
Distance-Aware Private Set Intersection

Anrin Chakraborti
Duke University

Giulia Fanti
Carnegie Mellon University

Michael K. Reiter
Duke University

Abstract
Private set intersection (PSI) allows two mutually untrusting
parties to compute an intersection of their sets, without reveal-
ing information about items that are not in the intersection.
This work introduces a PSI variant called distance-aware PSI
(DA-PSI) for sets whose elements lie in a metric space. DA-
PSI returns pairs of items that are within a specified distance
threshold of each other. This paper puts forward DA-PSI con-
structions for two metric spaces: (i) Minkowski distance of
order 1 over the set of integers (i.e., for integers a and b, their
distance is |a−b|); and (ii) Hamming distance over the set of
binary strings of length ℓ. In the Minkowski DA-PSI protocol,
the communication complexity scales logarithmically in the
distance threshold and linearly in the set size. In the Ham-
ming DA-PSI protocol, the communication volume scales
quadratically in the distance threshold and is independent of
the dimensionality of string length ℓ. Experimental results
with real applications confirm that DA-PSI provides more
effective matching at lower cost than naïve solutions.

1 Introduction

Private set intersection (PSI) is a widely-used multiparty cryp-
tographic protocol, with applications across domains includ-
ing contact discovery and tracing, private profile matching,
privacy-preserving genomics, and collaborative learning. PSI
protocols are used to compute the intersection (or common
elements) of two or more sets held by mutually-untrusting
parties. Critically, the parties learn no information about the
elements that are not in the set intersection.

There is a long line of work on communication-efficient PSI
protocols, with variants including different adversarial mod-
els [1, 11, 13, 16, 29]. However, these solutions are designed
to return only exact matches. That is, an element appears in
the intersection if and only if it matches (exactly) an element
in each of the other parties’ sets.

When exact matches may be rare, parties may want to
privately compute approximate matches. For instance, given

sets of points in Euclidean space, the intersection may contain
all pairs within a certain Euclidean distance of each other. This
notion has applications in domains where replacing an exact-
matched set intersection with a distance-based intersection
yields more effective systems:
• Private collaborative blacklisting enables mutually-

untrusting parties to identify malicious network traffic
and coordinated attacks. Typically, an intersection is com-
puted privately over sets containing network identifiers, e.g.,
source IPs observed [22]. However, botnets usually span
multiple (often contiguous) subnets [5, 38], and it is useful
to compare ranges of IP addresses and detect overlaps.

• Biometric identification systems leverage Hamming dis-
tance/edit distance [7, 24, 36] and need to account for inex-
act/fuzzy matches due variations in sampling technologies.
Fuzzy PSI functionalities have been used before in privacy-
preserving biometric identification systems [32].

• Credential stuffing identification systems use PSI-like
functionalities to detect password reuse across websites
without revealing sensitive user information [34, 35]. These
protocols consider exact password matches. However, it
is useful to expand this idea for inexact/similar password
matches, e.g., edit distance matches.

Distance-Aware Private Set Intersection (DA-PSI): In this
paper we initiate the study of distance-aware private set inter-
section (DA-PSI). A DA-PSI protocol defined over a metric
space allows two parties to compute an intersection of their
respective sets containing all pairs of items that are within a
predefined threshold distance in the metric space. Specifically,
consider a metric space (U,δ) with metric δ. Let the parties
hold sets, A and B with n items each, where each item is a
length-ℓ vector drawn from the space. The problem definition
specifies a distance threshold d and requires the protocol to re-
turn S⊆ A×B where (⃗a,⃗b) ∈ S⇔ δ(⃗a,⃗b)≤ d. A party learns
no information about items in the counterparty’s set that are
not close to (within threshold of) one of its own elements.

Traditional PSI tools are not optimized for DA-PSI. A naïve
application will need to check for all a⃗ ∈ A and for all b⃗ ∈
U such that δ(⃗a,⃗b) ≤ d if b⃗ ∈ B. This is problematic since

in many cases the search space is exponentially large. For
example, Hamming distance with a distance threshold d will
require searching over the Hamming ball of radius d around
each a⃗ ∈ A. There are over

(ℓ
d

)
= Ω((ℓd)

d) vectors around
a⃗ in this Hamming ball. Thus, the communication cost of
this protocol scales exponentially with the threshold and is
impractical. This work poses the following question: Can we
design DA-PSI protocols where communication and compute
costs scale polynomially in the distance threshold?

We answer this question affirmatively by putting forward
constructions for two important metric spaces: i) Hamming
distance over the set {0,1}ℓ for some fixed ℓ ∈ Z+, and ii)
Minkowski distance of order 1 over the set of integers (i.e.,
for integers a and b, their distance is |a−b|). In the following,
we discuss the intuitions behind these protocols.
Hamming Distance-Aware PSI: Hamming distance is a good
starting point since several other distances can be computed or
approximated by Hamming distance [6, 12, 30]. We provide
a construction building on the idea of sub-sampling each of
a user’s input vectors and mapping it to a unique set of sub-
vectors such that the cardinality of the set difference between
the sets corresponding to two vectors is exactly equal to the
Hamming distance between the original vectors.

Our construction leverages additively homomorphic en-
cryption and vector oblivious linear evaluation (VOLE). A
key building block in the protocol is a novel sub-sampling
mechanism which trades off accuracy (by allowing some false-
positives) for better communication complexity: the commu-
nication cost scales polynomially in the distance threshold d
and is independent of the vector length ℓ. Typically, for ap-
plications relying on Hamming distance comparisons, d≪ ℓ
[20, 25], and thus the reduced set sizes after sub-sampling
concretely improves communication costs over existing work
[14, 25] . To compute the set differences, we propose a mod-
ified (and significantly simpler) version of the private set
reconciliation protocol due to Ghosh and Simkin [11].
Integer distance-Aware PSI: We propose a DA-PSI protocol
for Minkowski distance of first order over integers, loosely
termed as the integer distance-aware PSI protocol. The com-
munication cost scales linearly in the set size and logarithmi-
cally in the distance threshold; this is optimal with regards to
the set sizes since linear communication is both necessary and
sufficient for exact PSI [11, 17]. The key observation behind
the protocol is that integers in a range (a−d,a+d), where d
is a specified distance threshold, can be succinctly represented
by a collection of bit-strings corresponding to their binary
representations. The total number of strings required is sublin-
ear in d since multiple integers within a sequence will share
prefixes, and the same common prefix will represent multiple
consecutive integers. We design an algorithm to augment the
inputs sets with O(logd) strings representing all integers in
(a−d,a+d). This mechanism is agnostic to the underlying
cryptographic tools since any state-of-the-art PSI protocol
can be augmented to provide an integer DA-PSI protocol.

Hamming DA-PSI

Comm Computation Dep FPR, FNRAlice Bob Offline

naïve O(n) O
(

n
(ℓ

d

))
O(n) O(1) – – , –

Osadchy
et al. [25]

O
(
n2ℓλ

)
O
(
n2) O

(
n2) O(1) AHE – , –

Huang
et al. [15] O

(
n2ℓλ

)
O
(
n2) O

(
n2) O(1) OT – , –

Uzun et al.
[32]

O
(

n2T
mB λ

)
O
((T

t

)(nma
T

))
O
(

n2T
m

)
O
(

n3T 2

ma

)
FHE

0<FPR<1
0<FNR<1

HamPSI
(Sec. 4) O

(
n2d2λ

)
O
(
n2) O

(
n2) O(1) AHE 0<FPR<1

OLE –

Integer DA-PSI
naïve O(nλd) O(n) O(n) O(1) – – , –

IntPSI
(Sec. 5) O(nλ logd) O(n) O(n) O(1) – – , –

Table 1: Asymptotic performance for our protocols in comparison to
existing work. n: set size; d: distance threshold; ℓ: length of vectors;
T, t: subsampling parameters, T = O(ℓ); m,a,B: FHE parameters,
m≫ T . FPR, FNR ∈ (0,1) are the false-positive and false-negative
rates of the schemes; "–" indicates that the false positive or negative
rate is negligible in λ. The schemes without dependencies are ag-
nostic to the underlying primitives. The comm. cost of all existing
Hamming DA-PSI protocol depends on the length of the vectors ℓ.
The comm. cost of HamPSI is independent of ℓ.

Evaluation: We have implemented both protocols and bench-
marked them on a public cloud. As an application of the
integer distance-aware PSI, we have deployed it for collabo-
rative blacklisting of IPs seen by real-world honeypots; for
our parameter settings, the distance-aware PSI almost doubles
the number of identified malicious IPs. For computing this
intersection over sets containing roughly 25K IP addresses
collected across all the honeypots, our protocol only requires
64 MB of communication and 1.5 seconds.

We have implemented our Hamming DA-PSI constructions.
Micro-benchmarks show that it imposes 2-400× less commu-
nication than a generic garbled-circuit solution for distance
thresholds up to 30. As an application, we have evaluated our
protocol for the task of privately comparing vectors derived
from iris images, and for a distance threshold sufficient to re-
trieve all of the matches in our dataset, it achieves 2.5× lower
communication volume (with a false positive rate ≤ 10%
and no false negatives) than a generic secure 2PC baseline.
When compared with the state-of-the-art Hamming contain-
ment query protocol by Uzun et al. [32], our protocol features
33-63% less communication and 33% less computation.

2 Related Work

Private set intersection is well-studied (e.g., [4, 8, 10, 18, 21,
26, 27, 28]). We refer to these for details on general PSI and
focus on other distance-aware/fuzzy PSI primitives here.

Private Hamming Distance Computation: Table 1 com-
pares our Hamming DA-PSI constructions with existing work
on privately computing Hamming distance. Osadchy et al.
[25] built a protocol using additively homomorphic encryp-
tion which enables a party to check when her vector is within
a threshold Hamming distance of any of the vectors in a set
held by the other party. A similar functionality is implemented
by Huang et al. [14] using garbled circuits. For both protocols,
the communication cost scales linearly in the vector sizes. In
contrast, the cost of our Hamming distance aware protocol
scales sublinearly in the vector size.

Uzun et al. [32] propose a protocol for Hamming distance
comparisons over vectors derived from biometric identifiers.
The protocol reduces the input vectors to sets of sub-vectors
after a sub-sampling process. The sub-sampling protocol en-
sures that when two vectors are close, their corresponding
sets have a certain number of matching elements. With these
sets as inputs, the protocol implements a t-out-of-T match-
ing protocol using fully homomorphic encryption (FHE), and
leverages the ability of the FHE scheme to pack multiple
ciphertexts using SIMD-style operations. In contrast, our con-
structions are based on computationally less-expensive primi-
tives, namely additively homomorphic encryption (AHE) and
oblivious linear evaluations (OLE).

3 Security Definitions & Background

Notation: Fp is a finite of field of prime order where p is a
O(poly(λ))-bit prime, and λ is a security parameter. negl(·)
is a function that is negligible in the input parameter; e.g.,
negl(λ) = O

(
2−λ

)
. P(x) ∈ Fp[x] is a polynomial with coef-

ficients drawn from Fp. The degree of polynomial P(x) is
represented by deg(P(x)). The greatest common divisor of
two (or more) polynomials is represented by gcd(P(x),Q(x)).
For polynomials P(x) and Q(x), P/q(x) := P(x)

gcd(P(x),Q(x)) .

Rational Function: A rational function r = P(x)
Q(x) has degree

at most equal to the degree of the numerator + degree of
the denominator. Let V = {(xk,yk)}2t

k=1 be a set of points in
Fp. Then there exists a rational function with numerator and
denominator in Fp[x] interpolating these points [19].
Parties: We assume that two semi-honest (a.k.a. honest-but-
curious) mutually untrusting parties Alice and Bob run the
protocols. The parties may learn information from the inter-
mediate results but do not deviate from the protocol.
Distance-Aware Private Set Intersection: In this work,
we are concerned with distance-aware private set intersec-
tion protocols, which we define here. Parties Alice and
Bob are assumed to each store a set A = {a1, . . . ,an} and
B = {b1, . . . ,bn}, respectively, where the ai’s and bi’s are
drawn from some universe U, and δ : U×U→ R denotes a
distance metric defined over U. A distance-aware PSI proto-
col over metric space (U,δ) with threshold d and input sets A,
B returns a set S⊆ A×B such that S ≜ {(a,b) : a ∈ A, b ∈

F p
ole: Ideal Functionality for Oblivious Linear Evaluation (OLE):

Parameters: Parties Alice and Bob, and finite field Fp from which
inputs are drawn.

Inputs: Alice has input x ∈ F and Bob has as input a pair (u,v) ∈ Fp.

Output: Alice learns z = ux+ v. Bob learns ⊥.

F p
vole: Ideal Functionality for Vector OLE (VOLE):

Parameters: Parties Alice and Bob, and finite field Fp from which
inputs are drawn.

Inputs: Alice has input x ∈ F and Bob has as input a pair of vectors
(⃗u, v⃗) ∈ Fℓ

p×Fℓ
p.

Output: Alice learns z⃗ = u⃗x+ v⃗. Bob learns ⊥.

Figure 1: Ideal functionalities for oblivious linear evaluation (OLE),
and vector oblivious linear evaluation (VOLE)

B, δ(a,b)≤ d}. We require this protocol to satisfy:
(1) Correctness: For any (a,b) ∈ A×B,

• If δ(a,b)≤ d, then (a,b) ∈ S with probability ≥ TPR.
• If δ(a,b)> d, then (a,b) ̸∈ S with probability ≥ TNR.
where TPR ∈ (0,1) and TNR ∈ (0,1) denote true positive
and true negative rates respectively.

(2) Security: Alice learns only S and the cardinality of B,
and Bob learns only S and the cardinality of A.

This definition allows for arbitrary false-positive and false-
negative rates (i.e., FPR = 1− TNR and FNR = 1− TPR, re-
spectively). This allows faster protocols (see Sec. 4) and ac-
commodates protocols approximating one distance metric via
another, e.g., with locality-sensitive hashing.

3.1 Background
Oblivious Linear Evaluation (OLE) is a two-party crypto-
graphic primitive wherein Alice inputs x ∈ Fp; Bob inputs
u,v ∈ Fp; and Alice obtains ux+ v without learning u and v.
Vector Oblivious Linear Evaluation (VOLE) is an exten-
sion of the OLE functionality, where Bob’s input is a pair of
vectors, and Alice learns a linear combination of the vectors.
Fig. 1 describes the VOLE functionality. The state-of-the-art
VOLE protocol [37] is based on the learning parity with noise
(LPN) assumption. The communication complexity of the
protocol is linear in the vector length ℓ. Further technical
details can be found in [37].
Threshold Set Intersection (a.k.a., t-out-T matching) is a
variant of the PSI problem where the intersection of two (or
more) sets is revealed to the parties if and only if the number
of items in the intersection are above a certain predefined
threshold. More formally, given two sets A and B of size n,
and a threshold t, the protocol outputs S such that S ≜ A∩B
iff |A∩B| ≥ n− t. Otherwise, the protocol outputs ⊥.

The state-of-the-art threshold PSI protocol (henceforth
referred to a tPSI) is due to Ghosh and Simkin [11]. The
main observation underlying the protocol is that given A\B,
the party holding A can obtain A∩ B = A \ (A \ B). Thus,
it suffices to design a threshold set reconciliation protocol

where A\B (respectively, B\A) is revealed to the parties iff
|A \B| ≤ t. The protocol is inspired in part by the set rec-
onciliation protocol due to Minsky et al. [23]; the idea is
as follows: Alice and Bob encode the items of their corre-
sponding sets, A and B in roots of polynomials P(x) and Q(x),
respectively. If |A\B| ≤ t, then deg(gcd(P(x),Q(x)))≥ n−t,
and so r(x) = P(x)

Q(x) is a rational function of degree at most
2t (after cancellation of common roots in the numerator and
denominator). r(x) can be uniquely interpolated with 2t +1
evaluation points. The denominator of r(x) gives A\B.

tPSI builds on this idea and tweaks the protocol to ensure
that the elements in B \A are never revealed to Alice. Al-
ice and Bob evaluate a polynomial R1(x)P(x)+R2(x)Q(x) at
3t +1 points, where R1(x) is a degree-t random polynomial
contributed by Bob and R2(x) is a random degree-t polyno-
mial contributed by Bob. Alice (and Bob) then compute the
values of the rational function r(x) = R1(x)P(x)+R2(x)Q(x)

P(x) at the
aforementioned 3t +1 points. Clearly, if |A\B| ≤ t, then r(x)
has a numerator of degree ≤ 2t and a denominator of degree
≤ t after cancellation of the common roots in gcd(P(x),Q(x))
and P(x). Since r(x) is a rational functions of degree ≤ 3t, it
can be uniquely interpolated with the 3t +1 evaluation points.

The security of the scheme relies on showing that the nu-
merator of r(x) after cancellation is a uniformly random poly-
nomial. Specifically, let R1(x)P/q(x)+R2(x)Q/p(x) be the nu-
merator after canceling common roots in r. The following
well-known result due to Kissner and Song [18] shows that
this polynomial is uniformly random.

Lemma 1 ([18]). Given two polynomials P(x),Q(x) ∈ Fp[x]
with deg(P(x)) = deg(Q(x))≤Dp such that gcd(P(x),Q(x))
= 1, and two uniformly random polynomials, R1(x), R2(x) of
degree Dr ≥ Dp, the polynomial R1(x)P(x)+R2(x)Q(x) is a
uniformly random polynomial of degree ≤ Dr +Dp.

4 Protocol for Hamming Distances

We start with a protocol for privately computing a Hamming
distance-aware set intersection between sets where elements
are drawn from the universe U = {0,1}ℓ. Fig. 2 defines the
ideal functionality F h-PSI

ℓ,dH
for Hamming DA-PSI between two

parties with tunable true positive and true negative rates. We

propose a protocol with O
(

n2 · d2
H

FPR ·λ
)

communication cost
for set sizes n (i.e., the cost is independent of the vector length),
and compute time that scales polynomially in dH.
Remark on Ideal Functionality: We have defined F h-PSI

ℓ,dH
such that for each (⃗a,⃗b) ∈ A× B, both parties learn (⃗a,⃗b)
iff δH (⃗a,⃗b) ≤ dH. Another definition worth consideration
is where Alice only learns if there is a b⃗ ∈ B such that
δH (⃗a,⃗b)≤ dH but not b⃗ itself. However, this definition is not
meaningful in the context of distance aware applications. For
instance, there are

(ℓ
dH

)
elements that are within Hamming

distance dH of an element a⃗ ∈ A; it is not straightforward for

Alice to guess b⃗ simply from the fact that δH (⃗a,⃗b)≤ dH . This
is unlike traditional PSI, where Alice can trivially guess Bob’s
element knowing that there is a match. Nonetheless, both our
Hamming DA-PSI protocol have an additional Recover step
where Alice obtains b⃗ from Bob after learning some interme-
diate results which indicates δH (⃗a,⃗b)≤ dH. The protocol may
be aborted at this stage (to save one extra round of commu-
nication) to realize an ideal functionality which only enables
Alice to learn if δH (⃗a,⃗b)≤ dH without directly revealing b⃗.

F h-PSI
ℓ,dH

: Ideal Functionality for Hamming Aware DA-PSI:

Parameters: Parties Alice and Bob. Universe U = {0,1}ℓ. Hamming
distance threshold dH. True positive rate TPR and true negative rate
TNR.

Inputs: Alice has input A = {a⃗i}n
i=1 ⊆ U. Bob has input B =

{b⃗ j}n
j=1 ⊆U.

Output: Alice and Bob learn S⊆ A×B where for each (⃗a,⃗b)∈ A×B,

if δH (⃗a,⃗b)≤ dH then P
[
(⃗a,⃗b) ∈ S

]
≥ TPR and if δH (⃗a,⃗b)> dH then

P
[
(⃗a,⃗b) ̸∈ S

]
≥ TNR.

F t-HQ
ℓ,dH

: Ideal Functionality for Threshold Hamming Query:

Parameters: Parties Alice and Bob. Universe U = {0,1}ℓ. Hamming
distance thresholds dH, true positive rate TPR, and true negative rate
TNR.

Inputs: Alice has vector a⃗ ∈U and Bob has vector b⃗ ∈U.

Output: If δH (⃗a,⃗b)≤ dH, then Alice and Bob learn (⃗a,⃗b) with prob-
ability ≥ TPR. If δH (⃗a,⃗b) > dH, then Alice and Bob learn ⊥ with
probability ≥ TNR.

Figure 2: Ideal functionalities for Hamming distance-aware PSI
and threshold Hamming queries

4.1 Threshold Hamming Query

The key building block of our construction is a protocol to
privately determine if two bit vectors are within a certain Ham-
ming distance of each other. We call this primitive a threshold
Hamming query. Fig. 2 defines the ideal functionality F t-HQ

ℓ,dH
for ℓ-bit vectors and Hamming distance threshold dH.

4.1.1 tHamQueryLite: Hamming Query First Pass

We start with a simple and insecure version of our threshold
Hamming query protocol dubbed tHamQueryLite (Fig. 3).
The key observation is that F t-HQ

ℓ,dH
can be realized as follows:

(1) Map: We use ℓ deterministic, injective mapping functions
M1, . . .Mℓ where Mm : {0,1}→ Fp, m ∈ [1, ℓ], such that
the ranges of the functions do not overlap. These func-
tions map the individual bits in the vectors to elements
of Fp. The mth bit of vector a⃗, denoted a⃗[m], is mapped
to element Mm(⃗a[m]). a⃗ is then uniquely represented by
S⃗a = {M1(⃗a[1]), . . . ,Mℓ(⃗a[ℓ])}. Correspondingly, b⃗ is rep-
resented by S⃗b = {M1(⃗b[1]), . . . ,Mℓ(⃗b[ℓ])}.

Parameters: Alice and Bob have vectors a⃗,⃗b ∈ {0,1}ℓ, respectively,
and a Hamming distance threshold dH ∈ [0, ℓ/2).

Procedure Map:
Alice and Bob sample ℓ injective mapping functions M1, . . .Mℓ,
Mm : {0,1} → Fp, m ∈ [1, ℓ]. Alice computes set S⃗a := {sm : sm :=
Mm (⃗a[m])} and Bob computes S⃗b := {sm : sm := Mm (⃗b[m])}.
Procedure OneSidedSetRecon:
(1) Alice and Bob select a set of ℓ+ dH + 2 points in Fp X :=
{xk}

ℓ+2dH+1
k=1 such that none of the points are in the ranges of

any of the mapping functions.
(2) Alice encodes S⃗a in the polynomial P(x) = ∏

r∈S⃗a

(x− r) and Bob

encodes S⃗b in the polynomial Q(x) = ∏
r∈S⃗b

(x− r).

(3) Bob samples two degree-ℓ random polynomials R1(x),R2(x)
$

:=
Fp[x].

(4) For each xk ∈ X , Alice sends P(xk) and Bob sends R1(xk) and
R2(xk)Q(xk) to F p

ole. Alice learns WA(xk) := R1(xk)P(xk) +
R2(xk)Q(xk) as the output of F p

ole.
(5) For k ∈ [1, ℓ+2dH+1], Alice computes the set of points

V := {(xk,yk) : yk := WA(xk)
P(xk)

= R1(xk)P(xk)+R2(xk)Q(xk)
P(xk)

}.

(6) Alice interpolates V with a rational function r(x) := Num(x)
Den(x) and

checks that Den(x) is a factor of P(x). If so, Alice outputs S⃗a \ S⃗b
which contains the roots of Den(x), otherwise Alice outputs ⊥.

Procedure Recover:
If Alice receives ⊥ from OneSidedSetRecon then output ⊥. Other-
wise, upon receiving S⃗a \ S⃗b: for each s ∈ S⃗a ∩ S⃗b = S⃗a \ (S⃗a \ S⃗b), if
s = Mm (⃗a[m]) then b⃗[m] = a⃗[m]. For all indices m′ ∈ [1, ℓ] that are left
undetermined from S⃗a \ S⃗b, b⃗[m′] = 1− (⃗a[m′]). Output (⃗a, b⃗).

Figure 3: tHamQueryLite: A first pass Hamming query protocol

(2) Threshold Set Reconciliation: A protocol with inputs S⃗a
and S⃗b allows Alice to learn S⃗a\ S⃗b iff |S⃗a\ S⃗b| ≤ dH. Alice
learns b⃗ from S⃗a \ S⃗b . E.g., let a⃗ = 1001, b⃗ = 1011, S⃗a =
{M1(1), M2(0), M3(0), M4(1)} and S⃗b = {M1(1), M2(0),
M3(1), M4(1)}. Then, S⃗a \ S⃗b = {M3(0)} and b⃗[1] = a⃗[1],
b⃗[2] = a⃗[2], b⃗[4] = a⃗[4] and b⃗[3] = 1− a⃗[3].

The mapping functions have no bearing on the security
of the protocol, as long as the ranges do not overlap and the
functions are injective. In our implementations we have used
PRFs, but we do not rely on their randomness guarantees.
Threshold Set Reconciliation: In tHamQueryLite, we use
OneSidedSetRecon, a new private set reconciliation pro-
tocol which is based on the tPSI protocol (see Sec. 3.1).
OneSidedSetRecon allows one of the parties to learn S⃗a \ S⃗b
(say Alice) while the other party generates all the random
coins. Both parties begin by encoding the items in their re-
spective sets in the roots of polynomials P(x) and Q(x) re-
spectively (see line 2 of OneSidedSetRecon in Fig. 3). This
is followed by the parties jointly computing the evaluations
of the polynomial R1(x)P(x) + R2(x)Q(x) at ℓ+ 2dH + 1
points, where R1(x) and R2(x) are random polynomials
sampled by Bob. This is achieved using ℓ+ 2dH + 1 calls
to F p

ole where Alice sends evaluations of P(x) at each of
the points and Bob correspondingly sends evaluations of

Alice Bob

R1(x),R2(x)
$

:= Fp[x]

F p
ole

R1(x1)

R2(x1)Q(x1)

P(x1)

R1(x1)P(x1)+R2(x1)Q(x1)
...
...

F p
ole

R1(xk)

R2(xk)Q(x1)

P(xk)

R1(xk)P(xk)+R2(xk)Q(xk)

Figure 4: Using OLE for OneSidedSetRecon

R1(x), and Q(x)R2(x) (see Fig. 4). Finally, Alice interpo-
lates the rational function R1(x)P(x)+R2(x)Q(x)

P(x) with the evalu-
ations of R1(x)P(x) +R2(x)Q(x) similar to tPSI (line 6 of
OneSidedSetRecon) and obtains S⃗a \ S⃗b iff |S⃗a \ S⃗b| ≤ dH.
OneSidedSetRecon is simpler than tPSI with lower commu-
nication cost; OneSidedSetRecon requires only ℓ+2dH+1
calls to F p

ole compared to twice as many calls in tPSI while
also avoiding two extra rounds of communication. The im-
provement comes from the fact that in contrast to tPSI where
both parties learn the results, OneSidedSetRecon enables
only Alice to learn the final result (see [3] for more details).

4.1.2 The (In)Security of tHamQueryLite

tHamQueryLite is not secure across all input parameters, and
as we will show in this section, reveals b⃗ to Alice when
δH (⃗a,⃗b) ∈ (dH,2dH). This is because OneSidedSetRecon re-
veals information when |S⃗a \ S⃗b| ∈ (dH,2dH) . In fact, the pro-
tocol of Ghosh and Simkin [11] on which OneSidedSetRecon
is based also has the same leakage, and while the authors cau-
tion against using it as a standalone protocol1, they have not
analyzed this. More formally, we prove the following result.

Theorem 1. Given sets S⃗a and S⃗b such that |S⃗a| =
∣∣S⃗b

∣∣ as
inputs to OneSidedSetRecon, the following results hold:
• Proposition 1: If |S⃗a \ S⃗b| ≥ 2dH, then there does not exist

a PPT adversary that can determine any information
regarding S⃗b from OneSidedSetRecon with more than
negligible advantage (in λ) over guessing.

• Proposition 2: If |S⃗a \ S⃗b| ∈ (dH,2dH), there exists an ad-
versary that can determine S⃗b from OneSidedSetRecon
with overwhelming probability (at least 1−negl(λ)).

Proof (sketch): The proof is in the full version of the paper [3].
Here, we provide the key arguments behind the proof.
Proof of Proposition 1: Consider the evaluation points Alice
computes in line 5 corresponding to the rational function
R1(x)P(x)+R2(x)Q(x)

P(x) =
gcd(P(x),Q(x))×(R1(x)P/q(x)+R2(x)Q/p(x))

P(x) =

1To address the leakage, the paper proposes a significantly more expensive
threshold cardinality of intersection protocol.

Figure 5: The process of computing δH (⃗a,⃗b) in
tHamQueryRestricted. Alice and Bob partition the bits in a⃗
and b⃗ respectively into sub-vectors x⃗1, x⃗2 and y⃗1, y⃗2. They compute
X⃗ and Y⃗ respectively using the parities of the sub-vectors. The bold
bits show the locations where Alice’s and Bob’s inputs differ.

R1(x)P/q(x)+R2(x)Q/p(x)
P/q(x)

. Here, P/q(x) := P(x)
gcd(P(x),Q(x)) . If the

degree of gcd(P(x),Q(x)) = dGCD, then R1(x)P/q(x) +
R2(x)Q/p(x) is a random polynomial of degree 2ℓ− dGCD.
This is due to Lemma 1 as P(x), Q(x), R1(x), R2(x) are all

degree-ℓ polynomials, and R1(x),R2(x)
$

:= Fp[x].
From the set of evaluation points, V , Alice may try to guess

Bob’s input polynomial Q(x) and check whether there is a
polynomial Num(x) of degree 2ℓ− dGCD such that Num(x)

P/q(x)

is consistent with V . We show that when |V | ≤ 2ℓ− dGCD
which implies ℓ− dGCD ≥ 2dH , for every possible P/q(x)
there is at least one candidate polynomial for Num(x). Since
R1(x)P/q(x)+R2(x)Q/p(x) is a random polynomial, any ob-
tained value of Num(x) is equally likely to be R1(x)P/q(x)+
R2(x)Q/p(x). Moreover, if there are more than one candidates
for Num(x), then they are all equally likely. Thus, Proposi-
tion 1 holds.
Proof of Proposition 2: When |V | > 2ℓ− dGCD+ 1 which
implies ℓ−dGCD < 2dH, the probability that Alice will find
a candidate polynomial for Num(x) such that Num(x)

P/q(x)
is con-

sistent with V when she has incorrectly guessed Q(x) (and
P/q(x)) is negligible in λ. And so, Alice may check all pos-
sible candidates for Q(x) and verify her guesses. The set of
all possible values of Q(x) is smaller than the set of degree-ℓ
polynomials in Fp[x] since the roots of Q(x) are fixed by the
mapping functions M1, . . .Mℓ. There are 2ℓ possible values of
Q(x), and for small ℓ, the search is computationally feasible
for a PPT adversary. Thus, Proposition 2 holds.

4.1.3 tHamQuery: Hamming Queries with Polynomial
Computation

One way to fix tHamQueryLite is by checking if δH (⃗a,⃗b) ∈
(dH,2dH); however, implementing this as a precursor to
tHamQueryLite reveals more information than what the func-
tionality allows when δH (⃗a,⃗b). We propose a protocol with
communication cost independent of the length of the vectors,
ℓ where the cases δH (⃗a,⃗b) ∈ (dH,2dH) and δH (⃗a,⃗b) ≥ 2dH
are indistinguishable.

Parameters: Alice and Bob have vectors a⃗ and b⃗ respectively, where
a⃗,⃗b ∈ {0,1}ℓ, δH (⃗a,⃗b) ≤ 2dH where dH is the Hamming distance
threshold. False positive rate FPR ∈ (0,0.5).

Procedure PermuteAndPartition:
(1) Alice and Bob sample a permutation π : [1, ℓ]→ [1, ℓ] uniformly

randomly from the set of all such permutations.
(2) Alice computes a⃗perm ∈ {0,1}ℓ after permuting the bits of a⃗ as fol-

lows: for m∈ [1, ℓ], a⃗perm[π(m)] := a⃗[m]. Similarly, Bob computes
b⃗perm ∈ {0,1}ℓ such that for m ∈ [1, ℓ] b⃗perm[π(m)] := b⃗[m]

(3) Alice creates Nbins = 2d2
H

FPR sub-vectors x⃗1, . . . , x⃗Nbins
where each

sub-vector is created by a contiguous sequence of ℓ
Nbins

bits of

a⃗perm. Specifically, x⃗1 := a⃗perm[1 : ℓ
Nbins

], x⃗2 := a⃗perm[ℓ
Nbins

+1 :

2× ℓ
Nbins

], . . . , x⃗Nbins
:= a⃗perm[(Nbins − 1)× ℓ

Nbins
+ 1 : ℓ]. Here

a⃗perm[m : m′] is the contiguous sequence of bits starting from
index m and up to (including) index m′ in a⃗perm. Bob similarly
creates y⃗1, . . . , y⃗Nbins

from b⃗perm.
(4) Alice computes vector X⃗ ∈ {0,1}Nbins such that for m ∈

[1,Nbins], X⃗ [m] := parity(⃗xm). Similarly, Bob computes vector
Y⃗ ∈ {0,1}Nbins such that Y⃗ [m] := parity(⃗ym).

Protocol HamCompute:
(5) Alice generates a key-pair (pk,sk) for a semantically-secure ad-

ditively homomorphic encryption AHE= (Gen,Enc,Dec), and
provides pk to Bob.

(6) For m ∈ [1,Nbins], Alice computes ctm := Enc(X⃗ [m]) and ctw :=∥∥∥X⃗
∥∥∥ where ∥.∥ is the Hamming weight of the input vector. Alice

sends {ctw,ct1, . . . ,ctNbins
} to Bob.

(7) Bob computes Enc(δH(X⃗ ,Y⃗)) := ctw +pk ct ′w −pk 2 ×pk(
(⃗Y [1]×pk ct ′1)+pk . . .+pk (⃗Y [Nbins]×pk ct ′Nbins

)
)

where

ct ′w :=
∥∥∥⃗Y

∥∥∥, +pk (−pk) is homomorphic addition (subtraction) of
ciphertexts, and ×pk is scalar multiplication.

(8) Bob samples κ
$

:= Fp and computes KeySet := {κi : κi := ri×pk(
Enc(δH(X⃗ ,Y⃗))−pk Enc(i)

)
+pk Enc(κ), i∈ [0,dH], ri

$
:= Fp}.

Bob returns KeySet to Alice.
(9) Alice computes KeySet′ := {κ′i : κ′i :=Dec(κi), κi ∈KeySet}.

If δH (⃗a,⃗b)= δH(X⃗ ,Y⃗)≤ dH, κ∈KeySet′. Alice outputs KeySet′.

Figure 6: tHamQueryRestricted: Threshold Hamming query
over restricted domain

Hamming Queries Over Restricted Domain: As the starting
point, we present a protocol which distinguishes δH (⃗a,⃗b)≤
dH and δH (⃗a,⃗b) ∈ (dH,2dH]. The additional constraint is that
for all inputs a⃗ and b⃗, the maximum Hamming distance be-
tween them is known apriori to be ≤ 2dH. To generalize over
the entire domain, we will subsequently extend this protocol
and integrate with OneSidedSetRecon.

The protocol dubbed tHamQueryRestricted is inspired by
a result due to Huang et al. [14]. The intuition is as follows: let
SI be the set of indices where a⃗ and b⃗ differ. By definition of
the problem, |SI | ≤ 2dH. Consider the following balls and bins
analysis: let the indices where a⃗ and b⃗ differ be represented

by balls that are thrown randomly into 2d2
H

FPR empty bins, where
FPR ∈ (0,0.5). Then, the following result shows that all bins
have ≤ 1 ball with probability at least 1− FPR. It may be
evident that the number of non-empty bins gives us δH (⃗a,⃗b).

Fact 1 ([14]). If 2dH balls are randomly thrown into 2d2
H

FPR bins,
where FPR ∈ (0,0.5), then with probability at most FPR, there
is one or more bins with more than one ball.

Fig. 6 describes the tHamQueryRestricted protocol
built around this idea. The protocol comprises two
procedures PermuteAndPartition and HamCompute.
PermuteAndPartition uses a random permutation of the

vectors to create Nbins =
2d2

H
FPR sub-vectors. Specifically, the bits

in a⃗ are partitioned into Nbins partitions (each corresponding
to a sub-vector) after permuting with the random permutation.
The resulting sub-vectors are denoted x⃗1, . . . , x⃗Nbins

. Similarly,
b⃗ is partitioned into y⃗1, . . . , y⃗Nbins

(lines 1–3). Then, Alice and
Bob create parity vectors X⃗ and Y⃗ using the parities of the
sub-vectors (line 4).

HamCompute privately computes the Hamming distance
between the parity vectors and compares it with the dis-
tance threshold. Alice sends X⃗ to Bob, with each bit en-
crypted individually (line 6). Bob computes Enc(δH(X⃗ ,Y⃗))
by computing the Hamming distance over encrypted bits
(line 7). The encryption scheme used is additively homo-
morphic, which ensures that Bob can compute over the en-
crypted bits. This gives Enc(δH (⃗a,⃗b)) due to following fact:
since each pair x⃗i, y⃗i can differ in at most one bit due to Fact
1, δH (⃗xi, y⃗i) = δH(parity(⃗xi),parity(⃗yi)). Then, δH (⃗a,⃗b) =
Nbins

∑
i=1

δH(parity(⃗xi),parity(⃗yi)) = δH(X⃗ ,Y⃗) (see Fig. 5).

Finally, Bob samples a key κ
$

:= Fp and returns a set
KeySet containing κ "blinded" by random values, and avail-
able to Alice iff. δH(X⃗ ,Y⃗) ∈ [0,dH]. Specifically, for each
i ∈ [0,dH], Bob computes Enc(ri× (δH(X⃗ ,Y⃗)− i)+κ) using
the homomorphic properties of the encryption scheme and
returns the encrypted values obtained in the KeySet to Alice

where ri
$

:= Fp. Alice obtains κ only when δH(X⃗ ,Y⃗)∈ [0,dH]

(lines 8–9). Otherwise, ri× (δH(X⃗ ,Y⃗)− i)+κ
$

:= Fp.
General Hamming Queries: We are ready to combine
tHamQueryRestricted and OneSidedSetRecon to achieve a
secure threshold Hamming query protocol, tHamQuery. The
protocol requires a PRF over a finite field φ : Fp×Fp→ Fp.
The outline of this integration is (see Fig. 7):
(1) Alice and Bob send a⃗ and b⃗ to tHamQueryRestricted

respectively. Alice obtains KeySet from which she can
obtain κ only when δH (⃗a,⃗b) /∈ (dH,2dH].

(2) Alice builds set S′a⃗ := {⃗x1, . . . , x⃗Nbins
} where x⃗1, . . . , x⃗Nbins

are the sub-vectors created during PermuteAndPartition
in tHamQueryRestricted (see line 3 of Fig. 6). Bob
builds S′

b⃗
:= {⃗y1, . . . , y⃗Nbins

}.
(3) Alice and Bob run OneSidedSetRecon with S′a⃗ and S′

b⃗
as

inputs and threshold dH with one change: Bob modifies
his inputs to F p

ole such that Alice obtains a “blinded” set of
evaluations, i.e., for k ∈ [1,Nbins+2dH+1], Alice obtains
R1(xk)P(xk)+R2(xk)Q(xk)+φ(κ,k) (see Fig. 8).

Parameters: Alice and Bob have vectors a⃗,⃗b ∈ {0,1}ℓ respectively.
and a Hamming distance threshold dH ∈ [0, ℓ/2).

Procedure PermuteAndPartition:
Alice and Bob run tHamQueryRestricted with a⃗ and b⃗ as inputs.
Alice obtains S′a⃗ := {⃗x1, . . . , x⃗Nbins

} and KeySet, while Bob obtains

S′
b⃗

:= {⃗y1, . . . , y⃗Nbins
} where Nbins =

2d2
H

FPR .

Procedure OneSidedSetReconBlind:
(1) Alice and Bob select a set of Nbins+2dH+1 points in Fp, X :=
{xk}

Nbins+2dH+1
k=1 such that none of the points are in S′a⃗ and S′

b⃗
.

(2) Alice and Bob compute P(x) := ∏
r∈S′a⃗

(x − r) and Q(x) :=

∏
r∈S′

b⃗

(x− r) respectively. Bob samples two random polynomials

R1(x),R2(x)
$

:= Fp[x] of degree Nbins.
(3) For each xk ∈ X , Alice sends P(xk) to F p

ole, while Bob sends
R1(xk), and R2(xk)×Q(xk) + φ(κ,k). Alice obtains WA(xk) :=
R1(xk)P(xk)+R2(xk)Q(xk)+φ(κ,k)

(4) For each element κi ∈ KeySet, Alice obtains a candidate key,
κ
′
i :=Dec(κi). Alice computes

Vi := {(xk,yk) : yk := WA(xk)−φ(κ
′
i ,k)

P(xk)
}.

(5) For each i ∈ [0,dH], Alice interpolates Vi with a rational function
r(x) := Num(x)

Den(x) and checks that Den(x) is a factor of P(x). If so,
Alice outputs S′a⃗\S′

b⃗
which contains the roots ofDen(x), otherwise

Alice outputs ⊥.

Procedure Recover:
If Alice receives ⊥ from OneSidedSetReconBlind then output ⊥.
Otherwise, upon receiving S′a⃗ \S′

b⃗
, obtain b⃗ from Bob. Output (⃗a,⃗b).

Figure 7: tHamQuery: Threshold Hamming query protocol

Theorem 2. Assuming that there exists a semantically-secure
additively homomorphic encryption scheme that produces
O(λ)-bit ciphertexts, and that there is a protocol for F p

ole that
requires O(λ) bits of communication, for false positive rate

FPR ∈ (0,0.5), tHamQuery realizes F t-HQ
ℓ,dH

with O
(

d2
H

FPR ·λ
)

bits of communication and compute costs polynomial in dH.

Proof (sketch): The communication cost of the protocol is

straightforward. Alice sends |X⃗ |= 2d2
H

FPR encrypted bits to Bob.
Bob sends back the encrypted KeySet with |KeySet| = dH
ciphertexts. Finally, there are 2d2

H
FPR +2dH+1 calls to F p

ole, each
of which requires O(λ) bits of communication.

The following arguments show that the protocol is secure.
Alice can “unblind” and obtain the correct evaluations of
R1(x)P(x)+R2(x)Q(x) iff she has obtained κ in Step 1, which
happens with high probability (at least 1−ε) when δH (⃗a,⃗b) /∈
(dH,2dH]. Otherwise, Alice obtains random points as evalua-
tions of R1(x)P(x)+R2(x)Q(x) which reveals no information
regarding S′

b⃗
. If δH (⃗a,⃗b) > 2dH, Alice may still obtain κ ∈

KeySet since Fact 1 is applicable only when δH (⃗a,⃗b)≤ 2dH.
We show in the full proof [3] that |S′a⃗ \S′

b⃗
| ≥ 2dH with high

probability (at least 1− ε), and as Theorem 1 shows, when
|S′a⃗ \S′

b⃗
| ≥ 2dH, Alice learns nothing about S′a⃗ \S′

b⃗
from the

evaluations of R1(x)P(x)+R2(x)Q(x).

Alice
Subsample a⃗: S′a⃗ := {⃗x1, . . . , x⃗N}
P(x) := ∏

r∈S′a⃗

(x− r)

Bob

Subsample b⃗: S′
b⃗

:= {⃗y1, . . . , y⃗N}
Q(x) := ∏

r∈S′
b⃗

(x− r)

R1(x),R2(x)
$

:= Fp[x]

tHamQueryRestricted
a⃗

b⃗,κ
δH (⃗a,⃗b)≤ dH? : κ,⊥

F p
ole

R1(x1)

R2(x1)Q(x1)+φ(κ,1)

P(x1)

R1(x1)P(x1)+R2(x1)Q(x1)+φ(κ,1)......

F p
ole

R1(xN)

R2(xN)Q(xN)+φ(κ,N)

P(xN)

R1(xN)P(xN)+R2(xN)Q(xN)+φ(κ,N)

Figure 8: Using OLE and tHamQueryRestricted in tHamQuery

4.2 HamPSI: Hamming DA-PSI from
tHamQuery

Building a Hamming DA-PSI protocol based on the Hamming
query mechanism described so far is straightforward. Let A :=
{⃗a1, . . . , a⃗n} and B := {⃗b1, . . . ,⃗bn} be Alice’s and Bob’s inputs
to the Hamming DA-PSI protocol. Then, for (i, j) ∈ n× n,
Alice and Bob run tHamQuery with a⃗i and b⃗ j as inputs.

We present the full protocol, denoted HamPSI, in App. B
with a further optimization using vector OLE (see Sec. 3.1)
This optimization improves communication costs and com-
pute times without impacting security.

Theorem 3. Assuming that there exists a semantically secure
additively homomorphic encryption scheme, and a protocol
securely realizing F p

vole with O(nλ) bits of communication,
there is a Hamming DA-PSI protocol which securely real-

izes F h-PSI
ℓ,dH

with O
(

n2 · d2
H

FPR ·λ
)

bits of communication where

FPR ∈ (0,0.5) is the false positive rate.

4.3 HamPSISample: Sub-Sampling Based
Hamming DA-PSI

So far we have discussed a way to build a Hamming DA-PSI
protocol using tHamQuery which fixes tHamQueryLite by
explicitly checking if the inputs, δH (⃗a,⃗b) ∈ (dH,2dH). How-
ever, there is an alternate way to fix the problem which leads
to a more communication-efficient protocol, but at the cost of
additional computation. The protocol uses a Hamming query
protocol, denoted tHamQueryExp, which relies only on OLE.
tHamQueryExp: The protocol is based on the findings of
Theorem 1. Specifically, as the proof shows when Alice and
Bob interpolate R1(x)P(x)+R2(x)Q(x) at |V |> 2ℓ−dGCD+
1 points in OneSidedSetRecon, Alice can retrieve S⃗a \ S⃗b
when |S⃗a \ S⃗b| = ℓ− dGCD with overwhelming probability
(Proposition 2). On the other hand, when |S⃗a \ S⃗b|> ℓ−dGCD,
the evaluation points reveal nothing to Alice (Proposition 1).

Parameters: Alice and Bob have vectors a⃗,⃗b ∈ {0,1}ℓ, respectively,
and a Hamming distance threshold dH.
Procedure Map: Follows the steps of tHamQueryLite.

Procedure OneSidedSetReconExp:
(1) Alice and Bob select a set of ℓ+ dH + 2 points in Fp, X :=
{xk}

ℓ+dH+2
k=1 such that none of the points are in S⃗a and S⃗b.

(2) Alice encodes S⃗a in the polynomial P(x) = ∏
r∈S⃗a

(x− r) and Bob

encodes S⃗b in the polynomial Q(x) = ∏
r∈S⃗b

(x− r). Bob samples

two degree-ℓ random polynomials R1(x),R2(x)
$

:= Fp[x].
(3) For each xk ∈ X , Alice sends P(xk) and Bob sends R1(xk) and

R2(xk)×Q(xk) to F p
ole. Alice learns WA(xk) := R1(xk)P(xk) +

R2(xk)Q(xk) as the output of F p
ole.

(4) Alice computes and interpolates V0 with a rational function of
degree ℓ+dH similar to line 6 of OneSidedSetRecon .

V0 := {(xk,yk) : yk := WA(xk)
P(xk)

, k ∈ [1, ℓ+dH+1]}.

(5) If Alice outputs S⃗a \ S⃗b from the step above, then output S⃗a \ S⃗b
and abort. Otherwise, for each t ∈ (dH/2,dH], Alice computes all
possible values of S⃗a \ S⃗b such that |S⃗a \ S⃗b|= t. Let Csub be the
set of all such sets across all t ∈ (dH/2,dH].

(6) For each Ci ∈ Csub, Alice computes the polynomial Pi(x) :=
∏

r∈Ci

(x− r) and computes the set of points

Vi := {(xk,yk) : yk := WA(xk)
Pi(xk)

, k ∈ [1, ℓ+dH+2]}.

(7) Alice interpolates Vi for each Ci ∈Csub with a polynomial. If the
degree of the interpolating polynomial is ≤ ℓ+deg(Pi(x)), Alice
outputs S⃗a \ S⃗b :=Ci.

Procedure Recover: Follows the steps of tHamQueryLite

Figure 9: tHamQueryExp: Hamming queries with exponential
compute costs.

So, one way to fix OneSidedSetRecon is by evaluat-
ing R1(x)P(x)+R2(x)Q(x) at (2ℓ− dGCD + 1)+ 1 = (2ℓ−
(ℓ − dH) + 1) + 1 = ℓ + dH + 2 points. In this way, Al-
ice learns S⃗a \ S⃗b with overwhelming probability when
|S⃗a \ S⃗b| ≤ dH but nothing otherwise. The modified pro-
tocol is called OneSidedSetReconExp (Fig. 9). Similar to
OneSidedSetRecon, Alice and Bob compute polynomials
P(x) and Q(x) from their respective sets. Then, they eval-
uate R1(x)P(x)+R2(x)Q(x) at ℓ+dH+2 points using calls
to F p

ole. Alice first attempts to interpolate ℓ+ dH+ 1 points
with a rational function of degree ℓ+dH (lines 2–4). Note if
|S⃗a \ S⃗b| ≤ dH/2, then this step will reveal S⃗a \ S⃗b to Alice.

Otherwise, Alice computes for each t ∈ (dH/2,dH], each
possible value of S⃗a \ S⃗b such that |S⃗a \ S⃗b| = t (line 5). Let
Csub be the set of all such sets. Then, for each Ci ∈Csub, Al-
ice computes Pi(x) := ∏

r∈Ci

(x− r). Finally, Alice checks if a

polynomial Num(x) of degree ≤ ℓ+deg(Pi(x)) exists such
that Num(x)

Pi(x)
is consistent with the points obtained for the ratio-

nal function R1(x)P(x)+R2(x)Q(x)
Pi(x)

(line 7). Due to Proposition 2,
there is a negligible probability of obtaining a false positive,
i.e., Alice finds Num(x) when her guess for S⃗a\ S⃗b is incorrect.
There are no false negatives.
Reducing Search Space by Sub-Sampling: The total search

Parameters: Parties Alice and Bob. Integer distance threshold d ≥ 0.

Inputs: Alice has input A = {ai : ai ∈ Z+ ∪{0}}. Bob has input
B = {b j : b j ∈ Z+ ∪{0}}. |A|= |B|= n.

Output: Alice and Bob learn S ⊆ A× B where if (a,b) ∈ A×
B, |a− b| ≤ dint then P [(a,b) ∈ S] ≥ TPR and if |a− b| > dint then
P [(a,b) ̸∈ S]≥ TNR.

Figure 10: Ideal functionality F i-PSI
dint for Integer DA-PSI.

space for this process is over
dH
∑

t=dH/2+1

(ℓ
t

)
guesses for S⃗a \ S⃗b,

and is not feasible with large vectors and distance thresh-
olds. However, as we will show in Sec. 6, when we replace
Map with a sub-sampling algorithm [2, 9, 32, 33] reducing
large vectors to a small set of sub-vectors, this method out-
performs the existing state of the art [32]. The cost savings
come from the fact that our protocol only relies on cheap
symmetric-key primitives while the protocol of Uzun et al.
[32] relies on fully homomorphic encryption. Based on this
idea, we have built and implemented a DA-PSI protocol com-
bining the sub-sampling algorithm from [2, 9, 32, 33] with
OneSidedSetReconExp, denoted HamPSISample. More de-
tails of the protocol are presented in App. C.

5 Protocol for Integer Distances

In this section, we present a DA-PSI protocol for L1 distance
of order 1 over integers, loosely termed as integer distance-
aware PSI. The protocol requires O(nλ logdint) bits of com-
munication for computing the intersection of two sets of size
n where dint is a user-specified distance threshold.
Ideal Functionality: The ideal functionality for an integer
distance-aware PSI is defined in Fig. 10. Note that (ai,b j)∈ S
only when b j ∈ (ai−dint,ai +dint). The range excludes the
boundary elements, ai+dint and ai−dint. This is primarily for
ease of description of the protocol and it is trivial to extend
the functionality and the protocol to include the boundary
elements. Also, while the functionality allows tunable true
positive and true negative rates, the protocol we present is
correct with probability 1.0, i.e., TPR = TNR = 1.

Observe that an inefficient realization of F i-PSI
dint

immedi-
ately exists: Alice creates an augmented set, Â with all integers
(a−dint,a+dint) for each a ∈ A. Any generic PSI protocol
can be used for computing the intersection between the aug-
mented set and B. This protocol however requires O(nλdint)
bits of communication when using a PSI protocol with com-
munication cost scaling linearly in the set size.
Key Idea: To reduce overall communication, we will reduce
the number of items in the augmented set. The key observation
behind this reduction is that all integers in the neighborhood
of an integer a ∈ A, a′, |a′− a| ≤ dint can be succinctly rep-
resented by a collection of bit strings corresponding to their
binary representations. The total number of such strings re-

quired is sublinear in dint since multiple integers within a
sequence will share prefixes, and the same common prefix
can be used to represent multiple consecutive integers. For
instance, the binary representation of 42 (101010) and 43
(101011) share the prefix 10101. Both these integers can be
represented by the string 10101∗ where ∗ denotes a wildcard
bit. Leveraging this fact, the idea is to generate the least num-
ber of bit strings to represent all integers a′, |a′−a| ≤ dint. The
problem is reduced to string matching over these bit strings.

The augmenting process is discussed next. The protocol
we will present allows one of the parties, say Alice, to learn
the distance-aware intersection, and then this information can
be shared with Bob using an extra round of communication.
Augmenting Alice’s Set: The augmented set Â includes fixed-
length strings representing (a−dint,a+dint) for each a ∈ A.
These strings are obtained from the prefixes of fixed-length
binary representations of all integers in the range. This fixed
length, denoted MaxBitLen, may be determined from the uni-
verse from which the elements in A and B are drawn.

Intuitively, the process is based on two observations. First,
the integers in (a− dint,a + dint) can differ only in their
⌊log(2dint − 1)⌋+ 1 least significant bits if 2k ≤ a− d ≤
a+d ≤ 2k+1. Second, the MaxBitLen-sized binary represen-
tations of all integers in [2k,2k+1−1],k ∈Z+ have a common
prefix of length MaxBitLen−k−1. So, all these integers can
be represented by a string formed by appending k+1 wildcard
bits to the common prefix. Based on these observations, the
idea is to recursively partition (a−dint,a+dint) into smaller
ranges of the form [0,2k− 1] or [2k,2k+1− 1] and obtain a
representative string for each such range. More formally, to
create representative strings for integers in (a−dint,a+dint),
we identify the enclosing common prefixes.

Definition 1. Given any arbitrary set of bit strings, an en-
closing common prefix of length ℓp ≤MaxBitLen satisfies:
(1) There are 2(MaxBitLen−ℓp) bit strings which have this prefix

in common.
(2) The bit strings which share this prefix do not have a

common prefix of length < ℓp.

All identified enclosing common prefixes are appended
with wildcard bits to generate representative strings. We show
later that for each a ∈ A the number of enclosing common
prefixes is O(logdint). Intuitively this is because the range
of integers is recursively halved and each such range has a
constant number of enclosing common prefixes. Thus, the
augmented set contains O(n · logdint) representative strings.

Example: We are interested in the representative strings for
all integers in the range (41, 56) (see Fig. 11). The 8-bit bi-
nary representation of 42 is 00101010 and the 8-bit binary
representation of 55 is 00110111. Integers in the range [42,
43] have a common enclosing prefix 0010101, integers in the
range [44, 47] have a common enclosing prefix 001011 and
the integers in the range [48, 55] have a common enclosing

R

00110 C

1

1

1

55

0

54

0

1

53

0

52

0

1

1

51

0

50

0

1

49

0

48

00101

1 B

1

1

47

0

46

0

1

45

0

44

0

1 A

1

43

0

42

Figure 11: Prefix trie examples. (a) Trie built over the binary rep-
resentations of integers [42, 55]. The nodes marked A, B and C are
the roots of the maximal enclosing complete subtries.

prefix 00110. Thus, 8-bit representative strings for all integers
in (41,56) are 0010101∗, 001011∗∗ and 00110∗∗∗.
Augmenting Bob’s Set: To check whether an integer falls
in any of the ranges in an augmented set, we need to check
whether it shares a common prefix with any of the represen-
tative strings. The augmented set B̂ includes these strings.
Specifically we need to check prefixes only of length ℓp ∈
[MaxBitLen−⌊log(2d−1)⌋−1,MaxBitLen] (as will be dis-
cussed later). Thus, representative strings for each integer
b j ∈ B is obtained by replacing the required number of least
significant bits in the binary representation of b j with wildcard
bits. Specifically, the first representative string is generated
by replacing the least significant bit, the second string is gen-
erated by replacing the last two least significant bits and so
on. All the representative strings for all b j ∈ B is part of B̂.
Thus,

∣∣B̂∣∣ = O(n · logdint).
Example: Consider b = 49 (00110001). The 8-bit repre-
sentative strings of 49 are 00110001, 0011000∗, 001100∗∗,
00110∗∗∗, 0011∗∗∗∗. The set of strings for integers in range
(41,56) and the strings for 49 have the string 00110 ∗∗∗ in
common which correctly shows that b ∈ (41,56).

5.1 Technical Description
Algorithm for Augmenting Sets: The algorithm (Algorithm
1) has two procedures corresponding to the processes of
augmenting Alice’s input A and Bob’s input B. To gener-
ate representative strings for each ai ∈ A, the algorithm first
builds a prefix trie over the bit strings corresponding to the
binary representations (of length MaxBitLen) of integers in
(ai−dint,ai+dint) (Steps 8 - 11). As usual, each bit string cor-
responds to a path in the trie and the strings that share a prefix
intersect at some level of the trie. The leaf nodes contain the
least significant bits of the bit strings (see Fig. 11).

Then, the algorithm determines the maximal enclosing com-
plete subtries in the prefix trie (see Definition 2). A maximal
enclosing complete subtrie essentially contains leaves (and its
ancestors up to the root of the subtrie) corresponding to the
integers that share an enclosing common prefix.

Definition 2. A subtrie in a prefix trie is called a maximal en-
closing complete subtrie if it satisfies the following properties:
i) it is a complete binary tree, and ii) it is not part of any other
complete binary subtree(s) rooted at one of its ancestors.

Algorithm 1 Distance-Aware Set Augmentation
1: Input
2: A Alice’s input set
3: B Bob’s input set
4: dint distance threshold
5: Output
6: Augmented sets Â, B̂
7: procedure GENERATE REPRESENTATIVE STRINGS FOR A
8: for each ai ∈ A do
9: for each integer, a′i ∈ (ai−d,ai +d) do

10: s′i := Bit string of MaxBitLen representing a′i
11: P := prefix trie with s′1, . . . ,s

′
2dint−1

12: for each maximal enclosing complete subtrie T in P do
13: φ := prefix of T in P
14: Append “don’t care” bits (∗) to φ up to MaxBitLen
15: Add φ to Â
16: return Â
17: procedure GENERATE REPRESENTATIVE STRINGS FOR B
18: for each b j ∈ B do
19: s j := Bit string of MaxBitLen representing b j
20: // Let s j = s j[MaxBitLen−1] . . .s j[0], s j[i] is the ith bit of s j
21: for i = 0,1, . . . ,⌊log(2d−1)⌋ do
22: s′j := s j[MaxBitLen−1] . . .s j[i]∗ . . .∗
23: Add s′j to B̂

24: return B̂

Each maximal enclosing complete subtrie corresponds to
an enclosing common prefix of the bit strings for (a−dint,a+
dint). Fig. 11 shows a prefix trie built over integers in the
range [42,55]. Note that a leaf node in itself can be a maximal
enclosing complete subtrie when the node is not part of any
complete subtree. The algorithm identifies all the maximal
enclosing complete subtries in the prefix trie corresponding to
each ai ∈ A. The prefix of each maximal enclosing complete
subtrie is appended with wildcard bits up to the maximum
bit length to form a representative string (Steps 12 - 15). The
representative strings are added to the augmented set, Â.

For each b j ∈ B, the algorithm generates representative
strings by progressively replacing the least significant bits in
the binary representation of b with wildcard bits. The process
is repeated ⌊log2d−1⌋ +1 times until a bit string is obtained
by replacing the last ⌊log2d− 1⌋ +1 least significant bits .
These strings are in the augmented set B̂ (Steps 17 - 23).

Theorem 4. There is a non-null intersection between the
augmented sets obtained from Algorithm 1 if and only if there
is some (ai,b j) ∈ A×B pair such that |ai−b j|< dint

The proof is in the full version [3].
Number of Representative Strings: The following result
shows that the number of representative strings for integers
in the range (a− dint,a+ dint) as a function of the distance
parameter, dint is O(logdint). This is analyzed by counting
the number of maximal enclosing complete subtries in the
prefix trie built over the binary representations of integers
(a−dint,a+dint) since each such subtrie corresponds to an
enclosing common prefix.

Theorem 5. The total number of maximal enclosing complete
subtries in a prefix trie built over the binary representations
of all integers (a−dint,a+dint) is O(logdint).

Integer DA-PSI from PSI: Any existing private set intersec-
tion protocol can be used in conjunction with Algorithm 1 to
provide a recipe for an integer distance-aware PSI protocol.
In Section 6, we have instantiated an integer DA-PSI protocol
with an OT-based PSI protocol due to Pinkas et al. [27]. We
will omit details of this straightforward integration.

Theorem 6. Assuming that there is a secure scheme for com-
puting a private set intersection over sets of size n with O(nλ)
bits of communication. Then, there is a secure protocol real-
izing F i-PSI

dint
with O(nλ logdint) bits of communication where

dint is the specified distance threshold.

The proofs can be found in the full online version [3].

6 Evaluation

We have implemented both HamPSI (Sec. 4.2) and IntPSI
(Sec. 5). In the following sections, we benchmark the pro-
tocols. The evaluation metrics are communication costs and
compute times. All experiments consist of 5 independent trials
and results are collected with a 95% confidence interval.
Platform: We ran our experiments on two different platforms
representing low and high resource environments respectively.
• Low-resource: Unless stated otherwise, our experiments

were run on two t2.xlarge Amazon EC2 instances with
4 vCPUs and 16GB of RAM. To simulate realistic sce-
narios, these instances were placed in different zones (US
East and West). The network bandwidth between them was
measured to be around 40–60MB per second using iperf2.

• High-resource: We used a Microsoft Azure F72s_v2 in-
stance, which has 72 virtual cores and 144GB of RAM, to
compare to the results of Uzun et al. [32, Table 10].

6.1 Hamming Distance Protocol
Implementation: We have implemented HamPSI and
HamPSISample in C++11. The implementation uses the NTL
library3 for implementing the finite field arithmetic, and the
operations are performed over a 128-bit prime order field. We
have used the open-source implementation4 of the state of the
art VOLE scheme [37] for our set reconciliation protocols.

Finally for tHamQueryRestricted, we have used the open
source implementation5 of the EC-ElGamal encryption
scheme on a 256-bit curve as the additively homomorphic
encryption. The scheme is set up with a 24-bit message
space and a precomputed plaintext table of 24-bit messages to

2https://iperf.fr/
3https://libntl.org/
4https://github.com/emp-toolkit/emp-zk
5https://github.com/lubux/ecelgamal

speedup the decryption process. The message space is large
enough to encrypt the individual bits of the vectors, compute
the Hamming distance between them over the ciphertexts
and compare with the distance threshold. The 128-bit key
returned in the protocol is split into 24-bit chunks to fit into
the message space. More details are in App. A.1.

6.1.1 Comparison with Generic 2PC [15]

We have compared our Hamming DA-PSI protocol (Sec. 4.2)
denoted HamPSI with the garbled circuit based construction
by Huang et al. [14]. This construction is more efficient than
the AHE-based scheme due to Osadchy et al. [25]. We use an
open source implementation6.
Micro-Benchmark: We run micro-benchmarks with sets con-
taining 100 vectors sampled from the space {0,1}ℓ, and mea-
sure the communication volumes relative to the baseline.
• Communication volume: Fig. 12a shows how the com-

munication volume scales with the the vector lengths, ℓ.
The distance threshold dH = 10. As expected, the commu-
nication volume for HamPSI remains constant, while the
communication volume for the GC based solution scales
linearly in the vector size. For vectors of length greater
than 512 bits, HamPSI outperforms the GC based solution.
With 8192-bit vectors, HamPSI has 10× lower communi-
cation volume for FPR = 0.05. Fig. 12b shows how com-
munication volume scales with the distance threshold, dH.
HamPSI has 1.5− 440× lower communication volumes
up to dH = 30 compared to the baseline.

• Compute time: Fig. 12c and Fig. 12d shows how the com-
pute time in HamPSI scales with vector lengths, and the
distance threshold for FPR = 0.05. For vectors of length
≥ 1024 bits, HamPSI is at least 2× faster than the GC-
based system. With 8192-bit vectors,HamPSI is faster than
the GC-based system for distance threshold dH ≤ 32.

Application Benchmark: We use Iris recognition as an ap-
plication of HamPSI in a setting where the input vectors are
long, while the distance threshold is small. In this setting,
Alice and Bob have sets comprising 100 images of irises and
want to learn if they have common elements. The iris data is
collected from the CASIA dataset7. An open source tool is
used to extract features from the dataset and compute 6000-bit
long binary vectors corresponding to the items8.

To privately compare a single pair of vectors, the garbled
circuit based solution requires around 300KB of communica-
tion. With sets of size 100, the total communication required
is around 3GB. The communication cost mainly depends on
the vector length and is not affected by the distance thresh-
old. For HamPSI, with a threshold dH = 20, we are able to
retrieve all the matches with communication cost 2.5× and

6https://mightbeevil.org
7http://www.cbsr.ia.ac.cn/english/IrisDatabase.asp
8https://github.com/mvjq/IrisRecognition

https://iperf.fr/
https://libntl.org/
https://github.com/emp-toolkit/emp-zk
https://github.com/lubux/ecelgamal
https://mightbeevil.org
http://www.cbsr.ia.ac.cn/english/IrisDatabase.asp
https://github.com/mvjq/IrisRecognition

0 2,000 4,000 6,000 8,000

2

3

4

5

6

Vector Length (ℓ)

To
ta

lC
om

m
.(

in
M

B
.l

og
sc

al
e)

GC Baseline
HamPSI−0.1
HamPSI−0.05
HamPSI−0.01

(a) Total comm. vs. vector length

0 5 10 15 20 25 30 35

2

4

6

8

Distance Threshold (dH)
To

ta
lC

om
m

.(
in

M
B

.l
og

sc
al

e)

GC Baseline
HamPSI−0.1
HamPSI−0.05
HamPSI−0.01

(b) Total comm. vs. threshold

256 512 1048 2048 4096 8192

0

1,000

2,000

3,000

267 267 267 267 267 267
98 221

510

977

1,450

3,000

Vector Length (ℓ)

Ti
m

e
(i

n
se

c)

HamPSI−0.05
GC Baseline

(c) Compute time vs. vector length

1 2 4 8 16 32

0

1,000

2,000

3,000

4,000

8 20 57
487 622

2,296

3,000 3,000 3,000 3,000 3,000 3,000

Distance Threshold (dH)

Ti
m

e
(i

n
se

c)

HamPSI−0.05
GC Baseline

(d) Compute time vs. threshold
Figure 12: Micro-benchmarks for HamPSI (Sec. 4.2). Set size n = 100. In Fig. 12a and Fig. 12b, the values on the y-axis are in logscale
(base 10). Fig. 12a shows for dH = 10, and for FPR = 0.05 and FPR = 0.01, HamPSI has around 10× and 2× lower communication volume
respectively, compared to the GC baseline when the vector dimensions, ℓ= 8192. Fig. 12b shows with ℓ= 8192 dimension vector, and for FPR
= 0.05, HamPSI has 2−537× lower communication volumes up to distance threshold dH = 32 compared to the baseline. Fig. 12c shows that
for vector lengths, ℓ≥ 1024 bits, HamPSI is at least 2× faster than the GC baseline. Fig. 12d shows that for up to distance threshold dH ≤ 32,
HamPSI is faster than the GC baseline.

1.3× lower than the garbled circuit baseline with TNR = 0.9
and TNR = 0.95 respectively.

6.1.2 Comparison with Uzun et al. [32]

We have compared with the Hamming query protocol by
Uzun et al. [32]. Their protocol has two components: an
application-specific sub-sampling procedure that reduces bio-
identifiers (e.g., bit vectors derived from facial features) to
sets of high-dimensional items, and a t-out-of-T matching
protocol. The purpose of our comparison is to show that our
set reconciliation protocol is more efficient than the FHE-
based t-out-of-T protocol of Uzun et al. [32]. In this way, the
comparison is independent of the sub-sampling procedure,
which can change based on the application.

Unfortunately, since we are unable to obtain their code9,
and compute results of their t-out-of-T matching protocol in
isolation, for a fair comparison we use their sub-sampling
procedure on top of OneSidedSetRecon and compare the
overall times. This poses a challenge since the sub-sampling
procedure outputs sets of sub-vectors, we cannot directly
apply HamPSI which takes bit vectors as inputs. To over-
come this problem we have compared their protocol with
HamPSISample (Sec. 4.3, App. C) with their sub-sampling
procedure replacing the mapping procedure. We stress that
resorting to HamPSISample (vs. HamPSI) is simply to en-
able comparison to Uzun et al. [32] without their code. To
implement a client-server containment query (as in [32]), Al-
ice’s input (client) is a singleton set {⃗a} while Bob’s input is
B := {⃗b1, . . . ,⃗bn}. Alice’s compute cost is O

(
n ·

(T
t

))
where

T, t are parameters of the sub-sampling procedure. When
T = 64 and t = 2 [32], this cost is practically feasible.
Dataset: The dataset used for bechmarking by Uzun et al. [32]
is a set of synthetically generated (by a generative network)

9The authors declined to provide the code for their implementation and
instead recommended that we run our experiments on the same platform and
compare our results to those reported in their paper.

images of human faces. Since biometric authentication/face
recognition is not our focus, we opted to use a dataset with
randomly generated bit vectors matching the parameters in
[33]. Specifically, we generated sets of varying sizes contain-
ing bit-vectors of length ℓ = 256, and then sub-sampled these
bit vectors using the algorithm used by Uzun et al. [32] to
generate corresponding sets of size T = 64.
Results for High-Resource Setup: As recommended by the
authors of [32], we have used our high resource setup when
comparing our protocol with their protocol. Table 2 reports
results of the comparison. The numbers for the protocol of
Uzun et al. [32] correspond to a setup without load-balancing
the dataset on the server, and so our results report the worst-
case performance for both protocols. Load balancing can be
applied to our protocol to improve performance; however,
since it is unlikely to show improvements with randomly
generated vectors, we omit this optimization.

Set size n 10K 100K 1M
Measure Comm Comp Comm Comp Comm Comp

HamPSISample 25.8MB 2.00s 220MB 11.0s 1504MB 130s
Uzun et al. [32] 72.0MB 2.12s 528MB 17.8s 2124MB 189s

Table 2: Comparison of communication and computation
costs of HamPSISample (App. C) with Uzun et al. [32].

Our protocol outperforms the protocol of Uzun et al. [32]
for sets containing up to 1 million elements. The improve-
ment is the result of using a communication-efficient VOLE
protocol over fully homomorphic encryption. For instance,
the amortized communication cost of performing a single
oblivious linear evaluation as part of the VOLE protocol, i.e.,
computing a single value z⃗[m] := u⃗[m]x+ v⃗[m] ∈ Fp (see the
definition of F p

vole) for some m ∈ [1,n], is roughly 3 bits [37].
When applied to the set containing 10K elements, we require
1.2 million correlations. The total communication cost is 3.6
million bits, or 450KB. In addition, we need to transfer a field

0 20 40 60 80 100

0

50

100

150

200

Distance Threshold

To
ta

lC
om

m
.(

in
M

B
.)

IntPSI 1k
DA Baseline 1k
IntPSI 10k

DA Baseline 10k

(a) Comm vs. threshold.

0 20 40 60 80 100

0.2

0.4

0.6

0.1

0.2 0.2 0.2 0.2 0.2

0.1

0.3

0.4 0.4

0.5

0.6

Distance Threshold
Ti

m
e

(i
n

se
c)

IntPSI
DA Baseline

(b) Compute time vs. threshold

0 20 40 60 80 100 120 140

0

100

200

300

400

Distance Threshold

To
ta

lC
om

m
.(

in
M

B
.)

IntPSI
DA Baseline

(c) Comm vs. threshold

0 4 16 64 128

2.5

3

3.5

4

Distance Threshold

Ti
m

e
(i

n
m

s,
lo

g
sc

al
e)

IntPSI
DA Baseline

(d) Compute time vs. threshold
Figure 13: Benchmarks for IntPSI. Fig. 13a and Fig. 13b are microbenchmarks with set sizes = 1k, 10k. The communication volume for
IntPSI is roughly 13× less than the baseline for threshold = 100. Compute time is 3× less due to smaller augmented set sizes. Fig. 13c and
Fig. 13d are benchmaks when IntPSI is applied to the task of private collaborative blacklisting. Set size = 25k. The communication volume
and compute time for IntPSI are both around 10× less than the baseline when threshold = 128.

element in plaintext to convert each pseudorandom VOLE
correlation (as provided by Weng et al. [37]), to a correlation
with the desired parameters. The total cost is 2.8× less than
the cost of the protocol of Uzun et al. [32].

Compute costs are also lower due to the use of cheaper
symmetric-key primitives in our protocol over fully homomor-
phic encryption. The only exception is for the set containing
10K elements since the VOLE protocol requires a setup time.
For small sets, we still incur the setup time while not fully
utilizing all the usable oblivious linear evaluations.

Set size n 10K 100K 1M
Party Alice Bob Alice Bob Alice Bob

HamPSISample 11.4s 1.20s 24.3s 2.80s 145.3s 3.50s

Table 3: Compute costs of HamPSISample (App. C) on an
Amazon t2.xlarge instance.

Results for Low-Resource Setup: The high-resource setup
used by Uzun et al. [32] is necessary for the compute-
intensive tasks in their FHE-based scheme. In fact, Table
8 of Uzun et al. [32] shows that deploying the system with
72 threads utilizing all the available vCPUs leads to a 32.4×
speed up compared to a single-threaded deployment. Unlike
their setting, PSI settings are often symmetrically provisioned
and have more modest configurations. We demonstrate fea-
sibility of our protocol even on low-resource platforms. And
while we are unable to compute the actual costs of running
the protocol of Uzun et al. [32] on the same platform, we
posit that their compute costs would be significantly higher
on low-resource systems due to the inherent cost of FHE.

Table 3 shows the compute times of our protocol on the
low-resource platform described before. The communication
costs remain the same as the ones presented in Table 2 and
therefore we omit the results. Bob only participates in the
VOLE protocol and therefore has no other compute costs. As
is evident, the cost of our protocol on a low resource environ-
ment is similar to the performance on the over-provisioned
system. The use of a cheap symmetric key primitive, namely

VOLE, ensures that Bob’s online compute times are low (less
than 4s for databases containing up to 1M elements). The
majority of Alice’s time is spent on local computation which
can be further optimized by leveraging parallel processing.

6.2 Integer Distance Protocol

Implementation: The integer distance-aware protocol (or
IntPSI in short) is implemented as a two step process in C++.
First both parties augment their sets using Algorithm 1. These
augmented sets are used as inputs to the OT-based PSI pro-
tocol due to Pinkas et al. [27]. We rely on an open-source
implementation10. We note that IntPSI can be instantiated
with any traditional PSI protocol of choice, and both com-
munication volume and compute times are expected to show
similar trends.
Micro-benchmarks: We run micro-benchmarks with sets
containing 1k and 10k elements each, randomly sampled from
the space of non-negative (32 bit) integers. We evaluate how
the communication and overall compute time of the protocol
scales with the distance threshold and set size. The baseline
is the protocol due to Pinkas et al. [27] where we augment
the input sets with items in the neighborhood of each item in
the set based on the threshold. Here, the augmented set size
is expected to scale linearly with the distance threshold. This
is called the “DA Baseline" in our experiments.
• Comm. volume vs. threshold: Fig. 13a shows how the

communication volume scales with the distance threshold.
The communication costs of IntPSI scale logarithmically,
and so with distance threshold 100, the communication
volume is 12.5× less than the baseline for set size 10K.

• Compute time vs. threshold: Fig. 13b shows how com-
pute time scales with the distance threshold. Due to smaller
set sizes to compute on, IntPSI compute time is 3× lower
than the baseline when the threshold is 100.

Application Benchmark: To further explore realistic param-
eter settings, as a real-world application of IntPSI, we return

10https://github.com/encryptogroup/PSI

https://github.com/encryptogroup/PSI

to the problem of private collaborative blacklisting where
two mutually-untrusting parties compare IP addresses of end-
points from where they have observed traffic to their own
network. This task is usually performed with a PSI protocol
[22]. Replacing this with a DA-PSI protocol enables us to
find IP addresses that are common to both sets, as well as find
addresses that are “close” in the address space. A distance-
based comparison is meaningful here because it is well-know
that coordinated attacks usually span multiple subnets [5, 38].
Dataset: To test this application, we have collected data from
a public honeypot deployed in a university network. The
honeypot logs all incoming and outgoing traffic and stores a
wealth of information. From this data, we curate information
about traffic observed on two separate days, and build sets
with the source IP addresses. There are roughly 25,000 dis-
tinct IP addresses in each set. These sets are inputs to IntPSI
and the baseline PSI protocol.

We observe that using a distance-aware intersection in this
context is well-justified based on the results. The number
of intersections increases significantly when increasing the
search radius and almost doubles by the time we reach the
threshold of 128. In actual numbers, there are around 5% exact
matches between the two sets. With a distance based search
over thresholds of 2, . . .128 we find that the number of items
in the intersection increase to more than 10%. By searching
over larger threshold, we are able to obtain matching IP ad-
dresses that fall in the same subnet/adjoining subnets. Note
that without a full subnet map, it is not possible to predict
these subnet sizes a priori. Therefore, we envision running
the protocol multiple times with different thresholds to obtain
the most informative intersection.
Results: Figs. 13c–13d show how the overall communication
volume and compute time scale with distance thresholds set
to 2, . . . ,128. The intuition behind increasing the threshold
in powers of two is that we would like to search over entire
subnets and find potential overlaps (if any). In terms of the
overall runtime we observe that IntPSI scales more gracefully
with the distance threshold. Note that with threshold set at 128,
the baseline protocol computes over sets of size exceeding
6 million, while IntPSI computes over sets of size of around
200,000. This difference results in a significant speedup. With
threshold = 128, IntPSI requires only 1.5 seconds to compute
the intersection while the baseline requires over 15 seconds
to accomplish the same task.

7 Conclusion

In this paper, we introduced the distance-aware PSI problem
over metric spaces, whereby parties privately compute an in-
tersection of their respective sets with items that are “close” in
the metric space ending up in the intersection. Closeness is de-
fined based on a user-specified distance threshold in the metric
space. As concrete instantiations, we provided distance-aware
constructions for two metric spaces: Minkowski distance of

order 1 over the integers and Hamming distance. Both the pro-
tocols are communication-efficient. As a practical application
of this idea, we evaluated the Minkowski distance protocol in
the context of collaborative blacklisting. In addition, the Ham-
ming distance-aware protocol allows constructions for other
distances using techniques like locality-sensitive hashing.

Acknowledgments

This research was supported in part by grant numbers 2040675
and 1705007 from the National Science Foundation, and
W911NF-17-1-0370 from the Army Research Office. This
work was also made possible by the support of JP Morgan
Chase, the Sloan Foundation, Siemens AG, and Cisco. The
views and conclusions in this document are those of the au-
thors and should not be interpreted as representing the official
policies, either expressed or implied, of the National Science
Foundation, Army Research Office, or the U.S. Government.

References

[1] S. Badrinarayanan, P. Miao, S. Raghuraman, and
P. Rindal. Multi-party threshold private set intersection
with sublinear communication. In 24th International
Conference on Practice and Theory of Public Key Cryp-
tography, volume 12711 of Lecture Notes in Computer
Science, pages 349–379, 2021.

[2] R. Canetti, B. Fuller, O. Paneth, L. Reyzin, and A. Smith.
Reusable fuzzy extractors for low-entropy distributions.
Journal of Cryptology, 34(1):1–33, 2021.

[3] Anrin Chakraborti, Giulia Fanti, and Michael K. Re-
iter. Distance-aware private set intersection, 2021. URL
https://arxiv.org/abs/2112.14737.

[4] M. Chase and P. Miao. Private set intersection in the
internet setting from lightweight oblivious prf. In Ad-
vances in Cryptology – CRYPTO 2020, volume 12172 of
Lecture Notes in Computer Science, pages 34–63, 2020.

[5] M. P. Collins, T. J. Shimeall, S. Faber, J. Janies,
R. Weaver, M. De Shon, and J. Kadane. Using unclean-
liness to predict future botnet addresses. In 7th ACM
Conference on Internet Measurement, 2007.

[6] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.
Locality-sensitive hashing scheme based on p-stable
distributions. In 20th Symposium on Computational
Geometry, 2004.

[7] John Daugman. Chapter 25 - how iris recognition works.
In Al Bovik, editor, The Essential Guide to Image Pro-
cessing. Academic Press, 2009.

https://arxiv.org/abs/2112.14737

[8] E. De Cristofaro, J. Kim, and G. Tsudik. Linear-
complexity private set intersection protocols secure in
malicious model. In Advances in Cryptology – ASI-
ACRYPT 2010, volume 6477 of Lecture Notes in Com-
puter Science, 2010.

[9] Y. Dodis, L. Reyzin, and A. Smith. Fuzzy extractors:
How to generate strong keys from biometrics and other
noisy data. In International conference on the theory
and applications of cryptographic techniques, pages
523–540. Springer, 2004.

[10] M. J. Freedman, K. Nissim, and B. Pinkas. Efficient
private matching and set intersection. In Advances in
Cryptology – EUROCRYPT 2004, volume 3027 of Lec-
ture Notes in Computer Science, pages 1–19, 2004.

[11] S. Ghosh and M. Simkin. The communication complex-
ity of threshold private set intersection. In Advances in
Cryptology – CRYPTO 2019, volume 11693 of Lecture
Notes in Computer Science, pages 3–29, 2019.

[12] A. Gionis, P. Indyk, and R. Motwani. Similarity search
in high dimensions via hashing. In 25th International
Conference on Very Large Data Bases, 1999.

[13] A. Groce, P. Rindal, and M. Rosulek. Cheaper private
set intersection via differentially private leakage. Pro-
ceedings on Privacy Enhancing Technologies, 2019.

[14] Wei Huang, Yaoyun Shi, Shengyu Zhang, and Yufan
Zhu. The communication complexity of the hamming
distance problem. Information Processing Letters, 99
(4), 2006.

[15] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure
two-party computation using garbled circuits. In 20th

USENIX Security Symposium, 2011.

[16] B. Kacsmar, B. Khurram, N. Lukas, A. Norton,
M. Shafieinejad, Z. Shang, Y. Baseri, M. Sepehri, S. Oya,
and F. Kerschbaum. Differentially private two-party set
operations. In 2020 IEEE European Symposium on
Security and Privacy, 2020.

[17] B. Kalyanasundaram and G. Schintger. The probabilistic
communication complexity of set intersection. Journal
on Discrete Mathematics, 5(4):545–557, 1992.

[18] L. Kissner and D. Song. Privacy-preserving set oper-
ations. In Advances in Cryptology – CRYPTO 2005,
volume 3621 of Lecture Notes in Computer Science,
page 241–257, 2005.

[19] F. M. Larkin. Some techniques for rational interpolation.
The Computer Journal, 10(2):178–187, 1967.

[20] G. S. Manku, A. Jain, and A. Das Sarma. Detecting
near-duplicates for web crawling. In 16th International
Conference on the World Wide Web, 2007.

[21] C. Meadows. A more efficient cryptographic matchmak-
ing protocol for use in the absence of a continuously
available third party. In IEEE Symposium on Security
and Privacy, 1986.

[22] L. Melis, A. Pyrgelis, and E. De Cristofaro. On col-
laborative predictive blacklisting. ACM SIGCOMM
Computer Communication Review, 2019.

[23] Y. Minsky, A. Trachtenberg, and R. Zippel. Set reconcil-
iation with nearly optimal communication complexity.
IEEE Transactions on Information Theory, 49(9), 2003.

[24] M. Mohammadi-Kambs, K. Hölz, M. Somoza, and
A. Ott. Hamming distance as a concept in dna molecular
recognition. ACS Omega, 2(4):1302–1308, April 2017.

[25] M. Osadchy, B. Pinkas, A. Jarrous, and B. Moskovich.
Scifi - a system for secure face identification. In 31st

IEEE Symposium on Security and Privacy, 2010.

[26] B. Pinkas, T. Schneider, G. Segev, and M. Zohner. Phas-
ing: Private set intersection using permutation-based
hashing. In 24th USENIX Security Symposium, 2015.

[27] B. Pinkas, T. Schneider, and M. Zohner. Scalable private
set intersection based on ot extension. ACM Transac-
tions on Privacy and Security, 2018.

[28] B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai. Spot-
light: Lightweight private set intersection from sparse
ot extension. In Alexandra Boldyreva and Daniele Mic-
ciancio, editors, Advances in Cryptology – CRYPTO
2019, pages 401–431, Cham, 2019. Springer Interna-
tional Publishing.

[29] B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai. Psi
from paxos: Fast, malicious private set intersection. In
Advances in Cryptology -– EUROCRYPT 2020, volume
12106 of Lecture Notes in Computer Science, pages 739–
767, 2020.

[30] M. Raginsky and S. Lazebnik. Locality-sensitive binary
codes from shift-invariant kernels. In 22nd International
Conference on Neural Information Processing Systems,
2009.

[31] J.F. Steffensen. Note on divided differences
=. Mathematisk-fysiske Meddelelser. XVII, 3,
1939. http://gymarkiv.sdu.dk/MFM/kdvs/mfm%
2010-19/mfm-17-3.pdf.

[32] E. Uzun, Simon P Chung, Vladimir Kolesnikov, Alexan-
dra Boldyreva, and Wenke Lee. Fuzzy labeled private

http://gymarkiv.sdu.dk/MFM/kdvs/mfm%2010-19/mfm-17-3.pdf
http://gymarkiv.sdu.dk/MFM/kdvs/mfm%2010-19/mfm-17-3.pdf

set intersection with applications to private {Real-Time}
biometric search. In 30th USENIX Security Symposium,
.

[33] E. Uzun, C. Yagemann, S. Chung, V. Kolesnikov, and
W. Lee. Cryptographic key derivation from biometric
inferences for remote authentication. In Proceedings
of the 2021 ACM Asia Conference on Computer and
Communications Security, .

[34] K. C. Wang and M. K. Reiter. How to end password
reuse on the web. In 26th ISOC Network and Distributed
System Security Symposium, 2019.

[35] K. C. Wang and M. K. Reiter. Detecting stuffing of a
user’s credentials at her own accounts. In 29th USENIX
Security Symposium, 2020.

[36] X. S. Wang, Y. Huang, Y. Zhao, H. Tang, X. Wang, and
D. Bu. Efficient genome-wide, privacy-preserving simi-
lar patient query based on private edit distance. In 22nd

ACM Conference on Computer and Communications
Security, 2015.

[37] C. Weng, K. Yang, J. Katz, and X. Wang. Wolver-
ine: Fast, scalable, and communication-efficient zero-
knowledge proofs for boolean and arithmetic circuits.
In 42nd IEEE Symposium on Security and Privacy (SP),
2021.

[38] A. G. West, A. J. Aviv, J. Chang, and I. Lee. Spam miti-
gation using spatio-temporal reputations from blacklist
history. In 26th Annual Computer Security Applications
Conference, 2010.

A tHamQuery: Threshold Hamming Queries
(Sec. 4.1.3)

A.1 Using EC-Elgamal in tHamQuery

tHamQueryRestricted uses a additively homomorphic en-
cryption scheme. In our implementation we use the EC-
Elgamal encryption scheme to reduce communication costs.
For this, the message space should be large enough to allow
the computation in tHamQueryRestricted, and decrypt the
results. We use a 24-bit message space. The computation in
tHamQueryRestricted broadly involves two steps: i) comput-
ing the Hamming distance between two vectors as follows,
and ii) returning a key κ blinded with the result of the Ham-
ming distance computation. First, consider the mechanism we
use to compute the Hamming distances between two vectors.

As long as the maximum Hamming distance between
the vectors < 224, the 24-bit message space suffices for this
computation. After computing Enc(δH (⃗a,⃗b)), Bob computes
KeySet := {κi : κi := ri× (Enc(δH (⃗a,⃗b)− i))+Enc(κ), i ∈

BobAlice

R11(x), . . . ,R1n(x)
$

:= Fp[x]
R21(x), . . . ,R2n(x)

$
:= Fp[x]

F p
vole

< R11(x1), .. , R1n(x1)>

< R21(x1)Q1(x1), . . . ,R2n(x1)Qn(x1)>

P(x1)

{WA1(x1), .. , WAn(x1)}
...
...

F p
vole

< Rk1(xk), .. , Rkn(xk)>

< R21(xk)Q1(xk), . . . ,R2n(xk)Qn(xk)>

P(xk)

{WA1(xk), .. , WAn(xk)}

Figure 14: Using VOLE for OneSidedSetRecon

[0,dH], ri← Fp}. However, the problem here is that κ ∈ Fp
and for a sufficiently high statistical security parameter, we
require p to be a at least 128-bit long. Thus, κ does not fit in
the 24-bit message space.

To mitigate this, we split κ into 24-bit chunks. Each in-
dividual chunk is encrypted separately, and returned to Al-

ice. In other words, Bob splits κ into c =

⌈
|Fp|
24

⌉
chunks

Chunk1, . . . ,Chunkc, and Alice now receives KeySet :=
{κi j : κi j := ri j × (Enc(δH (⃗a,⃗b)− i)) + Enc(Chunk j), i ∈
[0,dH], ri j ← Fp, j ∈ [1,c]}. From this, Alice can obtain
κi := κi1|| . . . ||κic. Note each 24-bit chunk in encrypted with
IND-CPA security, and therefore splitting the key as described
has no impact on security. There is a c times blowup in
the downstream communication cost i.e., the cost of send-
ing KeySet to Alice.

B HamPSI: Hamming DA-PSI from
tHamQuery (Sec. 4.2)

For inputs, A := A := {⃗a1, . . . , a⃗n} and B := B := {⃗b1, . . . ,⃗bn},
the straightforward way to realize a Hamming DA-PSI proto-
col is by running n2 instances on tHamQuery in parallel over
each input pair (⃗ai ,⃗b j). However, there is more optimized
solution using vector OLE’s (see Sec. 3.1). The idea is as
follows: consider Alice’s input is a⃗i and Bob’s input is the set
of vectors B := {⃗b1, . . . ,⃗bn}. Then, the goal is to determine if
there exists b⃗ j ∈ B such that δH (⃗ai ,⃗b j)< dH. This functional-
ity can be considered a one-sided containment query.

To realize this functionality, we present
HamContainQuery protocol (see Fig. 15), consist-
ing of two procedures PermuteAndPartition and
OneSidedSetReconMultiBlind. In PermuteAndPartition,
Alice and Bob run tHamQueryRestricted over each pair
(⃗ai ,⃗b j) (lines 1–2). At the end of this procedure, Alice
obtains {KeySet1, . . . ,KeySetn}. Alice obtains the set of
sub-vectors S′a⃗ := {⃗x1, . . . , x⃗Nbins

} derived from a⃗. Similarly,
for i ∈ [1,n], Bob obtains the set S′

b⃗i
derived from b⃗i (line 3).

OneSidedSetReconMultiBlind takes as input SA from

Alice while Bob’s input is a set of sets {SB1, . . . ,SBn}.
Alice derives P(x) from SA and Bob derives the
set of polynomials {Q1(x), . . . ,Qn(x)}from {SB1, . . . ,SBn}
(line 4). Bob selects two sets of degree-ℓ random poly-
nomials {R11(x), . . . ,R1n(x)}, {R21(x), . . . ,R2n(x)}. Then,
for k ∈ [1,Nbins + 2dH + 1], Alice and Bob compute
{WA1(xk), . . . ,WAn(xk)} where WAi(xk) := P(xk)R1i(xk) +
R2i(xk)Qi(xk)+φ(κi,k).

In order to compute {WA1(xk), . . . ,WAn(xk)}, the idea
is to use a VOLE protocol (see Fig. 14). Specifically,
for k ∈ [1, ℓ+ 2dH + 1] Alice sends P(xk) to F p

vole, while
Bob sends the two vectors R⃗ :=< R11(xk), . . . ,R1n(xk) >,
and U⃗ :=< R21(xk)Q1(xk) + φ(κ1,k), . . . ,R2n(xk)Qn(xk) +
φ(κn,k) > (line 6). By definition, F p

vole return to Alice
{WA1(xk), . . . ,WAn(xk)}. Batching n OLE computations with
a single VOLE instance has concrete advantages both in terms
of compute time and communication costs. Fig. 14 describes
this process. Subsequently, for κ′ ∈ KeySeti and i ∈ [1,n],
Alice computes Viκ′ = {(xk,yk) : yk = WAi(xk)−φ(κ′,k)

P(xk)
, k ∈

[1,Nbins+2dH+1]}, and interpolates the set of points (line 8).
Finally, realizing a Hamming PSI protocol is straightfor-

ward with a one-sided containment query protocol. Specifi-
cally, we run n instances of containment queries correspond-
ing to each element in A. Each instance is run independently
with independent random coins (see Fig. 16).

Theorem 3. Assuming that there exists a semantically secure
additively homomorphic encryption scheme, and a protocol
securely realizing F p

vole with O(nλ) bits of communication,
there is a Hamming DA-PSI protocol which securely real-

izes F h-PSI
ℓ,dH

with O
(

n2 · d2
H

FPR ·λ
)

bits of communication where

FPR ∈ (0,0.5) is the false positive rate.

The proof can be found in the full version [3].

C HamPSISample: Hamming DA-PSI with
Sub-Sampling (Sec. 4.3)

This section details a construction for Hamming queries
which combines OneSidedSetReconExp with a sub-sampling
algorithm which makes the computation feasible.
Sub-Sampling: There is extensive work on reducing bit vec-
tors to sets of small sizes for Hamming distance comparisons
in specific application settings e.g., in biometric authentica-
tion [32, 33]. The idea is to sub-sample the bit vectors of
length ℓ into T sub-vectors, and then compare the sets of the
sub-vectors. If the input bit vectors are close in Hamming
space, then t out of the T sub-vectors will match across the
sets. The sub-sampling scheme is parameterized such that
t≪ T < ℓ. For example, in the context of biometric data rep-
resented by bit vectors of length ℓ= 256 after a transformation
with a locality-sensitive hash, the sub-sampling algorithm can
yield sets of size T = 64 as inputs, with t = 2.

Parameters: Alice holds vector a⃗ and Bob has set of vectors B :=
{⃗b1, . . . ,⃗bn}. They jointly select a Hamming distance threshold dH ∈
(0, ℓ/2).

Procedure PermuteAndPartition:

(1) Bob samples n random keys {κ1, . . . ,κn} where κi
$

:= Fp.
(2) For each i ∈ [1,n], Alice sends a⃗ and Bob sends b⃗i and κi to

tHamQueryRestricted. Alice obtains {KeySet1, . . . ,KeySetn}.

(3) Let Nbins := 2d2
H

FPR . Alice computes set S′a⃗ := {⃗x1, . . . , x⃗Nbins
} using

π similar to line 3 of tHamQueryRestricted. . Similarly, for each
i ∈ [1,n], Bob computes set S′

b⃗i
.

Procedure OneSidedSetReconMultiBlind:
(4) Alice computes the polynomial P(x) := ∏

r∈S⃗a

(x− r). For each

i ∈ [1,n], Bob computes set Qi(x) := ∏
r∈S′

b⃗i

(x− r).

(5) Bob samples two sets of n polynomials {R11(x), . . . ,R1n(x)},
and {R21(x), . . . ,R2n(x)} where each R1i(x), R2i(x)

$
:= Fp[x] are

degree-(Nbins) polynomials.
(6) For each k ∈ [1,Nbins + 2dH + 1], Alice and Bob engage

in a round F p
vole. Specifically, Alice sends P(xk) to F p

vole
and Bob sends the vectors < R11(xk), . . . ,R1n(xk) >, and
< R21(xk)Q1(xk) + φ(κ1,k), . . . ,R2n(xk)Qn(xk) + +φ(κn,k) >.
Alice obtains {WA1(xk), . . . ,WAn(xk)} where WAi(xk) :=
R1i(xk)P(xk)+R2i(xk)Qi(xk)+φ(κi,k).

(7) For each κ′ ∈KeySeti, Alice computes the set of sets {V1, . . . ,Vn},
where

Viκ′ = {(xk,yk) : yk =
WAi(xk)−φ(κ′,k)

P(xk)
}.

(8) Alice runs the interpolation in line 6 in Fig. 3 over Viκ′ and returns
{i,κ′} if the interpolation succeeds. Otherwise, Alice returns ⊥ .

Figure 15: HamContainQuery: Hamming containment query pro-
tocol

In the typical setting where Alice and Bob hold bit vec-
tors, a⃗ and b⃗ of length ℓ, Bob samples T "masking" func-
tions, {mask1, . . . ,maskT}. These masking functions are ap-
plied to a⃗ using a 2PC circuit (e.g., with a garbled cir-
cuit or an OPRF) to create a set of sub-vectors S⃗a :=
{PRFκs (⃗a

∧
mask1), . . . ,PRFκs (⃗a

∧
maskT)}. Here, PRF is a

keyed PRF e.g., AES with κs as the key, uniformly sam-
pled by Bob. In this way, Alice does not learn the masking
functions but learns S⃗a as output of the 2PC circuit. Bob
similarly applies the masking functions to his own inputs,
S⃗b := {PRFκs (⃗b

∧
mask1), . . . ,PRFκs (⃗b

∧
maskT)}. Next, Al-

ice and Bob run a threshold PSI (t-out-of-T matching) al-
gorithm over S⃗a and S⃗b. If t elements match in S⃗a and S⃗b,
Alice learns that a⃗ and b⃗ are close in context of the appli-
cation. We refer to existing work [2, 9, 32, 33] for further
details, and focus on the threshold PSI part of this process.
Fig. 17 describes the protocol. After creating the sets by sub-
sampling the input vectors in line 2 of Fig. 17, Alice and Bob
run OneSidedSetReconExp with ℓ= T,dH = (T − t).
Optimizing the Interpolation: In line 10 of Fig. 17, the in-
terpolation step can be optimized based on two insights. The
first insight is based on the fact that we are only interested in
the degree of the interpolating polynomial and not the polyno-

Inputs: Alice holds a set of vectors A := {⃗a1, . . . , a⃗n}. and Bob has set
of vectors B := {⃗b1, . . . ,⃗bn}. They jointly select a Hamming distance
threshold dH.
Protocol:
(1) For each i ∈ [1,n], Alice and Bob run HamContainQuery with

inputs a⃗i and B := {⃗b1, . . . ,⃗bn}, and distance threshold dH.
(2) For i ∈ [1,n], if HamContainQuery returns { j,κ′} for input a⃗i,

Alice sends to Bob {⃗ai, j,κ′}. Bob verifies i) κ’ is one of the
chosen keys in line 1, and ii) δH (⃗ai ,⃗b j)< dH. If so, Bob returns
b⃗ j . Alice add (⃗ai ,⃗b j) to the set Sout.

(3) Alice outputs Sout.

Figure 16: HamPSI: Hamming distance-aware PSI protocol

Parameters: Alice and Bob have vectors a⃗,⃗b ∈ {0,1}ℓ respectively
and a hamming distance threshold dH.

Procedure SubSample:
(1) Bob samples T random masking functions {mask1, . . . ,maskT }

[32], and keyed PRF, PRFκs e.g., AES with key κs := {0,1}λ.
(2) Alice and Bob run a 2PC circuit where Alice’s input is a⃗ and Bob’s

input is {mask1, . . . ,maskT }, and PRFκs . The circuit returns to
Alice S⃗a := {PRFκs (⃗a

∧
mask1), . . . ,PRFκs (⃗a

∧
maskT)}.

(3) Bob locally computes S⃗b :=
{PRFκs (⃗b

∧
mask1), . . . ,PRFκs (⃗b

∧
maskT)}.

Procedure OneSidedSetReconExp: Alice and Bob run
OneSidedSetReconExp with S⃗a and S⃗b as inputs.
(4) Alice and Bob select set of points X = {xk}2T−t+2

k=1 .
(5) Alice encodes S⃗a in roots of the polynomial P(x) = ∏

r∈S⃗a

(x−r) and

Bob encodes S⃗b in roots of the polynomial Q(x) = ∏
r∈S⃗b

(x− r).

(6) Bob samples two random polynomials R1(x),R2(x)
$

:= Fp[x] of
degree T .

(7) For k ∈ [1,2T − t +2], Alice sends P(xk) to F p
ole and Bob sends

R1(xk) and R2(xk) Q(xk). Alice learns WA(xk) := R1(xk)P(xk)+
R2(xk)Q(xk) as the output of F p

ole.
(8) Alice computes set Csub where each Ci ∈Csub is a subset of S⃗a

having exactly t elements.
(9) For each Ci ∈Csub, Alice computes the polynomial Pi := ∏

r∈Ci

(x−

r) and computes the set of points

Vi = {(xk,yk) : yk =
WA(xk)
Pi(xk)

, k ∈ [1,2T − t +2]}.

(10) Alice interpolates Vi for all i ∈ |Csub| with a polynomial. If the
degree of the interpolating polynomial is < 2T − t, Alice learns
that a⃗ and b⃗ are close. Otherwise, Alice outputs ⊥.

Procedure Recover:
If OneSidedSetReconExp outputs |S⃗a \ S⃗b| then obtain b⃗ from Bob.
Output (⃗a,⃗b). Otherwise, output ⊥.

Figure 17: tHamQuerySample: Threshold Hamming queries
with sampling

mial itself. Therefore, instead of computing the interpolating
polynomial completely we can compute the coefficients of the
constituent monomials of Newton’s interpolating polynomial.
More specifically, the interpolating polynomial is of the form

R(x) := f [x1]+ f [x1,x2](x− x1)+ . . .+
f [x1, . . . ,x2T−t+2](x− x1)(x− x2) . . .(x− x2T−t+2)

Here, f [x1], f [x1,x2] . . . are the Newton’s divided differ-

Inputs: Alice holds a set of vectors A := {⃗a1, . . . , a⃗n}. and Bob has set
of vectors B := {⃗b1, . . . ,⃗bn}. They jointly select a Hamming distance
threshold dH.
Protocol:
(1) For each i ∈ [1,n], j ∈ [1,n], Alice and Bob run

tHamQuerySample with inputs a⃗i and b⃗ j , and distance
threshold dH.

(2) For i ∈ [1,n], j ∈ [1,n], if tHamQuerySample returns (⃗ai ,⃗b j),
then add it Sout.

(3) Alice outputs Sout.

Figure 18: HamPSISample: Hamming distance-aware PSI proto-
col from tHamQuerySample

ences computed from the points in Vi. Since, we only need the
coefficient of x2T−t+1 in this polynomial, it suffices to com-
pute the value of f [x1, . . . ,x2T−t+2]. If f [x1, . . . ,x2T−t+2] = 0,
the degree of R(x) is < 2T − t +1.

Consider the divided differences:

(1) f ′[x1], f ′[x1,x2], . . . , f ′[x1, . . . ,x2T−t+2], over the points
{(xk,yk) : yk :=WA(xk), k ∈ [1,2T − t +2]}

(2) g[x1],g[x1,x2], . . . ,g[x1, . . . ,x2T−t+2] over the points
{(xk,yk) : yk := 1

Pi(xk)
, k ∈ [1,2T − t +2]}

Since R(x) =WA(x)× 1
Pi(x)

, the divided differences for R(x)
can be computed using the divided differences for WA(x) and

1
Pi(x)

due to Leibniz’s rule [31]. That is,

f [x1, . . . ,x2T−t+2] = (f ′.g)[x1, . . . ,x2T−t+2] =

2T−t+2

∑
k=1

f ′[x1, . . . ,xk]g[xk, . . . ,x2T−t+2] (1)

The second insight is based on the fact that the di-
vided differences for all the polynomials Pi(x)’s tested
in lines 9–10 can be pre-computed offline by Alice and
stored for speeding up the computation in (1). Specifi-
cally, Alice computes for each polynomial Pi(x) (generated
from Ci ∈ Csub, the set comprising the divided differences
{g[x1, . . . ,x2T−t+2],g[x2, . . . ,x2T−t+2], . . . ,g[x2T−t+2]}. This
is done offline. Subsequently, when Alice obtains the points
for WA(x) after executing line 7, she computes the divided dif-
ferences for WA(x)× 1

Pi(x)
using (1). This significantly speeds

up the compute times.

Theorem 7. Assuming that there is a protocol securely re-
alizing F p

ole with communication cost scaling linearly with
the vector size and a sub-sampling algorithm which derives
sets of size T after sub-sampling binary vectors of length ℓ
such that sets corresponding to the vectors close in Hamming
space have at least t common elements, tHamQuerySample
securely realizes F t-HQ

ℓ,dH
with O(T) communication cost and

O
((T

t

))
compute costs.

The proof can be found in the full version [3].

	Introduction
	Related Work
	Security Definitions & Background
	Background

	Protocol for Hamming Distances
	Threshold Hamming Query
	tHamQueryLite: Hamming Query First Pass
	The (In)Security of tHamQueryLite
	tHamQuery: Hamming Queries with Polynomial Computation

	HamPSI: Hamming DA-PSI from tHamQuery
	HamPSISample: Sub-Sampling Based Hamming DA-PSI

	Protocol for Integer Distances
	Technical Description

	Evaluation
	Hamming Distance Protocol
	Comparison with Generic 2PC huang2011garbled
	Comparison with uzun2021fuzzy

	Integer Distance Protocol

	Conclusion
	tHamQuery: Threshold Hamming Queries (Sec. 4.1.3)
	Using EC-Elgamal in tHamQuery

	HamPSI: Hamming DA-PSI from tHamQuery (Sec. 4.2)
	HamPSISample: Hamming DA-PSI with Sub-Sampling (Sec. 4.3)

