger

features. Additionally, there are 8 layers after the 8th layer,

which is sufficiently far from the output layer in VGG-16.

For large models with more than 30 layers, e.g., ResNet-50,

we suggest setting Lsep around 10. This is because the first 9

layers are sufficient to enable the feature extractor to extract

trigger features, and the 10th layer is far enough from the

output layer in large models.

After selecting Lsep, we cut the later part of the model from

Lsep as the classifier part of the model, denoted as Mcls. Note

that Lsep is included in Mcls. The “inspected layer selection”

step corresponds to lines 1-2 in Algorithm 1.

Dummy Intermediate Representations Generation. We

refer the dummy “inputs” of Mcls as the intermediate repre-

sentations, denoted as IRdummy. In the following, we denote

IRdummy of class c as IRc. IRc can be generated by solving the

following optimization:

IRc = argmin
IRc

(
CE

(
Mcls(IRc),c

)
+λl2 · ||IRc||2

)
(2)

where CE is the cross entropy loss function, Mcls is the clas-

sifier part of the given model, and λl2 is the parameter of the

L2 norm regularization (set to 5e-3 in our experiments). Addi-

tionally, if the inspected layer is after a ReLU function, then

the optimization should be constrained to guarantee that all

elements of the generated IRc are no smaller than zero:

IRc = argmin
IRc

(
CE

(
Mcls(IRc),c

)
+λl2 · ||IRc||2

)
(3)

s.t. ∀i ∈ [1, Ndims], IRi
c >= 0

where Ndims is the number of dimensions of IRc and IRi
c is the

i th element of IRc. All other symbols have the same meanings

as in Equation 2.

We use a gradient descent-based algorithm to solve the

above optimization, as shown in Algorithm 2. We compute

IRc for two times for each class c and then compute the aver-

age vector as IRavg
c . The “dummy intermediate representation

generation” step corresponds to lines 3-6 in Algorithm 1.

Dummy Intermediate Representation Forward Propaga-
tion. After obtaining IRavg for each class, we feed them to

Mcls to get the matrix of output posteriors, which can be for-

mulated as:

Matp = [Mcls(IR1), Mcls(IR2), ..., Mcls(IRn)]
T (4)

where n is the number of classes of the model’s original clas-

sification task. Thus, Matp is a n×n matrix which records the

posteriors of IRavg for each class. The “dummy intermediate

representation forward propagation” step corresponds to line

7 in Algorithm 1.

Posterior Outlier Detection and Anomaly Metric Com-
putation. After obtaining Matp, we need to detect whether

there exists one “superior” class to judge whether the given

model is trojaned. Specifically, if some classes’ dummy inter-

mediate representations have abnormally high posteriors on a

Algorithm 2 Dummy intermediate representation generation

Require: The inspected model M, the classifier part of the

model Mcls, the inspected class c, the scale factor of the

L2 norm λl2
1: Randomly initialize dummy intermediate representation

IRc
2: Freeze the parameters of Mcls
3: Set IRc as the tunable parameters

4: while stopping criterion not met do
5: loss←CE(Mcls(IRc),c)+λl2 · ||IRc||2
6: IRc ← Backward(loss)
7: if there is a ReLU module before Mcls in M then
8: IRc ←Clamp(IRc, 0, +∞)
9: end if

10: end while
11: return IRc

Figure 2: Matp, box plots of v and the anomaly metric val-

ues Mtro janed computed on one benign model and two tro-

janed models. Bright yellow color represents abnormality.

The model architecture and dataset are VGG and CIFAR-10,

respectively. For trojaned models, the trigger type, source

classes, and target class information is shown in the figure.

(a) Benign

(Mtro janed = 0.962)

(b) Patch Trigger
Source=2,Target=6
Mtro janed = (3.681)

(c) Patch Trigger
Source=5,Target=8
Mtro janed = (0.397)

particular class, i.e., if some elements in a particular column

of Matp are abnormally large, then the model is identified as

a trojaned model, and this class is identified as the target class.

The detailed operations are illustrated as follows.

Firstly, we set all elements in the diagonal of Matp to zeros.

In the following, we denote v as the average value of a column

in Matp. For the c th column of Matp, we compute its average

value vc as the anomaly metric of the c th class. Then we

can compute v, the n-dimension vector that records v of each

class. Inspired by the classic anomaly detection method box

plot [50], the anomaly metric for a given model is computed

as:

Mtro janed = (max(v)−Q3)/(Q3−Q1) (5)

where Q1 and Q3 denote the first and third quartile of v, re-

spectively. In most cases of the trojaned models, the v value

of the target class is significantly larger than those of other

classes, deriving a high Mtro janed value. In other words, higher

Mtro janed indicates that the given model has a higher possi-

Table 2: Datasets, model architectures and trigger forms used

to evaluate FREEEAGLE. “CNN-7” is the convolutional neural

network composed of 4 convolutional layers and 3 linear

layers, following the architecture used for CIFAR-10 in [30].

Lsep is the position of the selected inspected layer.

Dataset
Class

Quantity

Model

Architecture

Trigger

Type
Lsep

GTSRB 43 GoogLeNet
patch, blending,

filter
10th

ImageNet-

R

20 ResNet-50
patch, blending,

filter, natural
10th

CIFAR-10 10
VGG-16

patch, blending,

filter
8th

CNN-7 composite 5th

MNIST 10 CNN-7
patch, blending,

filter
5th

bility to be trojaned. The “posterior outlier detection and

anomaly metric computation” step corresponds to lines 8-13

in Algorithm 1.

Anomaly Metric Modification. As demonstrated above,

models with abnormally high Mtro janed values should be con-

sidered as trojaned. However, there is one special case where

the trojaned models have lower Mtro janed values than benign

models. Such a phenomenon is caused by the fact that some-

times there are naturally similar class pairs that also result in

high v values. For example, the naturally similar class pair

“dog (5) & cat (3)” makes v of the class “cat (3)” relatively

larger, as shown in the column “3” of Figure 2 (a). In this case,

if the backdoor-related class pair’s abnormality is not signif-

icant enough, i.e., v of the target class is not large enough,

Mtro janed of the trojaned model will be lower than that of the

benign model, rather than higher, as shown in Figure 2 (c).

The reason is that according to the definition of Mtro janed in

Equation 5, Mtro janed is large when the largest v is signifi-

cantly larger than those of all other classes. On the contrary,

the more classes that have v comparable with the largest v, the

smaller Mtro janed is. Thus, in the case of Figure 2 (c), with the

backdoor introducing the backdoor-related class pair whose

abnormality is not significant, Mtro janed decreases rather than

increases compared with the benign model. Thus, models with

abnormally low Mtro janed values should also be considered as

trojaned.

To sum up, considering the two categories of cases demon-

strated above, not only models with abnormally high Mtro janed
values are considered as trojaned, but models with abnormally

low Mtro janed values should also be considered as trojaned.

Thus, given a model to be inspected, we modify its anomaly

metric as the extent to which its Mtro janed value deviates from

the Mtro janed value of benign models. Specifically, Mtro janed
is modified as follows:

M′
tro janed = abs(Mtro janed−Mconst) (6)

where abs represents computing the absolute value and Mconst

Table 3: Parameter settings about training clean and trojaned

models. Definitions of the absolute poison ratio rpoison,absolute
and the relative poison ratio rpoison,relative are illustrated in

Section 4.2.

Parameter Description Value

β momentum 0.9

lr learning rate 0.025

λ L2 regularization

parameter
1e-4

nepoch
quantity of training

epochs
20

α transparency of

the blending trigger
0.2

rpoison,relative
relative poison ratio for

class-specific backdoors
0.5

rpoison,absolute
absolute poison ratio for

class-agnostic backdoors
0.2

slr
step of learning rate

scheduler
15

γlr
multiplicative factor of

learning rate scheduler
0.1

is a constant that represents the approximate Mtro janed value

of benign models. In our experiments, Mconst is set to 1.5 for

1-channel image datasets like MNIST. For 3-channel image

datasets like CIFAR-10, Mconst is set to 1.0. We denote the

modified anomaly metric as M′
tro janed , and models with high

M′
tro janed values are considered as trojaned. By this means,

FREEEAGLE can detect both cases of trojaned models demon-

strated above.

4 Experiment Setup

4.1 Datasets, Model Architectures and Trojans

Table 2 provides an overview of the datasets, model architec-

tures, and trojan attack settings used for evaluation. We evalu-

ate FREEEAGLE on four datasets and four model architectures,

including GTSRB [20] with GoogLeNet [43], ImageNet-R [9]

with ResNet-50 [18], MNIST [26] with CNN-7, and CIFAR-

10 [25] with VGG-16/CNN-7 [30, 42]. For details about the

four datasets, please refer to Appendix B. As for the trojan

attack settings, in the perspective the attack goal, we eval-

uate FREEEAGLE against class-agnostic and class-specific

trojan attacks, as described in Section 2.2. In the perspec-

tive of trojan trigger forms, we evaluate FREEEAGLE against

both pixel-space and feature-space triggers, as illustrated in

Section 2.3. In particular, the pixel-space triggers in this pa-

per include the patch trigger and the blending trigger. The

feature-space triggers in this paper include the natural trig-

ger, the filter trigger, and the composite trigger. Examples of

these triggers can be found in Section 2.3. Note that for the

filter trigger, we use the vintage-photography-style filter for

3-channel image datasets, i.e, ImageNet-R, CIFAR-10 and

GTSRB. While for the 1-channel image dataset MNIST, we

use the negative color filter. Detailed algorithms of these two

filters can be found at Appendix A.

4.2 Parameter Settings
For FREEEAGLE, the settings of Lsep for different model ar-

chitectures are shown in Table 2. The parameter settings for

training the clean and trojaned models are shown in Table 3.

For parameters about training models, e.g., momentum β and

weight decay λ, they are set following common practice [18].

For parameters about backdoors, they are set following pre-

vious works on neural trojans [7, 44]. The absolute poison

ratio rpoison,absolute is defined as the number of samples with

the trigger divided by the size of the entire dataset. Different

from rpoison,absolute, the relative poison ratio rpoison,relative is

defined as the number of samples with the trigger divided by

the number of “poisonable” samples. For example, assum-

ing that rpoison,relative is set to 0.5, and the training dataset is

CIFAR-10, which has 5,000 training samples for each class.

If the attacker wants to inject the class-specific backdoor with

one source class into the model, then the “poisonable” train-

ing samples are the 5,000 training samples of this source class.

Thus, there are 1×5,000×0.5 = 2,500 “poisoned” samples,

i.e., samples with the trigger.

For the class-specific backdoor, rpoison,relative is more suit-

able to describe the proportion of samples with the trigger in

the training dataset, while rpoison,absolute is more suitable for

the class-agnostic backdoor. In this paper, if not specifically

mentioned, we set rpoison,relative to 0.5 for class-specific back-

doors and rpoison,absolute to 0.2 for class-agnostic backdoors,

as shown in Table 3.

4.3 Training Clean and Trojaned Models
To evaluate the detection performance of FREEEAGLE and

other trojan detectors, we train thousands of clean and trojaned

models under the parameter settings illustrated in Section 4.2.

All clean and trojaned models are trained with standard data

augmentations and perform well on their original tasks. The

trojaned attacks also achieve high ASR (attack success rates)

on the trojaned models. For more details about the trained

clean and trojaned models, please refer to Appendix C.

4.4 Experiment Environment
The clean and trojaned models are trained on four NVIDIA

RTX 2080Ti GPU cards. Experiments about trojan detection

are accelerated by one NVIDIA RTX 3090 GPU card. All

DNN models are implemented using PyTorch [37].

5 Defense Evaluation
In this section, we introduce the evaluation metric and base-

line methods, then analyze the performance of trojan detectors

under various settings.

5.1 Evaluation Metric
As discussed in [2], during the evaluation, the test set must

not be used to parameterize the method. Thus, we choose the

Table 4: Defense performance of FREEEAGLE and baseline methods measured by TPR and FPR (true/false positive rate). It

can be seen that FREEEAGLE outperforms all baseline methods under most settings of datasets, model architectures, and trojan

attacks. For each setting, e.g., “GTSRB, GoogLeNet, Class-Agnostic and Patch Trigger”, the result with the highest TPR - FPR

is highlighted in bold.

Trojan Detection

Method
Dataset

Model

Architecture

Backdoor Settings & TPR/FPR

Class-Agnostic Class-Specific

Patch

Trigger

Blending

Trigger

Filter

Trigger

Patch

Trigger

Blending

Trigger

Filter

Trigger

FREEEAGLE

GTSRB GoogLeNet 0.99/0.03 0.99/0.04 1.00/0.03 0.89/0.03 0.76/0.04 0.84/0.05
ImageNet-R ResNet-50 0.99/0.04 0.86/0.03 0.99/0.02 0.74/0.03 0.73/0.04 0.78/0.05
CIFAR-10 VGG-16 0.98/0.03 0.73/0.04 0.85/0.04 0.71/0.05 0.72/0.05 0.74/0.04

MNIST CNN-7 0.97/0.03 0.81/0.05 0.79/0.01 0.78/0.03 0.70/0.04 0.72/0.03

DF-TND

GTSRB GoogLeNet 0.23/0.05 0.08/0.04 0.31/0.05 0.19/0.05 0.17/0.05 0.28/0.04

ImageNet-R ResNet-50 0.76/0.05 0.32/0.05 0.90/0.03 0.18/0.05 0.23/0.05 0.38/0.05

CIFAR-10 VGG-16 0.00/0.02 0.00/0.04 0.00/0.03 0.00/0.04 0.01/0.03 0.03/0.05

MNIST CNN-7 0.05/0.04 0.23/0.05 0.00/0.02 0.04/0.01 0.09/0.05 0.03/0.05

STRIP

GTSRB GoogLeNet 0.97/0.01 0.57/0.05 0.34/0.05 0.10/0.05 0.01/0.05 0.11/0.05

ImageNet-R ResNet-50 0.44/0.05 0.53/0.05 0.14/0.05 0.10/0.05 0.03/0.02 0.07/0.03

CIFAR-10 VGG-16 0.89/0.04 0.92/0.04 0.10/0.03 0.00/0.02 0.04/0.05 0.02/0.05

MNIST CNN-7 0.83/0.05 0.00/0.01 0.00/0.02 0.00/0.04 0.00/0.03 0.00/0.01

ANP

GTSRB GoogLeNet 0.90/0.05 0.74/0.05 0.53/0.05 0.28/0.05 0.13/0.05 0.14/0.05

ImageNet-R ResNet-50 0.99/0.05 0.96/0.03 0.74/0.05 0.31/0.05 0.23/0.05 0.19/0.05

CIFAR-10 VGG-16 0.90/0.01 0.76/0.04 0.77/0.03 0.62/0.05 0.51/0.05 0.57/0.05

MNIST CNN-7 0.83/0.05 0.86/0.05 0.73/0.05 0.71/0.05 0.68/0.05 0.43/0.05

NC

GTSRB GoogLeNet 1.00/0.00 1.00/0.00 0.51/0.05 0.21/0.05 0.33/0.05 0.04/0.05

ImageNet-R ResNet-50 0.75/0.00 0.68/0.02 0.23/0.05 0.00/0.00 0.00/0.00 0.00/0.00

CIFAR-10 VGG-16 0.90/0.00 0.70/0.00 0.13/0.05 0.07/0.05 0.02/0.04 0.02/0.05

MNIST CNN-7 0.83/0.00 0.90/0.00 0.32/0.02 0.23/0.05 0.13/0.05 0.28/0.02

ABS

GTSRB GoogLeNet 0.56/0.05 0.62/0.04 0.34/0.05 0.43/0.05 0.26/0.04 0.13/0.05

ImageNet-R ResNet-50 0.67/0.05 0.22/0.01 0.73/0.03 0.43/0.05 0.40/0.04 0.32/0.05

CIFAR-10 VGG-16 0.37/0.04 0.61/0.05 0.21/0.04 0.56/0.05 0.25/0.02 0.26/0.05

MNIST CNN-7 0.71/0.05 0.64/0.05 0.23/0.04 0.35/0.02 0.15/0.05 0.23/0.05

evaluation metric as TPR/FPR (true/false positive rate) under

a fixed threshold that is determined on results gained from the

training set. Specifically, we first train a set of trojaned and

benign models, as demonstrated in Section 4.3. Then for each

setting, e.g., “GTSRB, GoogLeNet, Class-Agnostic and Patch

Trigger”, we randomly select 30% trojaned models and 30%

benign models as the training set to determine the threshold

of the method. The remaining trojaned and benign models are

used as the test set. We fix the threshold as the lowest value

that corresponds to a FPR that is no larger than 0.05 on the

training set, then evaluate the performance of the method by

the TPR/FPR computed on the test set. We repeat the above

procedure for 10 times and report the average TPR/FPR as

the final result.

5.2 Baseline Methods
Besides the data-free trojan detection method DF-TND, we

also compare FREEEAGLE with four non-data-free methods,

including STRIP, ANP [52], NC and ABS. STRIP, NC and

ABS are briefly introduced in Section 2.4. ANP is a method

originally designed for backdoor removal rather than back-

door detection. However, with its intuition that the neurons

of trojaned models are more sensitive to “adversarial neuron

perturbations” [52], we can adapt ANP to backdoor detection.

The basic idea is to apply adversarial neuron perturbations

to a model, then if the model’s accuracy on the original task

significantly drops, it is predicted as a trojaned model. For the

implementation details of the baseline methods, please refer

to Appendix D.

5.3 Defending Against Pixel-Space Triggers
The defense performance of FREEEAGLE and baseline meth-

ods against the patch/blending trigger is shown in Table 4.

It can be seen that FREEEAGLE outperforms the data-free

detection method DF-TND on all evaluated datasets, model ar-

chitectures, and backdoor settings. Besides, FREEEAGLE even

outperforms non-data-free baseline methods under many set-

tings. It can be concluded that FREEEAGLE is robust against

diverse trigger types, class-agnostic/class-specific backdoors.

We find that FREEEAGLE performs better when the task

has more classes. Taking the class-agnostic backdoor with

the blending trigger as an example, as shown in Table 4,

the TPR/FPR of FREEEAGLE is 0.99/0.04 on GTSRB (43

classes). However, the TPR/FPR of FREEEAGLE degrades

to 0.73/0.04 on CIFAR-10 (10 classes). The reason is that

FREEEAGLE computes the anomaly metric by analyzing the

outliers of all classes. Thus, if the task has more classes,

FREEEAGLE will be able to analyze more data points and

therefore perform better when detecting outliers.

Another observation is that the blending trigger is more

evasive than the patch trigger. For example, on GTSRB,

FREEEAGLE achieves 0.76/0.04 TPR/FPR when detecting

class-specific backdoor with the blending trigger, while the

TPR/FPR is 0.89/0.03 for class-specific backdoor with the

patch trigger. The possible reasons are analyzed as follows.

The patch trigger has a small size, and thus after being forward

propagated through convolutional layers, it can only affect a

small set of neurons of classifier layers [54]. On the contrary,

the blending trigger covers a large area of the original image

and can affect a larger set of inner neurons to activate the

neural trojan. Thus, as the patch trigger affects fewer neurons,

these neurons have to learn a stronger connection with the

target label, reducing the evasiveness of the backdoor.

We also find that the class-specific backdoor is more

evasive than the class-agnostic backdoor. For example, on

GTSRB, for backdoors with the blending trigger, FREEEA-

GLE achieves 0.76/0.04 TPR/FPR when detecting the class-

specific backdoor, while the TPR/FPR is 0.99/0.04 for the

class-agnostic backdoor. This conclusion also holds for all

five baseline methods. As mentioned by Gao et al. [14], this is

because the class-specific backdoor only requires the trigger

feature to be dominant over the benign features of the source

classes rather than all classes, which makes the trigger feature

less dominant than that of the class-agnostic backdoor. As a

result, the class-specific backdoor is more evasive.

Compared with FREEEAGLE, all five baseline methods are

less effective against class-specific backdoors. The reason

of DF-TND and NC’s failure on class-specific backdoors

is that they rely on recovering universal perturbations that

cause the model to misclassify any sample as the target class.

Thus, their insights may not hold for class-specific backdoors.

Similarly, STRIP is based on the intuition that the trigger

feature is much more dominant than any benign features.

Though this intuition holds for class-agnostic backdoors, it is

less suitable for class-specific backdoors because the “class-

specific” attack goal makes the trigger feature less dominant

over non-source-class benign features. ANP and ABS de-

tect neural trojans by analyzing neuron-level behaviors and

do not depend on the dominance of trigger features, so they

perform better than STRIP, NC and DF-TND. However, as

shown in Table 4, their defense performance against class-

specific backdoors also degrades compared with that against

class-agnostic backdoors. For example, under the setting of

“CIFAR-10, VGG-16, Patch Trigger”, the TPR/FPR of ANP is

Table 5: Defense performance of FREEEAGLE and baseline

methods against backdoors using the natural/composite trig-

ger. It can be seen that the defense performance of FREEEA-

GLE is better than or comparable with all baseline methods.

Dataset Model
Trigger

Type

Detection

Method
TPR/FPR

ImageNet

-R
ResNet-50 Natural

FREEEAGLE 0.62/0.05
DF-TND 0.00/0.04

STRIP 0.08/0.05

ANP 0.10/0.05

NC 0.00/0.03

ABS 0.31/0.01

CIFAR-10 CNN-7 Composite

FREEEAGLE 0.86/0.05

DF-TND 0.00/0.04

STRIP 0.00/0.03

ANP 0.90/0.05
NC 0.00/0.05

ABS 0.16/0.03

0.90/0.01 for the class-agnostic backdoor but 0.62/0.05 for the

class-specific backdoor. The reason may be that class-specific

backdoors not only have less dominant trigger features, but

also have less evident neuron-level abnormal behaviors.

We also find that the defense performance of the data-free

baseline method DF-TND seems to be model-dependent. In

particular, DF-TND seems to have better performance on

deeper models. For example, when detecting models trojaned

with class-agnostic backdoors using the patch trigger, DF-

TND gets 0.76/0.05 TPR/FPR on ResNet-50 (50 layers) but

0.23/0.05 TPR/FPR on GoogLeNet (22 layers). The reason

may be that DF-TND’s methodology includes the step to re-

verse engineer the input image. As feature extractors with

more layers provide higher-quality recovered input images,

DF-TND has better detection performance on deeper mod-

els. In comparison, FREEEAGLE reverse engineers dummy

intermediate representations instead of the raw inputs, thus is

more generalizable to different model architectures.

5.4 Defending Against Feature-Space Triggers
The defense performance of FREEEAGLE and five baseline

methods against the filter trigger is shown in Table 4. For

both class-agnostic and class-specific backdoors with filter

triggers, FREEEAGLE outperforms all five baseline methods.

FREEEAGLE is also effective against backdoors using natu-

ral or composite triggers. As shown in Table 5, for the natural

trigger, FREEEAGLE achieves 0.62/0.05 TPR/FPR, outper-

forming all five baseline methods. For the composite trigger,

FREEEAGLE achieves 0.86/0.05 TPR/FPR, which is compara-

ble with the best performance (0.90/0.05 TPR/FPR) achieved

by ANP. Note that FREEEAGLE is data-free while ANP relies

on the access to clean labeled samples.

5.5 Overall Defense Performance
In the above two subsections, we evaluate FREEEAGLE on

specific settings of datasets and trojan attacks. However, in

Table 6: Comparison of the average time cost (in seconds)

to inspect one model. All methods are accelerated by one

NVIDIA RTX 3090 GPU.

ResNet50,

ImageNet-R

VGG-16,

CIFAR-10

GoogLeNet,

GTSRB

CNN-7,

MNIST

FREEEAGLE 602 81 1,058 18

DF-TND 58 43 106 13

STRIP 5 4 5 2

ANP 28 49 77 31

NC 6,041 4,412 36,124 1,913

ABS 291 7 58 4

real-world scenarios, the defender usually does not know the

specific trojan attack setting. Thus, it is crucial to evaluate

the trojan detection method on a set of models trojaned with

different trojan attacks. The experiment result shows that

FREEEAGLE achieves 0.65/0.04 TPR/FPR if evaluated on

all the trojaned and benign models trained in Section 4.3,

while the TPR/FPRs of DF-TND, STRIP, ANP, NC and ABS

are 0.11/0.05, 0.14/0.05, 0.33/0.05, 0.28/0.05 and 0.21/0.05,

respectively. Note that the above results are also computed

on the test set under the fixed threshold determined on the

training set, as demonstrated in Section 5.1. This indicates

that FREEEAGLE can get good detection performance across

different models, datasets, and trojan attacks.

5.6 Time Cost
Designing efficient defense methods is essential for practical

application [15]. As FREEEAGLE only analyzes the classifier

part of the inspected model, its time cost is low. As shown in

Table 6, with the acceleration of one NVIDIA RTX 3090 GPU

card, FREEEAGLE can finish inspecting one model within 20

minutes on all four evaluated settings. Another observation

is that the time cost of FREEEAGLE increases as the number

of classes grows, for FREEEAGLE needs to generate dummy

intermediate representations for each class. However, even if

there are more classes, FREEEAGLE can still inspect models

efficiently, as the average time cost for one class is only around

20 seconds. From Table 6, we can conclude that STRIP is the

fastest detector. However, STRIP relies on the access to clean

samples and samples with the trigger to inspect a model, thus

has limited applicable scenarios compared with FREEEAGLE.

6 Possible Adaptive Attacks
We investigate two adaptive attack strategies [6, 45] that may

bypass FREEEAGLE: (1) the adaptive attacker shapes the

posterior during training the trojaned model; (2) for input

images containing the trigger, the adaptive attacker makes

the feature extractor output similar feature maps with clean

images from the target class. We find that these adaptive

attacks are not effective against FREEEAGLE or cannot bypass

FREEEAGLE without significantly reducing the usability of

the backdoor. Interestingly, we find that there is a trade-off

between the trojan attack’s usability and evasiveness, i.e.,

to gain evasiveness against FREEEAGLE, the trojan attack

has to reduce its attack success rate. The experiments are

conduct on the GTSRB/CIFAR-10 datasets and the backdoor

is class-agnostic. Three trigger types are considered, including

the patch/blending/filter trigger. In this section, the reported

TPR/FPR is the overall defense performance against models

trojaned with these three trigger types.

6.1 Posterior Shaping
The adaptive attacker tries to bypass FREEEAGLE by shaping

the posterior during training the trojaned model. As demon-

strated in Section 3.2, FREEEAGLE is based on the intuition

that for a trojaned model, the output posterior on the target

class will be higher than the posteriors on the non-target

classes. Thus, the attacker may try to bypass FREEEAGLE by

decreasing the posterior of the target class while increasing

the posteriors of non-target classes. Specifically, for training

samples with the target label in the poisoned dataset, i.e.,

target-class samples and samples with the trigger, the poste-

rior is shaped using the following loss function:

lossshaping = MSE(So f tmax(M(xt)),yshaped) (7)

where MSE is the mean square loss, so f tmax is the softmax

function, M is the model, xt is the training samples with the

target label and yshaped is the shaped one-hot vector. yshaped
is computed as:

yshaped =Clamp(y, pmin, pmax) (8)

pmin = (1.0− pmax)/(Nclass−1) 0.5 < pmax < 1.0 (9)

where Clamp is the clamp function, which bounds the mini-

mum and maximum values of a given vector. y is the classic

one-hot label. pmax is the parameter that decides the maxi-

mum value of y, which is set to 0.6 in the experiment. Nclass
is the number of classes.

Some case studies of FREEEAGLE against this adaptive

attack are shown in Figure 3. Though posterior shaping does

make the trojaned model more evasive against FREEEA-

GLE, FREEEAGLE manages to outline the target class of the

backdoor and computes a relatively large M′
tro janed . Actually,

our experiment results show that with this adaptive attack,

the TPR/FPR of FREEEAGLE only degrades slightly from

0.99/0.04 to 0.93/0.03 on the GTSRB dataset. On the CIFAR-

10 dataset, the TPR/FPR of FREEEAGLE only degrades from

0.88/0.05 to 0.82/0.04. Thus, posterior shaping has minor

effect on the defense performance of FREEEAGLE.

6.2 Trojaning the Feature Extractor
Inspired by the methodology of BadEncoder [21], the adaptive

attacker can trojan the feature extractor part of the model, then

fixes the parameters of the feature extractor part and trains

the classifier part on the clean training dataset. The detailed

adaptive attack method is as follows. (1) The attacker trains

Figure 3: Matp and M′
tro janed computed on trojaned models

trained with/without the adaptive attack strategy of posterior

shaping. Bright yellow color represents abnormality.

(a) Without Posterior
Shaping
GTSRB

GoogLeNet
M′

tro janed = (63.958)

(b) With Posterior
Shaping
GTSRB

GoogLeNet
M′

tro janed = (2.347)

(c) Without Posterior
Shaping

CIFAR-10
VGG-16

M′
tro janed = (4.080)

(d) With Posterior
Shaping

CIFAR-10
VGG-16

M′
tro janed = (3.788)

Table 7: FREEEAGLE’s defense performance against the adap-

tive attack strategy of trojaning the feature extractor on the

GTSRB and CIFAR-10 datasets. Latk is the layer that the

adaptive attacker selects to bypass FREEEAGLE, and Lde f is

the layer selected by FREEEAGLE when inspecting the model.

Lde f

TPR/FPR Latk
10th 16th 22nd

10th 0.44/0.02 0.79/0.05 0.87/0.05

(a) GTSRB, GoogLeNet

Lde f

TPR/FPR Latk
8th 11th 14th

8th 0.43/0.03 0.67/0.04 0.76/0.05

(b) CIFAR-10, VGG-16

a clean model on the clean training dataset, then takes its

feature extractor part as Fclean. (2) The attacker selects clean

training samples from the target class as reference samples

and records their embeddings, i.e., the outputs of Fclean. We

denote the embedding of a reference sample as IRre f . (3) The

attacker initializes a feature extractor Fbad and trains it with

the following two goals. Firstly, for training samples that do

not contain the trigger, Fbad should output similar embeddings

with Fclean. Secondly, for training samples containing the

trigger, the output ybad of Fbad should be similar with a IRre f .

Specifically, if the training sample contains the trigger, the

loss function is defined as the minimum over all candidate

IRre f , of the average squared difference between ybad and

IRre f . (4) After training Fbad , the attacker initializes a model

and replaces its feature extractor part with Fbad . Finally, the

attacker fixes parameters of the feature extractor part then

trains the model on the clean training dataset.

By this means, the trojan behavior should be conducted

in the feature extractor part rather than the classifier part of

the model. Thus, the trojaned model should become more

evasive against FREEEAGLE. In the following, we use Latk
to denote the layer that the adaptive attacker selects to by-

pass FREEEAGLE, and Lde f denotes the layer selected by

FREEEAGLE when inspecting the model. As shown in Ta-

Table 8: FREEEAGLE’s defense performance against non-

adaptive attacks when Lde f is set to different layers.

Lde f 10th 16th 22nd

TPR 0.99 0.93 0.98

FPR 0.04 0.03 0.02

(a) GTSRB, GoogLeNet

Lde f 8th 11th 14th

TPR 0.88 0.83 0.82

FPR 0.05 0.05 0.02

(b) CIFAR-10, VGG-16

Figure 4: The trade-off between the evasiveness and the utility

of the adaptive backdoor attack of trojaning less layers. “TPR”

represents the TPR when Lde f = Latk and FPR is no larger

than 0.05. The backdoor setting is “agnostic backdoor” and

the target class is class 0.

(a) GTSRB, GoogLeNet (b) CIFAR-10, VGG-16

ble 7a, when Lde f = Latk, the adaptive attack does become

more evasive against FREEEAGLE, e.g., the TPR/FPR de-

grades to 0.44/0.02 when Lde f and Latk are both 10 on the

GTSRB dataset. Meanwhile, if FREEEAGLE inspects a shal-

lower layer than the adaptive attacker, i.e., Lde f is smaller than

Latk, FREEEAGLE can still get excellent performance. Thus,

to bypass FREEEAGLE, the adaptive attacker should set Latk
no larger than Lde f .

However, as shown in Figure 4, as the adaptive attacker

sets smaller Latk, the attack success rate (ASR) rapidly drops.

For example, on the GTSRB dataset, the ASR drops to around

0.05 when Latk is 10. Besides, as shown in Table 8a, on the GT-

SRB dataset, when Lde f is 10, FREEEAGLE can get good de-

fense performance against non-adaptive attacks, i.e., 0.99/0.04

TPR/FPR. To draw a conclusion, to avoid being bypassed by

the adaptive attack strategy of trojaning the feature extrac-

tor part, FREEEAGLE can inspect the model with Lde f set

to a low value, e.g., the 10th layer of GoogLeNet and the

8th layer of VGG-16. In this way, on the one hand, if Latk is

high, the adaptive attacker cannot bypass FREEEAGLE. On

the other hand, if Latk is low, the ASR will also be low, i.e., the

adaptive attacker will fail to inject a usable backdoor. Similar

results can be obtained on the CIFAR-10 dataset, as shown in

Table 7b, Table 8b and Figure 4b.

7 Discussion
If the trojaned model is trained without data augmentation,

FREEEAGLE will become less indicative of discriminating

trojaned and benign models, especially for the class-specific

backdoors. However, we argue that training trojaned mod-

els without data augmentation also reduces the usability of

the backdoor. Further, turning off data augmentation is also

harmful to the model’s performance on the original task.

Another limitation of FREEEAGLE is that its defense per-

formance is limited if the dataset has few classes. The reason

is that FREEEAGLE relies on detecting outliers from the poste-

riors of all classes, and detecting outliers will be more difficult

if there are few data points. However, collecting auxiliary la-

beled data will be much easier if the dataset has few classes,

making existing non-data-free backdoor detectors usable. For

example, ABS [34] only needs two auxiliary clean labeled

samples for binary tasks, one for the negative class and the

other for the positive class. Thus, the necessity of data-free

methods is reduced for datasets with few classes. Besides,

the insights of FREEEAGLE still hold for datasets with few

classes, and it is the quantile-related outlier detection step

that makes it sensitive to the number of classes. Thus, if we

specially design quantile-free anomaly metric for few-class

tasks, e.g., using the range of v, i.e., max(v)−min(v) as the

anomaly metric for two-class tasks, this limitation will be mit-

igated. We leave the extension of FREEEAGLE to few-class

datasets as future work.

8 Related Work

In addition to the trojan defenses discussed in Section 2.4,

FREEEAGLE is also related to the following work.

8.1 Backdoor Mitigation
Different from backdoor detection methods which aim to

tell whether a given model is backdoored, backdoor miti-

gation methods aim to remove the backdoor inside a back-

doored model [32,38]. This problem is also named “backdoor

blind removal” in some literature [13]. The backdoor miti-

gation method is required to remove the backdoor inside a

model without a significant drop on the performance of the

original task. Neural Cleanse [46] mitigates backdoor via

unlearning-based DNN patching, i.e., using inputs with the

reversed trigger and correct labels to fine-tune the backdoored

model. GangSweep [58] mitigates backdoor using a similar

paradigm with Neural Cleanse, but with the improvement of

using a generative adversarial network (GAN) to generate the

trigger pattern. AI-Lancet [57] uses a set of clean-poisoned

sample pairs to locate error-inducing neurons in DNN and

then fine-tunes or flips the sign of these neurons (weights)

to fix the poisoned DNN. Sharing similar insights with AI-

Lancet, adversarial neuron pruning (ANP) [52] uses a small

set of clean labeled samples to locate “sensitive neurons” and

then prunes these neurons to remove the backdoor. Deep-

Sweep [38] uses data augmentation techniques to mitigate

backdoor attacks as well as enhance the model’s robustness.

8.2 Backdoor-Free Training

Backdoor-free training is an interesting new research topic

in neural trojan defenses, aiming to train a clean model even

if the training dataset is poisoned. Li et al. proposed Anti-

backdoor learning (ABL) [29] to train a clean model on a

poisoned dataset, with the insight that the DNN model learns

backdoored data much faster than learning with clean data.

9 Conclusion

In this paper, we present novel insights into the underlying

working mechanisms of the trojaned model. We demonstrate

that a trojaned model firstly extracts both benign and trigger

features, then assign higher priority to the trigger features.

Based on the above insights, we propose FREEEAGLE, the

first data-free method that is effective against complex neural

trojans. Our experiment results on diverse datasets and model

architectures show that FREEEAGLE is effective against class-

specific/class-agnostic backdoors and various trigger types,

even outperforming some non-data-free trojan detectors. We

also evaluate FREEEAGLE against possible adaptive attacks

and find they cannot effectively bypass FREEEAGLE.

10 Acknowledgments

We thank our anonymous reviewers and shepherd for their

constructive suggestions. This work was partly supported

by the National Key Research and Development Program of

China under No. 2022YFB3102100, and NSFC under No.

62102360 and U1936215.

References

[1] Amazon. AWS Marketplace. https://aws.amazon.
com/marketplace.

[2] Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexan-

der Warnecke, Fabio Pierazzi, Christian Wressnegger,

Lorenzo Cavallaro, and Konrad Rieck. Dos and don’ts of

machine learning in computer security. In 31th USENIX
Security Symposium (USENIX Security 22), 2022.

[3] Ahmadreza Azizi, Ibrahim Asadullah Tahmid, Asim

Waheed, Neal Mangaokar, Jiameng Pu, Mobin Javed,

Chandan K Reddy, and Bimal Viswanath. T-Miner: A

generative approach to defend against trojan attacks on

DNN-based text classification. In 30th USENIX Security
Symposium (USENIX Security 21), 2021.

[4] Eugene Bagdasaryan and Vitaly Shmatikov. Blind back-

doors in deep learning models. In 30th USENIX Security
Symposium (USENIX Security 21), 2021.

[5] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deb-

orah Estrin, and Vitaly Shmatikov. How to backdoor

federated learning. In International Conference on Arti-
ficial Intelligence and Statistics (AISTATS), pages 2938–

2948. PMLR, 2020.

[6] Nicholas Carlini, Anish Athalye, Nicolas Papernot,

Wieland Brendel, Jonas Rauber, Dimitris Tsipras, Ian

Goodfellow, Aleksander Madry, and Alexey Kurakin.

On evaluating adversarial robustness. arXiv preprint
arXiv:1902.06705, 2019.

[7] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and

Dawn Song. Targeted backdoor attacks on deep learn-

ing systems using data poisoning. arXiv preprint
arXiv:1712.05526, 2017.

[8] Yanjiao Chen, Xueluan Gong, Qian Wang, Xing Di, and

Huayang Huang. Backdoor attacks and defenses for

deep neural networks in outsourced cloud environments.

IEEE Network, 34(5):141–147, 2020.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. ImageNet: A large-scale hierarchical

image database. In IEEE conference on computer vision
and pattern recognition (CVPR). IEEE, 2009.

[10] Bao Gia Doan, Ehsan Abbasnejad, and Damith C Ranas-

inghe. Februus: Input purification defense against trojan

attacks on deep neural network systems. In Annual
Computer Security Applications Conference (ACSAC),
2020.

[11] Yinpeng Dong, Xiao Yang, Zhijie Deng, Tianyu Pang,

Zihao Xiao, Hang Su, and Jun Zhu. Black-box detection

of backdoor attacks with limited information and data.

In IEEE/CVF International Conference on Computer
Vision (ICCV), 2021.

[12] Hugging Face. Hugging Face Models. https://
huggingface.co/models.

[13] Yansong Gao, Bao Gia Doan, Zhi Zhang, Siqi Ma, Jil-

iang Zhang, Anmin Fu, Surya Nepal, and Hyoungshick

Kim. Backdoor attacks and countermeasures on deep

learning: A comprehensive review. arXiv preprint
arXiv:2007.10760, 2020.

[14] Yansong Gao, Change Xu, Derui Wang, Shiping Chen,

Damith C Ranasinghe, and Surya Nepal. STRIP: A

defence against trojan attacks on deep neural networks.

In Annual Computer Security Applications Conference
(ACSAC), 2019.

[15] Micah Goldblum, Dimitris Tsipras, Chulin Xie, Xinyun

Chen, Avi Schwarzschild, Dawn Song, Aleksander

Madry, Bo Li, and Tom Goldstein. Data security for

machine learning: data poisoning, backdoor attacks, and

defenses. arXiv e-prints, 2020.

[16] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth

Garg. BadNets: Identifying vulnerabilities in the ma-

chine learning model supply chain. arXiv preprint
arXiv:1708.06733, 2017.

[17] Wenbo Guo, Lun Wang, Xinyu Xing, Min Du, and Dawn

Song. TABOR: A highly accurate approach to inspect-

ing and restoring trojan backdoors in AI systems. arXiv
preprint arXiv:1908.01763, 2019.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep residual learning for image recognition. In

IEEE conference on computer vision and pattern recog-
nition (CVPR), 2016.

[19] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl,

Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Se-

nior, Vincent Vanhoucke, Patrick Nguyen, Tara N

Sainath, et al. Deep neural networks for acoustic mod-

eling in speech recognition: The shared views of four

research groups. IEEE Signal processing magazine,

29(6):82–97, 2012.

[20] Sebastian Houben, Johannes Stallkamp, Jan Salmen,

Marc Schlipsing, and Christian Igel. Detection of traffic

signs in real-world images: The German Traffic Sign De-

tection Benchmark. In International Joint Conference
on Neural Networks, number 1288, 2013.

[21] Jinyuan Jia, Yupei Liu, and Neil Zhenqiang Gong.

Badencoder: Backdoor attacks to pre-trained en-

coders in self-supervised learning. arXiv preprint
arXiv:2108.00352, 2021.

[22] B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick

Mannion, Ahmad A Al Sallab, Senthil Yogamani, and

Patrick Pérez. Deep reinforcement learning for au-

tonomous driving: A survey. IEEE Transactions on
Intelligent Transportation Systems (TITS), 2021.

[23] Jing Yu Koh. Model Zoo. https://modelzoo.co/.

[24] Soheil Kolouri, Aniruddha Saha, Hamed Pirsiavash, and

Heiko Hoffmann. Universal litmus patterns: Revealing

backdoor attacks in CNNs. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
2020.

[25] Alex Krizhevsky, Geoffrey Hinton, et al. Learning mul-

tiple layers of features from tiny images. 2009.

[26] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick

Haffner. Gradient-based learning applied to document

recognition. Proceedings of the IEEE, 86(11):2278–

2324, 1998.

[27] Shaofeng Li, Hui Liu, Tian Dong, Benjamin Zi Hao

Zhao, Minhui Xue, Haojin Zhu, and Jialiang Lu. Hidden

backdoors in human-centric language models. In ACM
SIGSAC Conference on Computer and Communications
Security (CCS), 2021.

[28] Xiaomeng Li, Lequan Yu, Yueming Jin, Chi-Wing Fu,

Lei Xing, and Pheng-Ann Heng. Difficulty-aware meta-

learning for rare disease diagnosis. In International Con-
ference on Medical Image Computing and Computer-
Assisted Intervention. Springer, 2020.

[29] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu,

Bo Li, and Xingjun Ma. Anti-backdoor learning: Train-

ing clean models on poisoned data. Advances in Neural
Information Processing Systems (NeurIPS), 2021.

[30] Junyu Lin, Lei Xu, Yingqi Liu, and Xiangyu Zhang.

Composite backdoor attack for deep neural network

by mixing existing benign features. In ACM SIGSAC
Conference on Computer and Communications Security
(CCS), 2020.

[31] Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi,

Arnaud Arindra Adiyoso Setio, Francesco Ciompi,

Mohsen Ghafoorian, Jeroen Awm Van Der Laak, Bram

Van Ginneken, and Clara I Sánchez. A survey on deep

learning in medical image analysis. Medical image
analysis, 42:60–88, 2017.

[32] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg.

Fine-pruning: Defending against backdooring attacks on

deep neural networks. In International Symposium on
Research in Attacks, Intrusions, and Defenses (RAID).
Springer, 2018.

[33] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhik-

sha Raj, and Le Song. Sphereface: Deep hypersphere

embedding for face recognition. In IEEE conference on
computer vision and pattern recognition (CVPR), 2017.

[34] Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing

Ma, Yousra Aafer, and Xiangyu Zhang. ABS: Scanning

neural networks for back-doors by artificial brain stimu-

lation. In ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2019.

[35] Yingqi Liu, Shiqing Ma, Yousra Aafer, W. Lee, Juan

Zhai, Weihang Wang, and X. Zhang. Trojaning attack

on neural networks. In Annual Network and Distributed
System Security Symposium (NDSS), 2018.

[36] Yunfei Liu, Xingjun Ma, James Bailey, and Feng Lu.

Reflection backdoor: A natural backdoor attack on deep

neural networks. In European Conference on Computer
Vision (ECCV). Springer, 2020.

[37] Adam Paszke, Sam Gross, Francisco Massa, Adam

Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,

Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Py-

torch: An imperative style, high-performance deep learn-

ing library. Advances in neural information processing
systems (NeurIPS), 2019.

[38] Han Qiu, Yi Zeng, Shangwei Guo, Tianwei Zhang,

Meikang Qiu, and Bhavani Thuraisingham. DeepSweep:

An evaluation framework for mitigating dnn backdoor

attacks using data augmentation. In ACM Asia Confer-
ence on Computer and Communications Security (CCS),
2021.

[39] Avi Schwarzschild, Micah Goldblum, Arjun Gupta,

John P Dickerson, and Tom Goldstein. Just how toxic is

data poisoning? A unified benchmark for backdoor and

data poisoning attacks. In International Conference on
Machine Learning (ICML). PMLR, 2021.

[40] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian

Suciu, Christoph Studer, Tudor Dumitras, and Tom Gold-

stein. Poison frogs! Targeted clean-label poisoning at-

tacks on neural networks. Advances in neural informa-
tion processing systems (NeurIPS), 2018.

[41] Lujia Shen, Shouling Ji, Xuhong Zhang, Jinfeng Li, Jing

Chen, Jie Shi, Chengfang Fang, Jianwei Yin, and Ting

Wang. Backdoor pre-trained models can transfer to

all. In ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2021.

[42] Karen Simonyan and Andrew Zisserman. Very deep con-

volutional networks for large-scale image recognition.

arXiv preprint arXiv:1409.1556, 2014.

[43] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-

manet, Scott Reed, Dragomir Anguelov, Dumitru Erhan,

Vincent Vanhoucke, and Andrew Rabinovich. Going

deeper with convolutions. In IEEE conference on com-
puter vision and pattern recognition (CVPR), 2015.

[44] Di Tang, XiaoFeng Wang, Haixu Tang, and Kehuan

Zhang. Demon in the variant: Statistical analysis of

DNNs for robust backdoor contamination detection. In

30th USENIX Security Symposium (USENIX Security
21), 2021.

[45] Florian Tramer, Nicholas Carlini, Wieland Brendel, and

Aleksander Madry. On adaptive attacks to adversarial

example defenses. Advances in Neural Information
Processing Systems (NeurIPS), 2020.

[46] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li,

Bimal Viswanath, Haitao Zheng, and Ben Y Zhao. Neu-

ral Cleanse: Identifying and mitigating backdoor attacks

in neural networks. In IEEE Symposium on Security
and Privacy (S&P). IEEE, 2019.

[47] Hongyi Wang, Kartik Sreenivasan, Shashank Rajput,

Harit Vishwakarma, Saurabh Agarwal, Jy-yong Sohn,

Kangwook Lee, and Dimitris Papailiopoulos. Attack of

the tails: Yes, you really can backdoor federated learning.

Advances in Neural Information Processing Systems
(NeurIPS), 33, 2020.

[48] Ren Wang, Gaoyuan Zhang, Sijia Liu, Pin-Yu Chen,

Jinjun Xiong, and Meng Wang. Practical detection of

trojan neural networks: Data-limited and data-free cases.

In European Conference on Computer Vision (ECCV).
Springer, 2020.

[49] Yulong Wang, Hang Su, Bo Zhang, and Xiaolin Hu.

Interpret neural networks by identifying critical data

routing paths. In IEEE conference on computer vision
and pattern recognition (CVPR), 2018.

[50] David F Williamson, Robert A Parker, and Juliette S

Kendrick. The box plot: A simple visual method to

interpret data. Annals of internal medicine, 110(11):916–

921, 1989.

[51] Baoyuan Wu, Hongrui Chen, Mingda Zhang, Zihao Zhu,

Shaokui Wei, Danni Yuan, Chao Shen, and Hongyuan

Zha. Backdoorbench: A comprehensive benchmark of

backdoor learning. Advances in Neural Information
Processing Systems (NeurIPS), 2022.

[52] Dongxian Wu and Yisen Wang. Adversarial neuron

pruning purifies backdoored deep models. Advances
in Neural Information Processing Systems (NeurIPS),
2021.

[53] Zhaohan Xi, Ren Pang, Shouling Ji, and Ting Wang.

Graph backdoor. In 30th USENIX Security Symposium
(USENIX Security 21), 2021.

[54] Chong Xiang, Arjun Nitin Bhagoji, Vikash Sehwag, and

Prateek Mittal. PatchGuard: A provably robust defense

against adversarial patches via small receptive fields

and masking. In 30th USENIX Security Symposium
(USENIX Security 21), 2021.

[55] Xiaojun Xu, Qi Wang, Huichen Li, Nikita Borisov,

Carl A Gunter, and Bo Li. Detecting AI trojans using

meta neural analysis. In IEEE Symposium on Security
and Privacy (S&P). IEEE, 2021.

[56] Xinyang Zhang, Zheng Zhang, Shouling Ji, and Ting

Wang. Trojaning language models for fun and profit.

In IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE Computer Society, 2021.

[57] Yue Zhao, Hong Zhu, Kai Chen, and Shengzhi Zhang.

Ai-lancet: Locating error-inducing neurons to optimize

neural networks. In ACM SIGSAC Conference on Com-
puter and Communications Security (CCS), 2021.

[58] Liuwan Zhu, Rui Ning, Cong Wang, Chunsheng Xin,

and Hongyi Wu. GangSweep: Sweep out neural back-

doors by GAN. In ACM International Conference on
Multimedia (MM), 2020.

Algorithm 3 Vintage-photography-style filter

Require: A 3-channel image img, parameter p used to adjust

how heavy the filter is.

1: img1 ← sqrt(img · [1.0,0.0,0.0]) · p
2: img2 ← img · [0.0,1.0,1.0]
3: img← img1 + img2

4: return img

Algorithm 4 Negative color filter

Require: A 1-channel image img.

1: img← 255 ·ones_like(img)− img
2: return img

[59] Liuwan Zhu, Rui Ning, Chunsheng Xin, Chonggang

Wang, and Hongyi Wu. Clear: Clean-up sample-targeted

backdoor in neural networks. In IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), 2021.

Appendix

A Algorithms of the Vintage-Photography-
Style Filter And the Negative Color Filter

The algorithms of the vintage-photography-style filter and

the negative color filter are shown in Algorithm 3 and Al-

gorithm 4, respectively. Examples of 1-channel images pro-

cessed by the negative color filter are shown in Figure 5.

B Details of Datasets

The details of the four datasets are listed as follows, including

GTSRB, ImageNet-R, CIFAR-10 and MNIST.

German Traffic Sign Recognition Benchmark. German

Traffic Sign Recognition Benchmark (GTSRB) [20] is a clas-

sic dataset related to the scenario of autonomous driving. The

task of GTSRB is to recognize 43 classes of German traffic

signs, including the stop sign, several kinds of speed limit

signs, and so on. GTSRB is an imbalanced dataset. Specifi-

cally, the number of training samples for each class ranges

from 210 to 2,250. Thus, we use oversampling to balance

the number of samples for each class. After oversampling,

each class has 2,250 training samples. For GTSRB, we use

GoogLeNet as the model architecture, which is a classic com-

puter vision model proposed in [43].

ImageNet-R. ImageNet is derived from the online com-

petition ImageNet Large Scale Visual Recognition Chal-

lenge (ILSVRC) [9], which aims to classify samples of 1,000

classes. For simplicity, we randomly choose 20 classes from

ImageNet and name this subset of ImageNet as ImageNet-R

(restricted). Details of these 20 classes are shown in Table 9.

Each class corresponds to 1,300 training samples and 50 test-

Figure 5: Comparison of 1-channel images (from the MNIST

dataset) with and without the negative color filter.

(a) No filter (b) Negative filter (c) No filter (d) Negative filter

Table 9: Details about the 20 classes in ImageNet-R.

Class ID

in ImageNet-R

Class ID in

ImageNet

Class

Description

0 n02114367 grey wolf

1 n02123159 tiger cat

2 n02342885 hamster

3 n02412080 ram

4 n02894605 breakwater

5 n02895154 breastplate

6 n02930766 taxicab

7 n02999410 chain

8 n03089624 confectionery store

9 n03125729 cradle

10 n03141823 crutch

11 n03201208 dining table

12 n03240683 drilling rig

13 n03450230 gown

14 n03773504 missile

15 n03787032 square academic cap

16 n03792782 mountain bike

17 n03929855 pickelhaube

18 n03937543 pill bottle

19 n04162706 seat belt

ing samples. We use ResNet-50 [18] as the model architecture

for ImageNet. Samples will be resized to 224×224 before fed

to ResNet-50.

CIFAR-10. CIFAR-10 [25] is a classic dataset built for a 10-

class image classification task, which has 6,000 samples in the

size of 32×32 pixels for each class. Following the common

practice of using CIFAR-10, we take 50,000 samples as the

training dataset and the other 10,000 as the test dataset. VGG-

16 [42] and CNN-7 [30] are used as the model architectures

for CIFAR-10.

MNIST. MNIST [26] is a classic dataset built for handwrit-

ten digit recognition, which has 60,000 training samples and

10,000 testing samples. Each sample is a 1-channel image in

the size of 28×28 pixels. CNN-7 [30] is used as the model

architecture for MNIST.

C Details About Clean and Trojaned Models
Trained for Defense Evaluation

The details of clean and trojaned models trained for defense

evaluation are shown in Table 10. All the clean and trojaned

models are trained with standard data augmentations, includ-

ing randomly cropping and resizing the image, horizontally

flipping the image, randomly changing the image’s contrast,

and random gray scale transformation. Note that the horizon-

tally flipping transformation is disabled for GTSRB because it

will change the semantic of some traffic signs. For the ResNet-

50 model architecture, we use the ResNet-50 pretrained on

ImageNet to accelerate the training process.

D Implementation Details of Baseline Methods

Code Source. We use BackdoorBench [51] to im-

plement baseline methods. The codes can be found

at https://github.com/SCLBD/BackdoorBench. As

for ABS, which is not implemented by Backdoor-

Bench, we use its official PyTorch-version code at

https://github.com/naiyeleo/ABS/blob/master/
TrojAI_competition/round1/abs_pytorch_round1.py.

For DF-TND, we use its official code released at

https://github.com/wangren09/TrojanNetDetector.

Note that all baseline methods are implemented with their

default parameter settings.

Defender’s Knowledge. As an online-detection method,

STRIP requires the defender to access inputs with the trigger

and a small set of clean samples, so we randomly select 1

image (from the source class) with the trigger and 128 clean

images of other classes to inspect a model with STRIP. ABS

requires the defender to have a small set of clean samples

as seed images, so we randomly select 128 clean images as

its seed images. For NC and ANP, we allow them to use the

full training dataset and training/testing dataset respectively

to maximize their detection ability.

Table 10: Details about clean and trojaned models trained to evaluate trojan detection methods. “Test Acc” is the model’s accuracy

of the original task on the clean test dataset. “ASR” represents the attack successful rate of the trojan attack. To extensively

evaluate FREEEAGLE, we train trojaned models with diverse source/target class settings. For example, on CIFAR-10, for the

class-specific backdoor with each trigger type, we train all combinations of source-target class pairs, i.e., at least 9×10 = 90

trojaned models.

Dataset Model Trojan Type Trigger

Type

Source

Class

Target

Class

Model

Quantity

Average

Test Acc

Average

ASR

GTSRB GoogLeNet

None(Benign) 200 90.23%

Class-Agnostic

Patch 0-42 43×4 88.96% 99.95%

Blending 0-42 43×4 89.64% 99.60%

Filter 0-42 43×4 88.76% 99.83%

Class-Specific

Patch 0-42 7,8 (42×2)×2 90.44% 99.92%

Blending 0-42 7,8 (42×2)×2 90.08% 98.57%

Filter 0-42 7,8 (42×2)×2 88.91% 96.93%

CIFAR-10 VGG-16

None(Benign) 200 86.12%

Class-Agnostic

Patch 0-9 10×20 84.92% 99.86%

Blending 0-9 10×20 84.95% 99.88%

Filter 0-9 10×20 85.08% 98.78%

Class-Specific

Patch 0-9 0-9 (9×10)×2 85.69% 98.03%

Blending 0-9 0-9 (9×10)×2 86.18% 96.42%

Filter 0-9 0-9 (9×10)×2 85.84% 95.70%

CIFAR-10 CNN-7 Class-Specific Composite 0-2 0-2 3×60 83.45% 81.24%

ImageNet-R ResNet-50

None(Benign) 200 94.74%

Class-Agnostic

Patch 0-19 20×10 91.75% 99.13%

Blending 0-19 20×10 92.27% 97.83%

Filter 0-19 20×10 94.02% 98.81%

Class-Specific

Patch 0-19 0,12,14,18 (19×4)×2 92.06% 95.92%

Blending 0-19 0,12,14,18 (19×4)×2 94.43% 99.87%

Filter 0-19 0,12,14,18 (19×4)×2 93.20% 97.96%

Natural 13 0 200 92.72% 91.34%

MNIST CNN-7

None(Benign) 200 98.65%

Class-Agnostic

Patch 0-9 10×20 96.94% 99.69%

Blending 0-9 10×20 96.92% 99.82%

Filter 0-9 10×20 97.43% 99.98%

Class-Specific

Patch 0-9 0-9 (9×10)×2 97.52% 99.21%

Blending 0-9 0-9 (9×10)×2 97.73% 99.38%

Filter 0-9 0-9 (9×10)×2 97.61% 99.38%

