PatchVerif: Discovering Faulty Patches in Robotic Vehicles

Hyungsub Kim, Muslum Ozgur Ozmen, Z. Berkay Celik, Antonio Bianchi, and Dongyan Xu

Purdue University
{kim2956, mozmen, zcelik, antoniob, dxu } @purdue.edu

Abstract

Modern software is continuously patched to fix bugs and
security vulnerabilities. Patching is particularly important in
robotic vehicles (RVs), in which safety and security bugs can
cause severe physical damages. However, existing automated
methods struggle to identify faulty patches in RVs, due to
their inability to systematically determine patch-introduced
behavioral modifications, which affect how the RV interacts
with the physical environment.

In this paper, we introduce PATCHVERIF, an automated
patch analysis framework. PATCHVERIF’s goal is to evalu-
ate whether a given patch introduces bugs in the patched
RV control software. To this aim, PATCHVERIF uses a com-
bination of static and dynamic analysis to measure how the
analyzed patch affects the physical state of an RV. Specifically,
PATCHVERIF uses a dedicated input mutation algorithm to
generate RV inputs that maximize the behavioral differences
(in the physical space) between the original code and the
patched one. Using the collected information about patch-
introduced behavioral modifications, PATCHVERIF employs
support vector machines (SVMs) to infer whether a patch is
faulty or correct.

We evaluated PATCHVERIF on two popular RV control
software (ArduPilot and PX4), and it successfully identified
faulty patches with an average precision and recall of 97.9%
and 92.1%, respectively. Moreover, PATCHVERIF discovered
115 previously unknown bugs, 103 of which have been ac-
knowledged, and 51 of them have already been fixed.

1 Introduction

Patching has been proven essential to fix bugs and security vul-
nerabilities [17,40,75,76]. However, recent works have shown
that patches written by developers can be faulty [10, 54].
These faulty patches unintentionally break the intended func-
tionality of software while attempting to fix existing issues or
add new features [1,8, 11,38, 74].

This issue is particularly severe in software controlling
robotic vehicles (RVs) for two main reasons. First, faulty
patches in RVs can cause severe physical damage to critical

infrastructures, humans, or be maliciously exploited by an at-
tacker to stealthily disrupt an RV’s behavior [9, 30, 32,68, 69].
Second, detecting such faulty patches (manually or automati-
cally) in RVs is particularly challenging. In fact, any patch to
control software has potential consequences not only in the
“cyber space” (i.e., how variables are used and how data flows
in the software), but also in the “physical space” the device
controlled by such software operates in.

Software developers are typically used to reasoning about
patch-introduced modifications in the cyber space. For in-
stance, a developer may check all the code locations in which
a variable, whose initial value is changed by a patch, is used.
On the contrary, tracking the patch-introduced behavioral
modifications in the physical space is much harder. In our
preliminary analysis of RV software, we found many cases in
which the consequences of a code patch in the physical space
were not fully understood by the developers. For instance, we
found a case in which ArduPilot developers implemented a
patch that updates conditions to trigger an emergency stop
for helicopter-type vehicles. However, this patch also caused
multicopter-type vehicles not to stop the motors, although the
user activated the emergency stop [19].

Regarding automated analysis, researchers have proposed
techniques to specifically detect faulty patches [35, 37, 56,
63,73]. However, these techniques mainly focus on memory
corruption bugs (e.g., buffer overflow), while in RV software,
faulty patches could also cause logic bugs that lead to devia-
tions in the RVs’ physical behavior from the developer’s ex-
pectations. Additionally, most of these techniques assume that
a complete set of test cases exists. Unfortunately, available
test cases only cover a limited subset of the possible behaviors
of popular RV software, such as ArduPilot and PX4 [7,52],
since they are manually generated. Finally, recent works fo-
cus on specifically detecting bugs affecting the physical space
in RV software [30,32]. However, these techniques require
a predetermined notion of what an RV’s faulty behavior is.
For instance, PGFuzz [30] assumes the existence of a set of
temporal logic formulas precisely describing rules (related to
physical properties) a vehicle should never violate.

In summary, two fundamental reasons make the detection
of faulty patches in RV software challenging. First, the “input
space” of RV software is much larger than that of normal
software, given the amount of data that a vehicle receives and
processes at any given point in time. This data encompasses
environmental data, read continuously from multiple sensors,
as well as commands given by ground control stations. For
this reason, test suites' for RVs only cover a very limited
subset of physical circumstances the vehicle may operate in.
For example, ArduPilot and PX4 simulators consider 198 dif-
ferent environmental factors (e.g., terrain, temperature, and
sensor failure). However, their test suites mainly test sensor
failure circumstances [7,52]. Second, patch verification meth-
ods must know which behaviors of an RV are correct and
which behaviors are anomalous. Yet, in RVs, there is no clear
definition of a “correct behavior”. In fact, the definition of
what is correct is tightly related to both the physical space a
device operates in and the assigned mission, and both of these
concepts vary widely in different RV usage scenarios.

Motivated by the potential severity of patch-introduced
bugs in RVs and the lack of effective approaches to automati-
cally detect them, in this paper, we develop PATCHVERIF, an
automated patch verification framework for RV software.

Our study reveals that a surprisingly high number of patches
for the ArduPilot and PX4 control software are faulty. Specif-
ically, we found 114 faulty patches affecting ArduPilot and
231 faulty patches affecting PX4. These faulty patches can
be categorized into three groups: (i) partially fixing a buggy
behavior, (i7) fixing an incorrect behavior but breaking another
correct behavior, and (iii) adding a new feature but introduc-
ing a bug in existing features.

To find faulty patches, PATCHVERIF takes, as input, a patch
and RV software. PATCHVERIF then determines how the ana-
lyzed patch affects physical properties of the RV. To compre-
hensively measure the patch-introduced variations of these
properties, PATCHVERIF automatically generates test cases
eliciting both the code locations and the physical behaviors
that a patch affects. PATCHVERIF infers patch-introduced be-
havioral modifications via static and dynamic analysis. It then
leverages code coverage and physical properties as guidance
to test the patch under different circumstances. Through this
analysis, PATCHVERIF generates the test cases that showcase
how a patch affects the software both in the “cyber space’ and
“physical space”. Finally, PATCHVERIF uses a machine learn-
ing approach to determine if the variations of the considered
physical properties are symptoms of a new bug that has been
introduced by the analyzed patch. If this is true, PATCHVERIF
classifies the patch as faulty.

Different from recent related approaches [30, 32],
PATCHVERIF focuses on physical properties, instead of a
fixed or manually-specified notion of what a “correct behav-
ior” is. For this reason, PATCHVERIF’s approach is generic,

ITest suites, manually-defined by RV developers, consist of test cases to
verify whether patched software correctly works under different scenarios.

both in terms of the type of bugs it can identify and the soft-
ware code bases it can analyze.

We evaluated PATCHVERIF on two popular RV control
software (ArduPilot and PX4) and successfully identified
faulty patches with an average of 97.9% precision, 92.1%
recall, and 94.9% F1-score. Further, PATCHVERIF revealed
115 previously unknown bugs caused by faulty patches. Out
of these 115 bugs, developers acknowledge 103 bugs, and 51
of them have been fixed. In summary, we make the following
contributions:

¢ Behavior-aware Patch Profiling. PATCHVERIF first

identifies, among all possible “inputs” of an RV (user
commands, configuration parameters, and environmen-
tal factors), those that are related to the analyzed patch.
To trigger buggy behaviors caused by faulty patches, it
then mutates the identified inputs, trying to maximize
the variation of the considered physical properties.

* Physical Invariant-aware Patch Verification. We iden-
tify five physical properties of RV software whose ex-
cessive deviations are a symptom of a patch-introduced
bug. Starting from this observation, we leverage machine
learning to optimally determine if an observed variation,
triggered by PATCHVERIF, of these properties is caused
by a faulty patch.

* Evaluation with Real-world RV Software. We apply
PATCHVERIF to two popular RV software packages:
ArduPilot and PX4. PATCHVERIF successfully found
faulty patches with an average F1-score of 94.9%. More-
over, it discovered 115 previously unknown bugs caused
by faulty patches, 103 of which have been acknowledged
by developers, and 51 of them have already been fixed.

PATCHVERIF is publicly available at https://github.

com/purseclab/PatchVerif.

2 Background

Faulty Patches. The faulty patches that we target can happen
due to three main reasons; a patch (i) partially fixes a buggy
behavior, (ii) fixes an incorrect behavior but hurting another
correct behavior, and (iif) adds a new feature but introduces
a bug. The faulty patches can cause two types of bugs: (1)
memory bugs that violate memory access safety stopping pro-
gram execution and (2) logic bugs that make the RV control
software behave incorrectly. While we mainly target iden-
tifying faulty patches that cause logic bugs, PATCHVERIF
naturally triggers and detects the memory bugs (e.g., null
pointer dereferences) as well since it mutates inputs.

Input Space in RVs. To test whether a patched RV program
behaves correctly in various scenarios, we must mutate the
RV’s behaviors and environmental conditions. The reason is
that some buggy behaviors caused by faulty patches only ap-
pear in certain physical environmental situations (e.g., chang-
ing flight mode on drastic terrain variation, as explained
in Section 8.6.2). Mutating three types of inputs results in

https://github.com/purseclab/PatchVerif
https://github.com/purseclab/PatchVerif

Listing 1 A faulty patch [60] removes line 2 and adds line 3.

1 void Mode::navigate_to_waypoint () {
2 - float desired_speed = g2.wp_nav.get_speed();
3+ float desired_speed = g2.wp_nav.get_desired_speed();

[When WP_SPEED is 10]

Waypoint i %
Wz}n};':l T T loms [------- &
(@) 10 m/s l (b) Prae

Figure 1: (a) Normal RV behavior during a pivot turn and (b) abnor-
mal RV behavior after deploying a faulty patch.

[When WP_SPEED is 10]

Waypoint i

different scenarios. (1) User commands are used to directly
operate RVs, e.g., turning left or right. (2) Configuration pa-
rameters configure the control algorithm in the RV software
affecting behaviors and decision making, e.g., setting a thresh-
old to stop the vehicle. (3) Environmental factors (e.g., wind
and terrain) physically affect the vehicle’s behavior in fields.

3 Motivating Example

We provide a faulty patch in ArduPilot that PATCHVERIF
targets to discover. ArduPilot supports a pivot turn for
rovers [46]. When a rover is near a waypoint (i.e., a cor-
ner), the vehicle reduces its speed or stops, turns towards the
next waypoint, and continues the navigation. The rover can
(i) decrease deviation from a planned path and (i) prevent
rollover accidents through the pivot turn, as shown in Fig-
ure |-(a). However, a bug makes the rover increase its speed
regardless of the pilot’s input. To fix this bug, ArduPilot de-
velopers created a patch [60] to make the vehicle maintain a
constant speed. Yet, the patch includes a buggy code because
it enforces the vehicle to maintain a constant ground speed
even near a corner, as shown in Figure [-(b) and Listing 1.
To detail, the desired_speed decides the vehicle’s ground
speed (Line 2), and g2.wp_nav.get_speed () returns a lim-
ited speed so that the vehicle slows down before reaching
a corner. The faulty patch enforces the desired_speed to
have a constant value (g2.wp_nav.get_desired_speed ()
returns the WP_SPEED configuration parameter value) (Line
3). As a result, the vehicle deviates from the planned path
(i.e., increasing position errors) due to the high speed at the
corner if the ground speed set by the WP_SPEED parameter is
high, as shown in Figure 1-(b).

The developers noticed the buggy behavior after around
three months of deploying the faulty patch [47]. This happens
because ArduPilot’s test suite tests the pivot turn with a default
ground speed [7]. Yet, the default speed is insufficient to
make the vehicle deviate from the planned path, as the vehicle
driving at a low speed does not need to slow down at corners.

PATCHVERIF conducts the following steps to detect such
a faulty patch. (1) Identifying the RV’s states that are af-
fected by the patch and the environmental conditions that
impact the patch by analyzing the removed/added code snip-
pets and developer comments in the patch code. For example,

m

2

% 75 —— Unpatch version - 6000 —— Unpatch version
I ~ After deploying c e After deploying
<50 a faulty patch 55000 a faulty patch

S A 2 A
=2 JiPttas R ’__,-—’

E 25 e B 4000 o

> |- N P

O gl ——— p—
o 25 5.0 7.5 10.0 3000 2.5 5.0 7.5 10.0

Ground speed (m/s) Ground speed (m/s)

(a) Deviation from a planned path. (b) Battery consumption.

Figure 2: Deviated RV behaviors after deploying the faulty patch.

the patch code in Listing | changes the RV’s speed, and out-
door wind affects the patch (i.e., speed). (2) Determining
the inputs (i.e., configuration parameters, user commands,
environmental factors) that affect the identified RV states
and environmental conditions. For example, WP_SPEED con-
figuration parameter and WIND_SPEED environmental factor
directly change the RV’s speed. (3) Finding inputs triggering
the patch code snippet. For instance, to trigger the patch code
in Listing |, PATCHVERIF adds a waypoint and changes the
vehicle’s flight mode to AUTO. (4) Mutating the identified in-
puts to generate test cases which are highly likely to make the
patched software deviate from normal behaviors if the patch
is faulty. For instance, PATCHVERIF assigns a larger value to
WP_SPEED to make the vehicle deviate from the planned path
due to the increasing speed at the corner, as shown in Figure 2.
(5) Concluding that a patch is faulty if the patched program
violates one of the five physical invariant properties in RV
control programs. For example, the faulty patch in Listing |
makes the patched RV control program violate a physical
invariant property that states: “the patch must not increase
position errors”, as shown in Figure 2a.

4 Threat Model

We consider faulty patches, containing logic bugs, created by
developers or adversaries. Developers may unintentionally
produce faulty patches for various reasons, such as unexpected
corner cases (e.g., drastic terrain variation and strong wind),
misunderstanding of design, and insufficient documentation.
Adversaries may also create and inject seemingly innocent
patches, which are actually faulty, into open-source software.
Such faulty patch injection attacks have already been investi-
gated in popular software, such as the Linux kernel [11,38].

Logic bugs in RV control software have recently received
significant attention from security researchers due to the large
attack surface in RVs and significant physical damage caused
by the logic bugs [12,30-32]. Indeed, our threat model is in
line with prior works on RV security such as PGFuzz [30],
RVFuzzer [32], CPI [12], and PGPatch [31].

While, in theory, an attacker could simply spoof self-
destructive commands (e.g., stopping actuators or assigning
extreme values to inputs), in practice, these attacks are easy
to notice through either run-time or offline flight logs [6, 50].
In contrast, exploiting buggy behaviors introduced by faulty
patches enables conducting more stealthy attacks that do not
necessarily require sending spoofed commands (as we will

Physical ‘ Prior works ‘ Test suites created | Our observation

invariants on RVs by developers [7,52] on patches
- v
Timeliness 28] v v
Precise v
navigation [13,30,32,55] v v
- v
Stability [13.30,32.55] v v
State consistency X v v
Efficiency X X v

Table 1: Origin of the five physical invariants leveraged by
PATCHVERIF.

evaluate later in Section 9).
5 Design Challenges

Developing an automatic patch verification framework, which
handles prior works’ limitations, raises unique challenges.

C1: Generality. The first challenge concerns determining
physical invariant properties that can always be applied to
all patches. To detect faulty patches without users’ manual
effort, PATCHVERIF leverages five physical invariants as a
bug oracle. PATCHVERIF expects that a correct patch must
not (1) increase mission completion time (Timeliness), (2)
increase battery consumption (Efficiency), (3) increase
position errors (Precise navigation), (4) increase insta-
bility (Stability), and (5) change unexpected RV states
(State consistency).

These invariants are inspired by (i) prior works on RVs [13,
28,30, 32, 55], (ii) test suites created by RV developers [7,
52], and (iii) our observation of correct/faulty patches in RV
control software, as shown in Table 1.

Particularly, many prior works on RVs leverage
Timeliness, Precise navigation, and/or Stability to
detect either buggy behaviors or physical attacks (e.g., GPS
spoofing and acoustic sensor attacks) [13, 28, 30, 32, 55].
For instance, PGFuzz and RVFuzzer [30, 32] use
Precise navigation and Stability to detect logic
bugs in RV control software because buggy behaviors caused
by the logic bugs increase position errors and/or instability.

Test suites [7, 52] created by RV developers lever-
age Timeliness, Precise navigation, Stability, and
State consistency to decide whether the patched RV soft-
ware passes the test cases. We further include battery con-
sumption as a new physical invariant (Efficiency) for the
following reasons. (1) Many patches affect battery efficiency.
(2) It helps PATCHVERIF more clearly distinguish between
correct and faulty patches. In Appendix A, we present experi-
mental results to justify the selection of these invariants.

However, during our analysis of patches, we notice that
some correct patches naturally break the physical invariant
properties. For example, a patch makes an RV wait for a spe-
cific time to proceed with the following mission item [15]. In
such a case, executing the delay command increases the time
required to finish a mission and battery consumption. How-
ever, the patch does not include any buggy code. To address
this issue, PATCHVERIF first identifies the patch type; it then
selectively applies five properties to detect bugs (Detailed

o

Listing 2 A patch implementing terrain-following for the
CIRCLE flight mode. This patch contains buggy code.

+void AC_Circle::set_center (const Locations center) {

if (center.get_alt_frame() == ABOVE_TERRAIN) ({

+ if (center.get_vector_xy_from origin(center_xy)) { ... }
+ else { ... } }

+ else {

+ if (!center.get_vector_from origin(circle_center)) { ... }

in Section 6.5.2).

C2: Natural Deviations. The second challenge is that the
RVs’ operating environment may naturally cause deviations
from a planned mission similar to the symptoms of a faulty
patch. An RV shows slightly different mission completion
time, battery consumption, and instability due to environmen-
tal changes (e.g., wind), though it uses the same software
version. To address this, PATCHVERIF leverages a supervised
classification algorithm to distinguish normal behaviors and
symptoms of faulty patches (Detailed in Section 6.5.2).

C3: Patch Coverage. The third challenge concerns how
to verify all patch-introduced behavioral modifications. To
address this issue, PATCHVERIF uses a white-box fuzzing
method to extract inputs that execute the patch code. A test
case created by PATCHVERIF always includes the extracted
inputs. Further, PATCHVERIF infers which physical states of
the RV are affected by the patch and which environmental
conditions affect the patch. It then includes inputs, which
change the RV’s physical states and environmental conditions
that might affect the patch, to the test case. Yet, a patch may
contain an unreachable conditional branch triggered by a spe-
cific environment and context-independent inputs, e.g., load-
ing damaged terrain data to an RV. To execute and test the
unreachable branch, PATCHVERIF leverages symbolic execu-
tion (Detailed in Section 6.3).

C4: Triggering Bugs. The last challenge is how to generate
test cases that are highly likely to trigger buggy codes created
by the faulty patches. Randomly executing inputs, which are
related to a patch, is unlikely to trigger the bugs. To handle this
issue, PATCHVERIF mutates inputs based on code coverage
and distance metrics to make the patched software violate one
of the five physical invariant properties if the patch includes
buggy code (Detailed in Section 6.5.3).

6 PATCHVERIF

Figure 3 shows the architecture of PATCHVERIF, which is
mainly composed of three parts. PATCHVERIF takes a patch
code snippet in C/C++ as input (@), and then (1) identifies
inputs related to the patch, (2) analyzes patch type, and (3)
mutates the identified inputs to create a test case that triggers
a buggy behavior if the patch contains a flaw.

6.1 Analyzing Physical Impact of a Patch
PATCHVERIF analyzes an RV’s states that are affected by the

patch and environmental conditions that affect the patch (@
in Figure 3). We use the RV’s states and environmental con-

Infer inputs related to the patch

Inputs related to
the physical impact

A Mutation engine

,/[EARun test cases on

h \
| H
1 H
[2] E 1 / simulators '
Phye ! HInput, Input, i e 1
L R Ty e 1o = |
: /4 i i i Mutate | Faulty
' ' A Get initial test | 2) test cases | patch pool
Analvze th ' v : cases from : = = i
nalyze the i Inputs triggering | symbolic execution | Unpatched Patched '
physical impact ‘\\ the patch 4 ! version version !
Source code of the patch i Phytate m , *
1 » !
\

of a patch

Analyze patch type

&

i e
\ I Bug oracle /N L
Patchype \\ 9 ‘ Vlollvatlnlg on'e of
""""""""""" ive laws!

Figure 3: Overview of PATCHVERIF’s workflow.

get_alt_frame is related to the altitude state

State'/l Synonym
get_alt_frame Env conditions
location——— location position, pos, ...
ii?cc:)l\;ezfr:g:’n altitude alt, height, elevation
flight mode circle, land, loiter, ...
terrain

Alist of terms
extracted from a patch

Synonym table

Figure 4: Illustration of the name matching-based static analysis.

ditions for choosing inputs used to construct test cases. We
leverage a name-matching method because variable/function
names in RV software are decided by strict coding conven-
tions [2]. Unlike general software, the names of variables/-
functions must match with the RV’s physical states and/or
environmental conditions. Particularly, PATCHVERIF con-
ducts the following steps: (1) extracts the names of variables
and functions in the patch, which includes removed/added
code snippets and developer comments, (2) filters out all but
nouns from the variable/function names and comments, and
(3) matches the extracted terms with RV physical states and
environmental conditions in the synonym table (Figure 4).

We adapt a list of the RV’s states and environmental con-
ditions from PGFuzz [30]. For example, when PATCHVERIF
analyzes the physical impact of the patch in Listing 2,
PATCHVERIF first extracts location, get_alt_frame,
ABOVE_TERRAIN, and circle_center, etc. It then matches
these terms to the list of the RV’s states and environmental
conditions. PATCHVERIF concludes that the patch in List-
ing 2 changes the RV’s location, altitude, and CIRCLE flight
mode states, and terrain as an environmental condition that
affects the patch. We refer to the matched RV states and envi-
ronmental conditions as Phyget.

The name-matching method fails to match a patch with cor-
rect physical states if an RV software does not follow the cod-
ing conventions [2]. To tackle this, PATCHVERIF allows users
to use a taint analysis instead of the name-matching method.
The taint analysis tracks all data propagation from the patch
code snippet (Detailed in Appendix C). Yet, PATCHVERIF
integrates the name-matching method as the default option
because (i) our target RV software strictly follows the coding

conventions, and (if) the name-matching method shows better
performance than the taint analysis (Section 9).

6.2 Inferring Inputs Related to the Patch

PATCHVERIF infers specific inputs that (i) change an RV’s
states impacted by the patch and environmental conditions
that affect the patch, and (if) execute a patch code snippet.

Inputs Related to the Physical Impact. PATCHVERIF ob-
tains a list of the RV’s states and environmental conditions
related to a patch via static analysis (Section 6.1), e.g., the
location, altitude, and CIRCLE flight mode as the RV’s states
and ferrain as the environmental condition. We extend PG-
Fuzz’s profiling engine [30] to support all RV states. It allows
us to map inputs to the RV’s states and environmental condi-
tions. PATCHVERIF stores the mapped inputs into Inputges.

Inputs Triggering the Patch. PATCHVERIF identifies a set
of inputs that trigger a patch code snippet, and its mutation en-
gine later uses the identified inputs to create test cases. To find
the inputs triggering the patch code, PATCHVERIF conducts
the following steps: (1) It first builds RV control software with
the code coverage analysis tools of Geov [22] and LCOV [36].
(2) It then randomly selects and executes an input on the simu-
lator to find whether an input triggers a function that contains
the patch. For instance, PATCHVERIF discovers that executing
MAV_CMD_DO_SET_MODE user command (changing the flight
mode) allows us to execute AC_Circle: :set_center () in
the faulty patch in Listing 2. (3) Lastly, PATCHVERIF stores
the input into Inputse, if the input executes the patch code.
We will detail the performance of finding patch-triggering
inputs in Section 9.

6.3 Creating Test Cases

PATCHVERIF targets two goals to address patch coverage
(C3 in Section 5): (i) identifying inputs triggering condi-
tional branches (i.e., “if statements”) in the patch, and (if)
generating initial test cases based on the identified inputs
(@ in Figure 3). PATCHVERIF obtains an input, which trig-
gers a function containing the patch, e.g., from Section 6.2,
changing the flight mode allows PATCHVERIF to execute a
function with the faulty patch in Listing 2. Yet, to test all
behaviors affected by the patch, PATCHVERIF targets to test

all conditional branches in the patch code.

Triggering Reachable Branches. To find inputs triggering
the “if statements”, PATCHVERIF randomly selects an input
that changes one of Phyg. and executes the selected input
on a simulator. If an input triggers a conditional branch in
the patch, PATCHVERIF stores the input to Inputgey. For
instance, PATCHVERIF triggers the conditional branch at line
2 in Listing 2 by executing MAV_CMD_NAV_LOITER_TURNS
user command with the terrain altitude frame option.

Triggering Unreachable Branches using Symbolic Exe-
cution. PATCHVERIF might find conditional branches in the
patch that cannot be triggered even after executing inputs for
a user-defined time. We refer to those “if statements” as if,.

To address this issue, PATCHVERIF (1) extracts terms
(i.e., variables/function calls) from the guarding conditions
of every if,, (2) finds the definition site for each term, and
(3) leverages symbolic execution (@ in Figure 3) to deter-
mine assignments of these terms that allow reaching the un-
reachable location. In particular, these steps are automated
by replacing the terms with symbolic variables using KLEE’s
klee_make_symbolic API calls.

We note that PATCHVERIF runs the symbolic execution
only if the patch includes an if,,, and it does not run sym-
bolic execution on whole software. Instead, PATCHVERIF
first extracts the function that includes the patch code snippet.
It then runs the symbolic execution engine KLEE [33] to
determine concrete variable assignments (for local variables,
global variables, and called functions) to trigger if .

To insert the found concrete assignments into the
patch, PATCHVERIF assigns constants obtained from the
symbolic execution’s test cases into local variables,
e.g., var = 20; ify,(var > 10), and it replaces function
calls and global variables with constants, e.g., replacing
ifyn(func()) with if,,(1). These constants are obtained
from the test cases created by the symbolic execution.

We note that the triggered unreachable branch may
prevent triggering the other conditional branches in
the patch code snippet. In the following patch code:
ifyn(1){return true;} if(C){...}, the concrete assign-
ment (i.e., 1) triggers the unreachable branch but prevents
PATCHVERIF from testing another branch (i.e., if(C){...})
because the triggered branch terminates its function. To test
the rest of the code lines in the patch, PATCHVERIF tests the
correctness of the original patch created by developers and
the patch modified by PATCHVERIF. Triggering unreachable
branches enables us to increase code coverage and discover
six additional bugs introduced by faulty patches in ArduPilot
and PX4.

We restrict the exploration time to a maximum of 30 min-
utes (i.e., the -max-time KLEE option is 30), and we set the
-max-depth KLEE option to 5 to limit the maximum number
of branches explored in unbounded paths.

[1o Iy = {P1. P Py, P P} |

o Patch is related to
ground speed? y Yes

11= {P3, Py, Ps}

P,: Timeliness

P,: Efficiency » -

P;: Precise ® atf:h is related to an Yes
navigation environmental factor2 ¥

P,: Stability I, = {Ps}

PgState 0000 N9 o=

consistency G) Patch is adding

a new feature?

v
I = {P3, Ps}
Invariant = {l; N 1, N I3} ==

Figure 5: Criteria to selectively apply the five physical invariants.

6.4 Analyzing Patch Type

PATCHVERIF classifies the patch into one of four types
(® in Figure 3): (1) changing the RV’s ground speed
(Patchgpeea), (2) related to an environmental factor, e.g., wind
(Patcheyy), (3) adding a new feature (Patchye,), and (4)
other patch types (Patchytner). PATCHVERIF’S bug oracle
leverages the patch type to selectively apply the five proper-
ties for detecting bugs’ symptoms. We note that a patch can
be classified into multiple patch types.

To determine whether the patch changes the RV’s speed,
PATCHVERIF leverages Phyg. from the identified physical
impact of the patch (Section 6.1). For instance, it discovers
that the RV’s speed state is related to the faulty patch in List-
ing | through static analysis. To decide whether an environ-
mental factor is related to a patch, we manually construct a
list of environmental factors from RV documentation [4,48].
PATCHVERIF concludes that the patch affects an environmen-
tal factor if the patch code includes one of the terms in the
list of environmental factors. Third, PATCHVERIF obtains an
input to trigger the patch code from Inputgse,. PATCHVERIF
then executes the obtained input on an unpatched and patched
version on a simulator. We assume the patch implements a
new feature if two conditions are satisfied: (1) there is no
difference in the RV’s states before and after executing those
inputs on the unpatched version, and (2) the RV’s physical
states are changed after executing the inputs on the patched
version. Lastly, PATCHVERIF concludes that a patch is in-
cluded in Patchgpe, if the patch is not included in the above
three categories.

6.5 Mutation Engine

Mutation Engine Overview. Algorithm | details the steps
of PATCHVERIF’s mutation engine (@ in Figure 3). The
algorithm repeatedly conducts the following. (1) It obtains
inputs that trigger a patch code snippet (Line 14). (2) It ran-
domly selects inputs from Inputse, (Line 15). (3) It picks
values based on the guidance (Line 16), e.g., assigning a high
value to WP_SPEED enlarges differences in physical invariant
properties between the unpatched and the patched versions
in Figure 1. Thus, it keeps increasing WP_SPEED’s value. (4)
It returns a test case consisting of the selected inputs and
values (Lines 17 and 18). (5) It next initializes the simulator

Algorithm 1 PATCHVERIF’S mutation engine

Input: A patch P, physical invariants PI, a patched RV RVypey, an unpatched RV RVg14,
a time limit 7, a simulator SIM, RV’s states related to the patch Phyget, inputs related to
the patch Inputsget, patch type Piype
Output: Faulty patch FP, a test case triggering buggy behaviors Test case
1: function PATCHWARNING(P, T) > Main
while C > 0 or time < T or FP =0 do
TeStcase < MUTATE(Inputgee, P, DIS)
SIM. o~ ¢ SIM.initialize()
SIMcyq 2> ¢ SIM.env(Physet)
PI,q < SIM;.execute(Testcase, RVo1q)
PI,ey < SIMy.execute(Testcase, RVney)
DIS, FP ¢~ ORACLE(PI,14, PIneu, Peype)
: C < UPDATE_COVERAGE(RV,14, RVpey)
10: end while
11: return (FP,Test agse)
12: end function

> Get mutated inputs
> Initialize simulators
> Change environment
> Collect RV’s states
> Collect RV’s states
> Calculate distances
> Update coverage

LRI NRE LD

13: function MUTATE(P, Inputset, DIS, C) > Mutating inputs

14: input, < MANDATE(Inputset, P) > Inputs triggering P’s code
15: I + RANDOM(Inputset) > Pick random inputs from Inputget
16: I < GUIDANCE(I, DIS, C) > Pick values based on DIS and C
17: Testcase = input, UI

18: return Testcase

19: end function

and randomly changes environmental conditions (e.g., terrain)
from Phy.. (Lines 4 and 5). (6) It executes the test case on
both unpatched and patched versions on separate simulators,
and records physical invariant properties (e.g., battery con-
sumption) from both simulators (Lines 6 and 7). (7) It gets
differences between the unpatched version’s physical invari-
ant properties and patched versions’ ones. PATCHVERIF’s
bug oracle then decides whether such differences are symp-
toms of a faulty patch (Line 8). (8) It obtains updated code
coverage according to the executed test case (Line 9), which
is used to terminate the algorithm. The algorithm is ended
when one of the following two cases occurs: (i) the bug oracle
classifies the patch as a faulty patch, and (i) it cannot detect
any progress in code coverage for a user-defined time.

6.5.1 Running Test Cases

To compare the behavioral differences between unpatched
and patched code versions, we choose the released version
closest to the patch as the unpatched RV software. The reason
is that RV developers disclose the released version only after
numerous iterations of flight tests in fields. If a patch’s type is
Patch,ey, we compare the patched version with the version
just before applying the patch.

6.5.2 Bug Oracle

Selecting Invariants. PATCHVERIF determines the invariants
for detecting faulty patches by traversing the flow diagram
in Figure 5 based on the inferred patch type in Section 6.4.
This addresses the design challenge CI: Generality (Sec-
tion 5) since all five invariants do not apply to all patch types.
First, if a patch is related to speed, we exclude the “mission
time” (P) and “battery consumption” (P5) because the speed
changed by the patch naturally changes P; and P, regardless
of the patch’s correctness. Second, if the patch affects an envi-
ronmental factor, PATCHVERIF only leverages the “expected
vehicle state change” (Ps) to detect a bug’s symptoms because
the environment changed by the patch affects all properties

(P1-P4). However, the environmental factors do not change
unexpected vehicle states (e.g., sensor failure or crashing on
the ground) if the patch is correct. Lastly, we exclude P,, P,,
and “stability” (P,) if the patch adds a new feature into the
RV software. The reason is that the newly supported feature
could directly change these invariants.

Feature Engineering. We consider the RV’s states related to
sensors, flight mode, pre-arm check, and flight stage as fea-
tures of State consistency (Ps) invariant property. This is
because the deviation in such RV’s states leads to dangerous
flight behaviors, e.g., sensor failure or crashing on the ground.
We leverage the following features as the four physical in-
variant properties: (1) subtracting a mission start time from
mission end time as a feature of Timeliness (P,), (2) current
drawn from the battery in amperage x 100 as a feature of
Efficiency (P,), (3) subtracting actual position (in Carte-
sian coordinate system) from target position as a feature of
Precise navigation (P3), (4) adding instability, which is
calculated by subtracting actual attitude (i.e., roll, pitch, and
yaw angles) from target attitude, and vibration as a feature of
Stability (P4). These features are detailed in Section 7.

Bug oracle. To handle C2: Natural Deviations (Section 5), we
leverage a supervised classification algorithm that takes four
features (P1-P,) labeled with “correct” and “faulty” classes.
We construct the dataset with the features extracted from
known faulty patches, and correct patches. After we learn a
model from the dataset, we use the model to evaluate features
of unknown patches to detect faulty patches.

6.5.3 Mutating Test Cases

Test Case Template. A test case is not feasible if it consists
of a purely random order of inputs (e.g., increasing altitude
before take-off). To resolve this, we use a mission plan ob-
tained from ArduPilot’s test suites [7] as a template to mutate
test cases. PATCHVERIF mutates inputs on top of the mission.

Test Case Mutation. To address C4: Triggering Bugs,
PATCHVERIF leverages the following distance metric:
DIS=Y;_,|Fi —F}|, where F; and F; represent phys-
ical invariants in patched and unpatched versions, re-
spectively. PATCHVERIF aims to maximize the distance,
i.e., max(Y?_, |Fs —F.|). To achieve this, PATCHVERIF in-
telligently assigns values to inputs and executes them on a
simulator. PATCHVERIF’s mutation method guides the in-
put generation based on whether executing an input causes
increasing or decreasing the distance (DIS) values. For in-
stance, if PATCHVERIF assigns a value higher than the de-
fault value to an input, and the executed input increases DIS,
PATCHVERIF keeps increasing this input’s value. Further, if
an input, which has a value outside the valid range, makes
the RV fail to complete a test case on both the patched and
the unpatched versions, PATCHVERIF considers such an input
assignment as self-sabotaging and enforces the input to have a
value within the valid range. To obtain valid ranges of inputs,
we adopt the PGFuzz’s Pre-Processing component [30].

7 Implementation

Analyzing a Patch. To analyze (i) which RV’s states are
affected by patches and (if) which environmental conditions
might affect the patches, we write 379 lines of code (LoC) in
Python. We adopt a list of the RV’s states and environmental
conditions from PGFuzz [30]. We modify/add 132 LoC from
PGFuzz’s profiling engine to obtain inputs that change the
inferred RV’s states and environmental conditions. We build
ArduPilot and PX4 with Gecov v7.5 [22] and LCOV v1.13 [36]
to support code coverage. To infer inputs that trigger patch
code, we modify/add 681 LoC in test suites of ArduPilot v4.1
and PX4 v1.13. To make patch code snippets run with KLEE
v2.2 [33], we write 406 LoC in Python.

Analyzing Patch Type. We write 853 LoC using the Py-
mavlink v2.4.16 library [53] that makes PATCHVERIF com-
municate with simulated RVs through MAVLink [42]. To
run the patch type analyzer for PX4, we additionally mod-
ify/add 109 LoC of the patch type analyzer for ArduPilot
because ArduPilot and PX4 differently implement MAVLink
protocol. To simulate RVs, we select Software in the Loop
(SITL) [59] for ArduPilot and Gazebo v11 [21] for PX4. Fur-
ther, we manually construct a list of environmental factors
from documentation of ArduPilot and PX4 [4,48].

Feature Engineering. ArduPilot and PX4 store flight data to
files (i.e., vehicle’s black box) [6,50]. PATCHVERIF parses
the flight data to obtain features of the five invariant prop-
erties: Timeliness, Efficiency, Precise navigation,
Stability, and State consistency as shown in Table 2.
Particularly, PX4 does not calculate estimated battery con-
sumption on a simulator, unlike ArduPilot. To infer the battery
consumption on PX4, we leverage pulse width modulation
(PWM) signals sent to actuators because the battery consump-
tion is mainly proportional to the strength of the PWM.

Mutation Engine. We leverage support-vector machines
(SVMs) [14] as PATCHVERIF’s bug oracle instead of other
classification algorithms such as decision trees [62] and deep
neural networks (DNNs) [23] for the following reasons. (1)
Decision trees are well known to show the best inference
accuracy for categorical data. However, our four physical in-
variants are numerical (continuous) variables, and one is a
discrete variable. (2) DNNs can achieve high performance,
but they require a large dataset (e.g., tens of thousands) for
training. Yet, we could not find such a large set of faulty
patches from ArduPilot and PX4.

To evaluate these hypotheses, we performed experiments
(Detailed in Appendix B.1 and Appendix B.2) in which we
used decision trees and DNNs in place of SVMs. SVMs yield
a 94.9% F-1 score, and the F1-score of decision trees and
DNNs was 93.1% and 89.4%, respectively.

To build our bug oracle, we train a separate SVM classifier
per RV control software because we extract features from
different RV states of each RV program. We write 397 LoC in
Python for training and testing patches through SVM classi-

fiers. We note that although we leverage SVMs, PATCHVERIF
allows users to easily change the bug oracle’s classifier (De-
tailed in Appendix B.3). To mutate and run test cases, we
write 1,525 and 1,630 LoC in Python on Pymavlink v2.4.16.
for ArduPilot and PX4, respectively.

8 Evaluation

We evaluated PATCHVERIF on the two most popular RV con-
trol software: ArduPilot and PX4.

8.1 Evaluation Setup

To create a ground truth of correct and faulty patches, we used
the following methods.

Collecting Faulty Patches. Reading commit messages from
the Git history of both ArduPilot and PX4, we found that
developers often refer to specific patches, mentioning they are
faulty. Thus, we selected all patches the developers mention
as faulty in the Git history. This process gave us an initial
set (Patchy) of 345 patches. Among these faulty patches, we
focused on the ones satisfying the following criteria:

1. The bug that they introduce can be reproduced on a simu-
lator. To reproduce bugs, we exploited commit messages
from the Git history.

2. They have been reported within the last three years. We
exclude patches that are too old, since their related bugs
become increasingly harder to reproduce in a simulator,
due to modifications in the simulator.

Out of all the patches satisfying these two criteria, we cre-
ated a set (TrainSety) of 80 faulty patches (40 for ArduPilot
and 40 for PX4).

Selecting Correct Patches. From the Git repositories of
ArduPilot and PX4, we created a set of correct patches, se-
lecting patches satisfying the following criteria:

1. The patched code can be triggered on a simulator.

2. The patch is older than one year. In fact, we realized that
very recent patches are often “temporary” and incom-
plete. For this reason, their functionality is likely to be
modified by another subsequent patch.

3. The patch was analyzed by two of the authors of this
paper, who agreed on its correctness.

Among the patches that satisfied these criteria, we ran-

domly selected a set of 80 correct patches (TrainSetc), con-
taining 40 patches for ArduPilot and 40 for PX4.

Patches for Evaluating PATCHVERIF’s Bug-discovery Ca-
pabilities. We separately created another dataset containing
patches for which we did not know whether they are faulty
or correct. We used this dataset to evaluate PATCHVERIF’S
ability to discover new, previously unknown bugs caused by
faulty patches. To create this dataset, we randomly selected
1,000 patches (500 for ArduPilot and 500 for PX4), satisfying
the following criteria:

1. The patch does not belong to the TrainSety or

TrainSet, set.
2. The patched code can be triggered on a simulator.

Invariant property ‘ Description ArduPilot ‘ PX4
Timeliness Subtracting a mission start time from mission end time Landing time - Take off time
Efficiency Current drawn from the battery Curr Output 0 - 6
ITPX - PXI IX setpoint - X estimated|
Precise navigation | Subtracting actual position from target position + ITPY - PYI + 1Y setpoint - Y estimated|
+ITPZ - PZI + |Z setpoint - Z estimated|
IDesRoll - Rolll IRoll rate integral - Roll rate estimated|

Subtracting actual attitude from target attitude
Stability & g

+ IDesPitch - Pitchl
+ |DesYaw - Yawl

+ [Pitch rate integral - Pitch rate estimated|
+ [Yaw rate integral - Yaw rate estimated|

primary accelerometer’s output in m/s/s

Vibration calculated from standard deviation of the

Vibe X + Vibe Y + Vibe Z Vibration Metrics

State consistency

pre-arm check, and flight stage

Critical vehicle states related to sensors, flight mode,

gyroscope, accelerometer, magnetometer, barometer, GPS, parachute,
pre-arm check, flight mode, flight stage

Table 2: Summary of how PATCHVERIF obtains the invariant property features from flight logs on ArduPilot and PX4.

3. The patch has been committed in the last two years.

We refer to these patches as TestSet. Section 9 provides de-
tails on how many patches we cannot trigger on the simulator.

8.2 Training Results

We train SVMs in PATCHVERIF’s bug oracle separately for
ArduPilot and PX4 through TrainSetr (i.e., faulty patches)
and TrainSet¢ (i.e., correct patches). To train the SVMs,
we need to run a mission and then extract the RV’s states as
features (Section 6.5.2). We leverage an identical mission to
obtain features by running an RV control program that in-
cludes a patch from TrainSetc. On the contrary, each faulty
patch from TrainSetr requires us to execute a different set
of missions (i.e., inputs) to trigger it. We previously obtained
such inputs, when generating TrainSetr.

We obtain optimal parameters for the SVMs by running
5-fold cross-validation. To evaluate the trained SVM models,
we shuffle the order of the training data (i.e., TrainSetr
and TrainSet¢) and run 5-fold cross-validation. We re-
peat the shuffling and cross-validation 1,000 times to obtain
the average inference accuracy. As a result, PATCHVERIF
achieves 97.3% precision, 91.2% recall, and 94.1% F1-score
in ArduPilot. PATCHVERIF shows 98.5% precision, 93% re-
call, and 95.7% F1-score in PX4.

8.3 Previously Unknown Bugs and Responsi-
ble Disclosure

We used PATCHVERIF to analyze the 1,000 patches in the
TestSet. Specifically, we tested each patch in TestSet until
PATCHVERIF could not detect any increment in source code
coverage, for a maximum mutation time of 30 minutes per
patch. As a result, PATCHVERIF classified 117 patches as
faulty patches.

We reported these 117 faulty patches to the developers
of ArduPilot and PX4. From the developers’ responses, we
considered 2 of them as false positives (while PATCHVERIF
classifies them as faulty, they are actually correct patches).
We will detail these false positives in Section 8.5. Among the
other 115 patches, as shown in Table 3, 103 of them have been
acknowledged by developers as faulty, and we are currently
awaiting an answer for the other 12. Among the 103 acknowl-
edged faulty patches, the bugs introduced by 51 of them have

been currently fixed, and the developers are fixing additional
9 bugs at the time of writing. For the other 43 patches, 38 are
memory bugs, and 5 cases are simulator bugs. The developers
did not consider the other 43 bugs as urgent issues, though
they admitted their presence.

We notice that, in theory, some of the 115 identified faulty
patches could have already been fixed by a subsequent patch.
However, we have never encountered such a situation.

Regarding false negatives, two authors of this paper manu-
ally analyzed each patch in the TestSet and found 6 missed
faulty patches, which we consider as false negatives (more
details are provided in Section 8.5).

We believe that our bug reporting did not require unreason-
able effort by developers for the following reasons. (1) Before
reporting every 117 faulty patches, we manually checked
them and manually wrote an appropriate detailed description
in the corresponding bug report, e.g., bug-triggering inputs,
flight log data, and physical effects of buggy behaviors. (2)
103 out of 117 reported faulty patches have been currently
acknowledged by developers. (3) The faulty patches were not
reported all at once, but over several months.

8.4 Analysis of the Discovered Bugs

Bug Types. We divide the found faulty patches into three
types. (1) “Incomplete fixes” are patches that fix a bug only
partially, hence a buggy behavior can still occur. (2) “Incor-
rect bug fixes” are patches that fix a bug but break an existing
functionality. (3) “Incorrect new feature implementations” are
patches that implement a new feature but break an existing
functionality. PATCHVERIF discovers 3 (2.6%) “Incomplete
fixes”, 62 (53.9%) “Incorrect bug fixes”, and 50 (43.5%) “In-
correct new feature implementations” patches (Table 3).
Further, we classify the 115 patches according to whether
they cause logic bugs or memory bugs. We found that 60
(52.2%) cases are memory bugs, and 55 (47.8%) cases are
logic bugs. Developers have acknowledged 59 (98.3%) of
the memory bugs and 44 (80%) of the logic bugs. Out of the
admitted bugs, 13 (23.2%) of the memory bugs have been
fixed, and 38 (90.5%) of the logic bugs have been patched.

Physical Effects of Bugs. As shown in the Table 3 “Physical
effects of buggy codes” column, we group the bugs’ impacts
into three categories. (1) “Unstable attitude/position control”

Bug type Physical effects of buggy codes
RV control #of #of #of # of bugs I lete fi I ect bue fi Incorrect new feature Unstable attitude/ Fail to finish Crash into
software bugs acks fixed bugs being fixed ncompiete fixes neorrect bug fixes implementations position control a mission ground
[ArduPilot | 100 [90] 45 I 3 I 3 I 48 I 49 I 29 I 2 I 69 |
| PX4 [15 | 13| 6 | 6 | 0 | 14 | I | 7 | 0 | 8 |
[Total [115] 103] 51 I 9 I 3 I 62 I 50 I 36 I 2 I 77 |

Table 3: Summary of found 115 previously unknown bugs introduced by faulty patches in ArduPilot and PX4.

represents the vehicle losing its attitude or position control.
(2) “Fail to finish a mission” means that the vehicle is stuck
in the same location and fails to reach a final waypoint. (3)
“Crash into ground” happens when the vehicle loses attitude
control and then it goes into free fall. Out of the 115 bugs,
36 bugs (31.3%) cause “Unstable attitude/position control”,
2 bugs (1.7%) lead to “Fail to finish a mission”, and 77 bugs
(67%) result in “Crash into ground”.

Reproducing Bugs on a Real Drone. The faulty patches
were found using a simulator. To confirm if the bugs they
cause can be reproduced on a real vehicle, we manually in-
spected the found bugs’ code location. In case we found the
buggy code included in the firmware, we assumed that the bug
can be reproduced on the vehicle. To perform this experiment,
we used a Pixhawk 4 flight controller, and we confirmed that
74 out of the 115 bugs can be reproduced on a real vehicle.
Other 41 bugs only occur if a vehicle manufacturer sets some
configuration parameters in specific ways. Yet, they are not
reproducible in the vehicle we used for testing, since it uses a
different set of parameters.

8.5 False Negatives and False Positives

False Negatives. The false negatives represent patches that,
while PATCHVERIF classifies them as correct, they are actu-
ally faulty patches. PATCHVERIF produced 6 false negatives
for the following reasons. First, some patches, while being
faulty, do not impact the RV’s physical behaviors, but they
impact other aspects, such as how messages are shown on
the RV’s display. Second, PATCHVERIF fails to detect bugs
related to RV software’s supplementary features, such as log-
ging the flight history to an SD card. PATCHVERIF focuses
only on features that impact an RV’s navigation, hence it can-
not detect such cases. To address both cases, a user may add
other features to the invariants considered by PATCHVERIF.

False Positives. False positives are cases in which
PATCHVERIF classifies a patch as faulty, while, in reality,
it is correct. PATCHVERIF produced 2 false positives when
analyzing the TestSet dataset.

In one of them, the patch makes a sailboat fail to stay in a
constant position, when in LOITER mode. On the contrary, the
sailboat remains in a fixed location when using the unpatched
version of the software. We reported this bug to develop-
ers. They answered that the sailboat inevitably fails to stay
in a constant position because it does not have a motor to
overcome the water current. Yet, the simulator incorrectly
simulated the sailboat.

In the other false positive case, PATCHVERIF detected a
large position error in the patched version, when the drone

Safety
area

Safety
margin

|| Geo-fence

|| Margin

Safe area calculated
from the geo-fence

— Planned path
- Actual path

(a) A polygon geo-fence. (b) Two circular geo-fences.

Figure 6: When circular geo-fences are set, in subfigure (b), the safe
area (red color) and safety margin area (orange color) overlap each
other. This overlapping causes the RV’s incorrect behavior.

Listing 3 A faulty patch [44] creates safe areas from fences.

1+// Create é
2 +bool AP_OADijkstra::create_polygon_fence_visgraph() {
3+ if (!expand_to(num_circles * num_points_per_circle)) {

4+ // Raise an out of

safe-zone near from circular geo-fences

memory error ;

follows a mission containing a mix of spline and straight
waypoints. Yet, this behavioral difference was intended. In
fact, ArduPilot developers decided to patch the software to
change the RV behavior in the case of missions consisting of
mixed types of waypoints. This patch results, by design, in
the RV following spline waypoints less accurately.

8.6 Case Studies

We now present two previously unknown faulty patches found
by PATCHVERIF.

8.6.1 Case Study 1: Object Avoidance Failure

ArduPilot leverages two different object avoidance algo-
rithms at the same time: Dijkstra’s path planning [16] and
“simple avoidance” algorithm [58]. These algorithms are used
both to avoid obstacles and to avoid “geo-fences”z, as shown
in Figure 6a.

To find a path to reach a destination without any collision,
the Dijkstra’s path planning algorithm [16] creates safe areas
around any object or geo-fenced location. In doing so, it first
considers a safety margin around the to-be-avoided area, then,
outside this safe margin, it determines a safety area. Later,
in computing the shortest path, the Dijkstra’s path planning
algorithm takes care of generating a path that remains inside
the safe areas, while avoiding any obstacle (or geo-fenced
area) and any corresponding safety-margin area.

Yet, Dijkstra’s path planning could fail to find a path due
to its high computational complexity when the vehicle meets
a fast-moving object (e.g., another vehicle). To handle these
cases, ArduPilot also supports a “simple avoidance” algo-

2A geo-fence is an area in which RVs are forbidden from entering.

=
o
o
=
o
o

|
=
o
o

|
=
o
o

Altitude (meter)
o

Altitude (meter)
o

0 200 400 600 0 200 400 600
Time (second) Time (second)

(a) Normal behaviors of the terrain-
following.

(b) Crashing on the terrain after de-
ploying a faulty patch [67].

Figure 7: Altitude values in different versions of software.

rithm [58] to either stop the vehicle or go backward if the
vehicle enters a safety margin area. In a sense, the “sim-
ple avoidance” algorithm acts as an emergency stop, in case
the Dijkstra’s path planning algorithm gets “too close” to
(i.e., within the safety margin of) a geo-fenced area.

Identified Issue. ArduPilot developers created a patch [44]
to support a new type of geo-fences. This new type of geo-
fences has a round shape, as shown in Listing 3. During its
analysis, PATCHVERIF created multiple circular geo-fences
overlapping with a planned path to trigger the patch code
from line 4 in Listing 3. However, creating multiple circular
geo-fences near the planned path triggers a bug in Dijkstra’s
path planning.

Specifically, the bug is due to the fact that in the presence
of circular geo-fences the Dijkstra’s path planning algorithm
creates a safety area overlapping with safety margin areas,
as shown in Figure 6b. This incorrect behavior causes the
“simple avoidance” algorithm to be triggered when the vehicle
enters the safety margin area. In turn, this causes the RV to
move backward. However, since the RV is also within the
safety area, it will then start moving forward again. There-
fore, the RV starts to repeatedly move back and forth near
the board of a margin area, and it is unable to complete its
mission. To fix this bug, the Dijkstra’s path planning algo-
rithm must not allow the margin area and the safe zone to
overlap. We reported this faulty patch and its corresponding
bug to ArduPilot developers, and they acknowledged them.
In their response, they mentioned that ArduPilot will provide
users with configuration parameters to adjust safe areas near
circular geo-fences.

Attack. An attacker can exploit this bug by putting circular-
shaped objects on the victim RV’s path. This makes the RV
stuck in an attacker-controlled location. We note that this
attack is stealthy since the attacker does not need to send any
explicitly malicious input to the RV, but only needs to change
environmental conditions.

8.6.2 Case Study 2: Terrain-Following Failure

When a drone flies over a curved terrain, the terrain-following
feature [65] allows the drone to maintain a specified distance
above the terrain using LiDAR or ultrasound sensors. For
example, the green line in Figure 7a shows the calculated alti-
tude, with respect to the take-off altitude, while the black line
represents the altitude with respect to the terrain below the

drone. In the example, to maintain approximately 30 meters
of vertical separation between itself and the terrain below,
the drone climbs between 200 and 300 seconds and descends
between 300 and 500 seconds (green line), since in that time-
frame it encountered and surpassed a hill.

Identified Issue. The developers discovered a bug in the
terrain-following feature. Specifically, when a drone is flying
over steep terrain, the vehicle does not slow down its hori-
zontal speed, making the drone target a much higher altitude
than it originally intended. To fix this issue, the developers
created a patch [66] that makes the drone decrease its horizon-
tal speed while climbing. However, PATCHVERIF disclosed
that this patch is buggy. In fact, this patch makes the drone
subtract an offset value from the current altitude every time it
switches to the terrain-following mode. Yet, this patch does
not remove such offset when this mode is disabled. Therefore,
if a drone switches to the terrain-following mode multiple
times, the offset keeps adding up.

Figure 7b shows an example of such behavior. In the ex-

ample, the white color represents the timeframe in which the
drone is navigating towards the first waypoint while turning
on the terrain-following. PATCHVERIF then switches its cur-
rent flight mode to altitude hold mode after the drone arrives
at the first waypoint, and immediately switches to navigating
to a second waypoint, restarting the terrain-following mode
(the blue color background represents the timeframe in which
the drone navigates to the second waypoint). However, the
drone subtracts an offset value from the current altitude twice,
causing it to target an altitude that is too low (in the timeframe
colored in red in Figure 7b). As a result, the drone eventually
crashes into the ground. We reported this bug to ArduPilot
developers, and they consequently fixed it.
Attack. An attacker, who is capable of changing the drone’s
flight mode, can trigger this bug multiple times, making the
drone eventually crash on the terrain. We note that changing
the drone’s flight mode does not look as a malicious behavior
for an external observer. In fact, (i) RV control software often
automatically changes its flight mode as a fail-safe mecha-
nism [18,70], and (ii) an attacker only needs to switch to the
follow-terrain mode for a very brief time and can then return
to the previous flight mode.

8.7 Time Requirements

We measure the time required by each step of PATCHVERIF.
To this aim, we randomly selected 80 patches from our dataset
in Section 8.1 to measure the time spent on each step. Each
step in Figure 3 takes, on average: less than 1 minute to
analyze the patch’s physical impact (@), 17.5 minutes to find
patch-triggering inputs (@), 8.1 minutes for the symbolic
execution (@), 5.3 minutes to infer the patch type (@), and
30 minutes to mutate test cases (@).

8.8 Ablation Study

To evaluate each component’s contributions, we conduct an
ablation study as summarized in Table 4. We run ablation ex-

Ablation settings
Infer physical Infer inputs Symbolic | Analyze Run Mutate .
. . . . Bug oracle Evaluation
ID | impact of patches | related to patches | execution | patch type | simulators ® test cases UrDose FN | FP
@) ®) @) ©) @ () purp
AB,; X X X v v v v Effect of input selection | 59 | 1
AB, v v X v v v v Symbolic execution 8 1
AB3 v v v X v v v Patch type analyzer 1] 6
AB, v v v v v X v Five physical invariants | 24 | 14
ABg v v v v v v X Mutation algorithm 37 1

Table 4: Summary of ablation settings and results, used to evaluate each component’s contribution. FN and FP denote false negatives and false
positives, respectively. For this experiment, we used a dataset of 80 faulty patches (TrainSetg) and 80 correct patches. On this dataset, the full
PATCHVERIF pipeline resulted in 7 FN and 1 FP. AB4’s FN and FP are counted when it uses only the Timeliness invariant.

100 6.5 928 92 gg 4 949

89.1 89.7 86.
74.9 76.5 78 75.8 74.9

59.7 50.4

g 60 47.3
240
w20

0

p1 p2 p3 p4 p1 p1 p1 p2 p2 p3 p2 p1 p1 p1 p1
P2 p3 p4 p3 p4 p4 p3 p3 p2 p2 -
p4 p4 p4 p3 p4

[e]
o

Physical invariants
Figure 8: Ablation study of the physical invariants. p1, p2, p3,

and p4 represent Timeliness, Precise navigation, Stability,
and Efficiency, respectively. We employ SVM classifiers.

periments on 160 patches: (i) 80 faulty patches (TrainSetr)
and (ii) 80 correct patches (TrainSetc) in Section 8.1.

First, we exclude components @-@ in Figure 3. We refer
to the version of PATCHVERIF excluding @-@ as AB; in Ta-
ble 4. These components infer the physical impact of the patch
(e.g., a patch affects the RV’s behaviors during CIRCLE flight
mode) and they find inputs that are likely triggering the patch
code snippet (e.g., inputs to trigger the CIRCLE flight mode).
We run AB; for a maximum of one hour for each patch. As
aresult, AB, finds only 21 out of 80 faulty patches. We note
that these 21 faulty patches do not require any input mutation
to trigger the buggy behaviors. On the contrary, PATCHVERIF
discovers all the faulty patches. These results prove that reduc-
ing the huge input space based on the patch code and mutating
inputs only related to the patch significantly improves the time
spent to trigger buggy behaviors.

Second, we exclude the symbolic execution (@ in Fig-
ure 3), which enables PATCHVERIF to trigger unreachable
branches in patch code snippets, from PATCHVERIF (AB,
in Table 4). ABs, fails to fully test all branches of 16 out of the
160 patches. Yet, AB, still triggers all buggy behaviors except
for one faulty patch. The result shows that most of the buggy
behaviors caused by faulty patches can be triggered without
symbolic execution. We believe that triggering unreachable
branches is still required because it enables PATCHVERIF to
discover (i) an additional faulty patch in this ablation study
and (ii) six additional bugs, as explained in Section 6.3.

Third, we exclude the patch type analyzer (@ in Figure 3).
We call it AB3 in Table 4. This modification forces that AB3’s
bug oracle always leverages all of the five physical invariants.
Compared to PATCHVERIF, AB; produces additional five false
positives (i.e., the patch is classified as a faulty patch since it

violates an invariant, but it is actually not a faulty patch) and
four false negatives (i.e., while ABj3 classifies them as correct,
they are actually faulty patches). The reason for the five false
positives is that correct patches may naturally violate some
of the five physical invariants. For instance, a patch, which
implements a delay command, increases the time required
to finish a mission and battery consumption. Yet, the patch
does not contain any buggy code. Regarding the four false
negatives, the main reason is that faulty patches related to
the RV’s ground speed decrease the mission completion time
but increase position errors. Leveraging all physical invari-
ants neutralizes the faulty patches’ side effects if the patches
change the RV’s ground speed. For example, a faulty patch
in Section 3 makes a rover fail to decrease its speed near a cor-
ner. The faulty patch decreases the time to finish the mission
(due to maintaining a high speed) but increases deviations
from a planned path in Figure 2a. These results show that
we need to selectively consider the five physical invariants to
properly evaluate the effects of a patch.

Fourth, the bug oracle (five physical invariants) is manda-
tory for running PATCHVERIF. Instead of excluding the
whole bug oracle (@ in Figure 3), we exclude each phys-
ical invariant from the bug oracle (we call it AB,) and measure
its performance. As shown in Figure 8, leveraging only one
physical invariant achieves at most a 74.9% F1-score. On
the contrary, when AB, uses all the five physical invariants, it
shows the best F1-score (94.9%). Such results prove that we
need to leverage multiple physical invariants to detect various
symptoms of the buggy behaviors caused by faulty patches.

Lastly, we exclude the mutation algorithm (@ in Fig-
ure 3). We call it ABg in Table 4. ABs randomly selects in-
puts and input assignments without any mutation guidance,
e.g., target_altitude = random(). We note that ABg still
leverages the test case template (i.e., a default mission plan),
although we exclude input mutation logic. This is because a
purely random order of inputs without any mission template
cannot even make the RV take-off from the ground (e.g., mu-
tating inputs to increase altitude before the take-off flight
stage). We set one hour as the maximum time out to trig-
ger buggy behaviors created by faulty patches. ABg discovers
43 out of the 80 faulty patches. 41 out of the 43 detected
faulty patches do not require any input mutation to trigger the
buggy behaviors or are easily triggered by changing the RV’s

flight stages. We note that ABs wastes significant time running
self-sabotaging missions, e.g., decreasing motor speed and
crashing on the ground. In these cases, we cannot detect any
buggy behaviors since both the unpatched and patched RV
software fail to conduct a test case at the same time. On the
contrary, PATCHVERIF finds all 80 faulty patches because
its mutation algorithm excludes input assignments leading to
self-sabotaging behaviors and it guides the input assignments
based on distances calculated from physical invariants.

8.9 Comparison with Other Works

Some fuzzing approaches have been previously proposed
to detect bugs in RVs [30, 32]. While none of the previous
approaches focuses specifically on the analysis of patches
(like PATCHVERIF does), we evaluated whether they could
still detect (some of) the bugs PATCHVERIF discovered.

RVFuzzer [32] mutates configuration parameters and wind
to detect control instability bugs (e.g., deviation from a
planned path or unstable attitude). RVFuzzer cannot discover
88 out of the 115 bugs identified by PATCHVERIF. 66 out of
88 missed bugs, to be triggered, require specific combinations
of user commands, configuration parameters, and environmen-
tal settings. RVFuzzer cannot generate such combinations
since it only focuses on configuration parameters and wind,
i.e., a limitation of its input mutation. 1 out of 88 missed
bugs is caused by a limitation of its bug oracle that does not
consider mission completion time, battery consumption, and
unexpected changes in RV states. 21 out of 88 missed bugs
are due to limitations of the input mutation and bug oracle.

PGFuzz [30], on the other hand, mutates all three types
of inputs, based on temporal logic formulas that define RVs’
expected behaviors. Yet, PGFuzz still cannot find 53 out of
the 115 bugs found by PATCHVERIF. PGFuzz has two main
limitations that prevent it from discovering these 53 bugs.
The first limitation is in its input mutation, where PGFuzz
does not directly test a patch’s correctness as it mutates inputs
only based on the provided formulas. Thus, PGFuzz does not
test the environmental conditions that, while relevant to test
a patch, are not directly related to the tested formula. The
second limitation is in its bug oracle. PGFuzz uses manually-
written temporal logic formulas. However, these formulas are
too general to detect some of the incorrect behavioral differ-
ences introduced by faulty patches. In theory, PGFuzz’s users
could add formulas, allowing it to detect more bugs. However,
this requires them to manually write these formulas, based on
an already-known, precise notion of what distinguishes a cor-
rect behavior from a faulty one. Out of the 53 missed bugs, 2
of them are missed only because of PGFuzz’s input mutation,
32 of them are missed only due to its bug oracle, and 19 of
them are missed because of both of these limitations.

Further, PATCHVERIF discovers all faulty patches identi-
fied by RVFuzzer, but it fails to discover 3 out of 156 bugs
reported by PGFuzz. These three bugs make ArduPilot incor-
rectly set the camera angles. However, PATCHVERIF focuses

only on features that impact an RV’s navigation, hence it can-
not detect faulty patches related to such supplementary fea-
tures (Section 8.5). To detect the three cases, a user may add
other features to the invariants considered by PATCHVERIF.

9 Limitations and Discussion

Code Coverage on RV Simulators. PATCHVERIF runs test
cases on simulators to discover faulty patches. The simulators
cannot guarantee full source code coverage. For instance, test
suites of ArduPilot and PX4 [7,52] achieve 56% and 40%
of code coverage on the simulators at the time of writing
because the device driver code cannot be run on the simula-
tors [3]. To tackle this issue, we might leverage Hardware-in-
the-loop (HIL) simulation [5,49] and Simulation-In-Hardware
(SIH) [51] where firmware is run on real hardware. Yet, we
believe that running HIL and SIH to test patches is not practi-
cal because they require numerous hardware devices to test
all hardware configurations.

To analyze the impact of this limitation, we aim to an-
swer the following two research questions: (RQ/) How many
patches PATCHVERIF cannot test because they are in device
drivers? (RQ2) Are there any patches that are not in device
drivers and cannot be tested by PATCHVERIF?

To obtain 1,000 patches (TestSet) in Section 8.1, we ini-
tially collected a total of 1,137 patches. The missing 137
patches update code in device drivers. For this reason, they
are not executed by simulators, and, consequently, they cannot
be tested by PATCHVERIF (RQ1). Regarding (RQ2), we could
not find any patch that is not in device drivers and that cannot
be triggered by PATCHVERIF. These results show that (7) de-
velopers actively create patches for changing RV control logic,
which is not related to device drivers, and (i) PATCHVERIF
can test most of the patches (87.9%) despite achieving limited
code coverage on ArduPilot and PX4, respectively.

Correctness of the Unpatched Version. PATCHVERIF com-
pares an unpatched version with a patched one to detect bugs.
Here, the unpatched version can be a released version or
the version just before applying the patch (Section 6.5.1).
PATCHVERIF’s detection accuracy depends on the unpatched
version. If the unpatched version initially violates one of the
five invariant properties, PATCHVERIF cannot detect an incor-
rect behavior of the patched version. In our evaluation (Sec-
tion 8), we could not find any unpatched version that makes
PATCHVERIF fail to detect faulty patches because we mainly
leverage the released versions for the faulty patches in our
dataset. Yet, we cannot guarantee that the version just before
applying the patch does not contain any bug that might lead
to incorrect behaviors. This is because, unlike the released
version, the unpatched version is not heavily tested.

Limitations of the Five Physical Invariants. PATCHVERIF’s
five physical invariants can detect many of RV’s abnormal
physical behaviors (e.g., attitude and position issues). While
we think that these five invariants cover the majority of the
abnormal physical behaviors potentially caused by faulty

patches (as explained in Section 5), it is possible that some
faulty patches can only be detected using additional invari-
ants. Indeed, we are aware that 6 faulty patches in Section 8.5,
within the TestSet dataset, cannot be detected with our cur-
rent five invariants. To address this issue, a user could poten-
tially add other invariants to be considered by PATCHVERIF.
However, this task requires some manual effort.

Porting PATCHVERIF to Other RVs. PATCHVERIF re-
quires a simulator, which is commonly available for open-
source RV control software [21,59]. Further, we assume that
other RV software leverage MAVLink [42] as their communi-
cation protocol between the RV software and ground control
stations because MAVLink is a de facto standard. Users can
port PATCHVERIF to the other RV control software through
the following steps: (1) collecting faulty and correct patches,
(2) identifying features as physical invariants from the correct
and faulty patches, (3) constructing a list of environmental
factors from documentation, and (4) training PATCHVERIF’S
bug oracle from the collected patches. We believe that porting
PATCHVERIF to a new RV software is not a burden, given
that users of PATCHVERIF are RV developers who are already
familiar with RV software and simulators. Two authors spent
around 12 hours on these manual porting tasks.

Security-relevance of Exploiting Logic Bugs. Exploiting
faulty patches is attractive for attackers since it can be
achieved even when an attacker has partial control over a
drone’s inputs (e.g., an attacker has control only over environ-
mental conditions, but not over user commands). For the 74
faulty patches reproduced on a real drone (Section 8.4), we
analyze the input types (i.e., user commands, configuration pa-
rameters, and environmental conditions) the attacker needs to
control to trigger faulty patches. Our analysis reveals that an
adversary who controls a single input type can trigger 67 out
of the 74 faulty patches (90.5%) discovered by PATCHVERIF.

An attacker can exploit faulty patches to cause physical
consequences that are otherwise difficult to achieve. For in-
stance, the faulty patch in Section 8.6.1 enables attackers to
stealthily cause a failure in the object avoidance module, by
placing, for example, circular-shaped objects on the victim
RV’s path (i.e., changing environmental conditions).

Faulty patches enable exploiting bugs for a long time with-
out getting detected. For example, the faulty patch in Sec-
tion 8.6.2 makes the RV target an incorrect altitude and even-
tually crash. An attacker can trigger this faulty behavior by
changing the victim RV’s flight mode. In turn, changing the
flight mode is achievable by jamming GPS signals. In fact, the
RV software changes its flight mode (due to a fail-safe logic)
when the GPS signal is lost. Since GPS signal loss is not an
obvious symptom of any attack, as GPS glitches frequently
occur in highly urbanized areas [25], exploiting this faulty
patch results in an attack that is hard to detect.

Comparison of Name-based Matching and Taint Analysis.
The name-matching method and taint analysis match with,

on average, 3.3 and 35.8 physical states/environmental con-
ditions, respectively. We run dynamic analysis (Section 6.2
and Section 6.3) based on the results of each static analysis to
measure how much time dynamic analysis spends on finding
a set of inputs triggering the patch code. We set one hour as
the maximum time out to find the inputs for each patch. We
conduct this experiment on randomly selected (i) 40 faulty
patches from TrainSetr and (i) 40 correct patches from
TrainSet. in Section 8.1.

As a result, dynamic analysis based on the results of the
name-matching method triggers all 80 patches on average in
17.5 minutes. On the contrary, dynamic analysis based on the
results of the taint analysis succeeds in triggering 62 out of 80
patches on average in 38.4 minutes. The main reason is that
taint analysis detects all indirect data propagation and pro-
duces over-approximated results (i.e., over-tainting), which
makes dynamic analysis waste most of the time to mutate in-
puts unrelated to the patch code. We detail the implementation
of the taint analysis in Appendix C.

10 Related Work

Invariants-based Patch Validation. Previous works detect
faulty patches through program invariants [20, 72]. Correctly
patched software does not break the program invariants, while
faulty patches make the software violate the invariants. These
works extract invariants over variables (e.g., variable; must
be smaller than variable;). Yet, the accuracy of the inferred
invariants depends on the completeness of test suites. Further,
the invariants in the source code level could not detect logic
bugs in RVs because the bugs in RV software can occur
regardless of invariants over variables. On the contrary, we
extract RVs’ physical invariants (e.g., battery consumption)
to detect buggy behaviors caused by faulty patches.

Test Case Generation-based Patch Validation. Many exist-
ing works [27,34,64,71] attempt to discover faulty patches
through test case generation. These works find test inputs
that make unpatched and patched programs generate different
outputs. If the programs’ outputs are not the same as that of a
bug oracle, it is regarded as a faulty patch. Yet, these works
are not proper to discover bugs in RVs because (i) they do
not consider finding environmental conditions as test inputs.
The faulty patches in RVs only take effect under specific en-
vironmental conditions (e.g., terrain and navigation speed),
and (ii) they assume that a bug oracle exists. However, such
an assumption cannot hold in RVs as explained in Section 1.

Forced Execution. Forced execution (such as T-Fuzz [45])
can trigger unreachable branches in patches. T-Fuzz negates
a conditional statement in an “if statement” to trigger an
unreachable false/true branch, e.g., T-Fuzz converts the
predicate from if(a==0x1234) to if(a!=0x1234).
However, we notice that simply negating conditional
statements in the RV control software leads to losing context
to test the RV’s behaviors. For example, the true branch of
the following code assumes that user_input is not null:

if(user_input! =null){target_roll = user_input}.
Yet, forced execution cannot change the RV’s physical states
even if it executes the true branch because the variable
(user_input) does not have any meaningful concrete
assignment (i.e., user_input is null). On the contrary,
PATCHVERIF inserts concrete assignments into the patch to
test the RV’s behaviors, as explained in Section 6.3.

Symbolic Execution. PATCHVERIF’s use of symbolic ex-
ecution is inspired by existing works [41, 43, 61]. For ex-
ample, Driller [61] uses symbolic execution to find inputs
for conditions that fuzzers cannot satisfy and execute deeper
paths in software. However, these works [41,43,61] focus on
memory corruption bugs. To discover logic bugs in RV soft-
ware, PATCHVERIF uses additional techniques, such as the
five physical invariants as an oracle and the distance metrics
based on the physical invariants as mutation guidance.

Shadow Execution. Comparing unpatched and patched ver-
sions to identify faulty patches in general software has also
been studied [35, 56]. Ramos et al. [56] detects bugs if a
patched version leads to a program crash, but an unpatched
version does not cause any program crash. Yet, PATCHVERIF
aims to discover logic bugs that do not lead to any program
crash but cause unexpected physical behaviors. Kuchta et
al. [35] generates test cases exercising the divergence and
comprehensively test the new behaviors of the patched ver-
sion. They assume that they already have a test input that
executes the patch code. However, as explained in Section 8.8,
our ablation study shows that finding such a patch-triggering
input is challenging and that PATCHVERIF’s combination of
static and dynamic analyses is efficient in discovering the
patch-triggering input.

Taint Analysis. Existing taint analysis methods cannot be
directly applied to RV control software. For example, Luo et
al. [39] tracks how the whole app-level information propa-
gates to Android Framework variables. Their taint analysis is
for specific taint sources (unique identifications of an app) and
sinks (get functions of a data structure that stores the specific
app’s information). However, taint sinks in RV software are
not obvious due to high inter-dependency among variables.
To address this challenge, PATCHVERIF uses the name-based
matching, as explained in Section 6.1.

11 Conclusions

We introduce PATCHVERIF, a patch verification framework
for RVs. PATCHVERIF has three key aspects that distinguish
it from other methods: (i) leveraging physical invariants as
a bug oracle to detect symptoms of faulty patches, (if) test-
ing both the behaviors affected by a patch and environmental
conditions that affect the patch, and (iii) using coverage and
physical invariants-based guidance to mutate inputs that make
the patched software violate the invariants if the patch is
faulty. PATCHVERIF found 115 previously unknown bugs
introduced by faulty patches, 103 of which have been ac-
knowledged, and 51 bugs have been fixed.

Acknowledgments

We thank the anonymous reviewers for their invaluable sug-
gestions. This work was supported in part by ONR under
Grants N00014-20-1-2128 and N00014-17-1-2045. Any opin-
ions, findings, and conclusions in this paper are those of the
authors and do not necessarily reflect the views of the ONR.
This work was also supported in part by DARPA under con-
tract number N6600120C4031. The U.S. Government is au-
thorized to reproduce and distribute reprints for Governmen-
tal purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily represent-
ing the official policies or endorsements, either expressed or
implied, of DARPA or the U.S. Government.

References

[1] AMD performance regression. https://tinyurl.com/whhsuaca,
2022.

[2] ArduPilot Coding Style Guide. https://tinyurl.com/yjcjx7up,
2022.

[3] ArduPilot code coverage.
ArduPilot/ardupilot, 2022.

https://coveralls.io/github/

[4] ArduPilot environmental factors. https://tinyurl.com/4yjj99s8,
2022.

[S] ArduPilot Hardware in the Loop Simulation (HITL). https://
tinyurl.com/53h8chs3, 2022.

[6] ArduPilot log. https://tinyurl.com/exyadr75, 2022.

[7] Autotest. https://tinyurl.com/6ampumny, 2022.

[8] Bad Windows Update. https://tinyurl.com/8evh9rs2, 2022.
[9] Boeing 737 max crash. https://tinyurl.com/nenryb9p, 2022.

[10] Marcel Bohme and Abhik Roychoudhury. Corebench: Studying com-
plexity of regression errors. In Proceedings of the international sympo-
sium on software testing and analysis, 2014.

[11] Tim Chen, Leonid I Ananiev, and Alexander V Tikhonov. Keeping
kernel performance from regressions. In Proceedings of the Linux
Symposium, 2007.

[12] Hongjun Choi, Sayali Kate, Yousra Aafer, Xiangyu Zhang, and
Dongyan Xu. Cyber-physical inconsistency vulnerability identifica-
tion for safety checks in robotic vehicles. In Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security (CCS),
2020.

[13] Hongjun Choi, Wen-Chuan Lee, Yousra Aafer, Fan Fei, Zhan Tu, Xi-
angyu Zhang, Dongyan Xu, and Xinyan Deng. Detecting attacks
against robotic vehicles: A control invariant approach. In Proceedings
of the ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2018.

[14] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Ma-
chine learning, 1995.

[15] Delay command. https://tinyurl.com/t7xp9298, 2022.
[16] Dijkstra’s path planning. https://tinyurl.com/2habdyx3, 2022.

[17] Ruian Duan, Ashish Bijlani, Yang Ji, Omar Alrawi, Yiyuan Xiong,
Moses Ike, Brendan Saltaformaggio, and Wenke Lee. Automating
patching of vulnerable open-source software versions in application bi-
naries. In Proceedings of the Network and Distributed System Security
Symposium (NDSS), 2019.

[18] EKEF fail-safe. https://tinyurl.com/y2e44bp6, 2022.
[19] Emergency stop is broken. https://tinyurl.com/4kuxccx9, 2022.

https://tinyurl.com/whhsuaca
https://tinyurl.com/yjcjx7up
https://coveralls.io/github/ArduPilot/ardupilot
https://coveralls.io/github/ArduPilot/ardupilot
https://tinyurl.com/4yjj99s8
https://tinyurl.com/53h8chs3
https://tinyurl.com/53h8chs3
https://tinyurl.com/exya4r75
https://tinyurl.com/6ampumny
https://tinyurl.com/8evh9rs2
https://tinyurl.com/nenryb9p
https://tinyurl.com/t7xp9298
https://tinyurl.com/2habdyx3
https://tinyurl.com/y2e44bp6
https://tinyurl.com/4kuxccx9

[20]

[21]
[22]
[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

(31]

[32]

(33]
[34]

[35]

[36]
(371

(38]

[39]

[40]

Michael D Ernst, Jake Cockrell, William G Griswold, and David Notkin.
Dynamically discovering likely program invariants to support program
evolution. /EEE transactions on software engineering, 2001.

Gazebo. http://gazebosim.org/, 2022.
Gcov. https://tinyurl.com/8knsh8kc, 2022.

Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial nets. Advances in neural information processing
systems, 2014.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory.
Neural computation, 1997.

Li-Ta Hsu. GNSS multipath detection using a machine learning ap-
proach. In Proceedings of the 20th International Conference on Intelli-
gent Transportation Systems (ITSC), 2017.

Initialize rngOnGnd. https://tinyurl.com/2p8cfbbw, 2022.

Wei Jin, Alessandro Orso, and Tao Xie. Automated behavioral regres-
sion testing. In Proceedings of the 3rd international conference on
software testing, verification and validation, 2010.

Chijung Jung, Ali Ahad, Yuseok Jeon, and Yonghwi Kwon. SWARM-
FLAWFINDER: Discovering and Exploiting Logic Flaws of Swarm
Algorithms. In Proceedings of the IEEE Symposium on Security and
Privacy (S&P), 2022.

Chijung Jung, Ali Ahad, Jinho Jung, Sebastian Elbaum, and Yonghwi
Kwon. Swarmbug: debugging configuration bugs in swarm robotics. In
Proceedings of the 29th ACM Joint Meeting on European Software En-
gineering Conference and Symposium on the Foundations of Software
Engineering, 2021.

Hyungsub Kim, Muslum Ozgur Ozmen, Antonio Bianchi, Z. Berkay
Celik, and Dongyan Xu. PGFUZZ: Policy-guided fuzzing for robotic
vehicles. In Proceedings of the Network and Distributed System Secu-
rity Symposium (NDSS), 2021.

Hyungsub Kim, Muslum Ozgur Ozmen, Z Berkay Celik, Antonio
Bianchi, and Dongyan Xu. PGPATCH: Policy-Guided Logic Bug
Patching for Robotic Vehicles. In Proceedings of the IEEE Symposium
on Security and Privacy (S&P), 2022.

Taegyu Kim, Chung Hwan Kim, Junghwan Rhee, Fan Fei, Zhan Tu,
Gregory Walkup, Xiangyu Zhang, Xinyan Deng, and Dongyan Xu.
RVFUZZER: Finding input validation bugs in robotic vehicles through
control-guided testing. In Proceedings of the USENIX Security Sympo-
sium, 2019.

KLEE. https://klee.github.1io, 2022.

Bogdan Korel and Ali M Al-Yami. Automated regression test genera-
tion. ACM SIGSOFT Software Engineering Notes, 1998.

Tomasz Kuchta, Hristina Palikareva, and Cristian Cadar. Shadow sym-
bolic execution for testing software patches. ACM Transactions on
Software Engineering and Methodology (TOSEM), 2018.

LCOV. https://github.com/linux-test-project/lcov, 2022.

Wei Le and Shannon D Pattison. Patch verification via multiversion
interprocedural control flow graphs. In Proceedings of the 36th Inter-
national Conference on Software Engineering, 2014.

Linux performance regression. https://tinyurl.com/4wwyxext,
2022.

Lannan Luo, Qiang Zeng, Chen Cao, Kai Chen, Jian Liu, Limin Liu,
Neng Gao, Min Yang, Xinyu Xing, and Peng Liu. System service call-
oriented symbolic execution of android framework with applications to
vulnerability discovery and exploit generation. In Proceedings of the
15th Annual International Conference on Mobile Systems, Applications,
and Services, 2017.

Aravind Machiry, Nilo Redini, Eric Camellini, Christopher Kruegel,
and Giovanni Vigna. Spider: Enabling fast patch propagation in related
software repositories. In Proceedings of the IEEE Symposium on
Security and Privacy (S&P), 2020.

[41]

[42]
[43]

[44]

[45]

[46]

[47]

[48]
[49]

[50]
[51]

[52]
[53]
[54]

[55]

[56]

[57]
[58]
[59]
[60]
[61]

[62]

[63]

[64]

[65]
[66]

[67]

[68]

Paul Dan Marinescu and Cristian Cadar. KATCH: High-coverage
testing of software patches. In Proceedings of the 9th Joint Meeting on
Foundations of Software Engineering, 2013.

MAVLink. https://mavlink.io/en/, 2022.

Matthias Neugschwandtner, Paolo Milani Comparetti, Istvan Haller,
and Herbert Bos. The borg: Nanoprobing binaries for buffer overreads.
In Proceedings of the 5th ACM Conference on Data and Application
Security and Privacy, 2015.

Object avoidance for fences.
2022.

https://tinyurl.com/kcvy9suc,

Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-Fuzz: Fuzzing by
program transformation. In Proceedings of the IEEE Symposium on
Security and Privacy (S&P), 2018.

Pivot turns. https://tinyurl.com/bkr3bk7p, 2022.
Pivot turns broken. https://tinyurl.com/3wzpa8kt, 2022.
PX4 environmental factors. https://tinyurl.com/4vk3wuct, 2022.

PX4 Hardware in the Loop Simulation (HITL). https://tinyurl.
com/ta’jtakn4, 2022.

PX4 log. https://tinyurl.com/2jax75ct, 2022.

PX4 Simulation-In-Hardware (SIH).
txsypwwd, 2022.

https://tinyurl.com/

PX4 test cases. https://tinyurl.com/4chk8x7a, 2022.
Pymavlink. https://pypi.org/project/pymavlink/, 2022.

Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. An analysis
of patch plausibility and correctness for generate-and-validate patch
generation systems. In Proceedings of the International Symposium on
Software Testing and Analysis, 2015.

Raul Quinonez, Jairo Giraldo, Luis Salazar, Erick Bauman, Alvaro
Cardenas, and Zhiqiang Lin. SAVIOR: Securing autonomous vehicles
with robust physical invariants. In Proceedings of the USENIX Security
Symposium, 2020.

David A Ramos and Dawson Engler. Under-constrained symbolic
execution: Correctness checking for real code. In Proceedings of the
USENIX Security Symposium, 2015.

scikit-learn Decision Trees. https://tinyurl.com/bdf2y38z,2022.
Simple object avoidance. https://tinyurl.com/cpzcmedj, 2022.
SITL. https://tinyurl.com/dvkjwwy9, 2022.

Fix speed nudge. https://tinyurl.com/x%hwzvix, 2022.

Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher,
Ruoyu Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christopher
Kruegel, and Giovanni Vigna. Driller: Augmenting fuzzing through
selective symbolic execution. In Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2016.

Philip H Swain and Hans Hauska. The decision tree classifier: Design
and potential. IEEE Transactions on Geoscience Electronics, 1977.

Shin Hwei Tan and Abhik Roychoudhury. relifix: Automated repair of
software regressions. In Proceedings of the 37th IEEE International
Conference on Software Engineering, 2015.

Kunal Taneja and Tao Xie. DiffGen: Automated regression unit-test
generation. In Proceedings of the 23rd IEEE/ACM International Con-

ference on Automated Software Engineering, 2008.

Terrain following. https://tinyurl.com/x2sfkb55, 2022.

Terrain following hits terrain.
2022.

https://tinyurl.com/y69xsh9t,

Terrain following initialization. https://tinyurl.com/bpcf3hdd,
2022.

Tesla crash. https://tinyurl.com/jdnv7irzj, 2022.

http://gazebosim.org/
https://tinyurl.com/8knsh8kc
https://tinyurl.com/2p8cfbbw
https://klee.github.io
https://github.com/linux-test-project/lcov
https://tinyurl.com/4wwyxext
https://mavlink.io/en/
https://tinyurl.com/kcvy9suc
https://tinyurl.com/bkr3bk7p
https://tinyurl.com/3wzpa8kt
https://tinyurl.com/4vk3wuct
https://tinyurl.com/tajtakn4
https://tinyurl.com/tajtakn4
https://tinyurl.com/2jax75ct
https://tinyurl.com/txsypww4
https://tinyurl.com/txsypww4
https://tinyurl.com/4chk8x7a
https://pypi.org/project/pymavlink/
https://tinyurl.com/bdf2y38z
https://tinyurl.com/cpzcmcdj
https://tinyurl.com/dvkjwwy9
https://tinyurl.com/x9hwzvfx
https://tinyurl.com/x2sfkb55
https://tinyurl.com/y69xsb9t
https://tinyurl.com/bpcf3h4d
https://tinyurl.com/jdnv7rzj

[69] Tesla on autopilot crash. https://tinyurl.com/57rbbkus, 2022.
[70] Vibration failsafe. https://tinyurl.com/43crrisw, 2022.

[71] Qi Xin and Steven P Reiss. Identifying test-suite-overfitted patches
through test case generation. In Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2017.

[72] Bo Yang and Jingiu Yang. Exploring the differences between plausible
and correct patches at fine-grained level. In Proceedings of the 2nd
International Workshop on Intelligent Bug Fixing (IBF), 2020.

[73] Jingiu Yang, Alexey Zhikhartsev, Yuefei Liu, and Lin Tan. Better test
cases for better automated program repair. In Proceedings of the 11th
Joint Meeting on Foundations of Software Engineering, 2017.

[74] Shahed Zaman, Bram Adams, and Ahmed E Hassan. A qualitative
study on performance bugs. In Proceedings of the 9th IEEE working
conference on mining software repositories (MSR), 2012.

[75] Hang Zhang and Zhiyun Qian. Precise and accurate patch presence test
for binaries. In Proceedings of the USENIX Security Symposium, 2018.

[76] Lei Zhou, Fengwei Zhang, Jinghui Liao, Zhengyu Ning, Jidong Xiao,
Kevin Leach, Westley Weimer, and Guojun Wang. Kshot: Live kernel
patching with smm and sgx. In Proceedings of the 50th Annual IEEE/I-
FIP International Conference on Dependable Systems and Networks
(DSN), 2020.

A Additional Experiments about the Five
Physical Invariants

To confirm the feasibility of detecting faulty
patches through the four physical invariants
(Timeliness, Precise navigation, Stability, and
State consistency), we conducted a preliminary exper-
iment on 80 correct and 80 faulty patches in Section 8.1.
While performing the preliminary experiment, we decided
to choose battery consumption as a new physical invariant
(Efficiency) for the following reasons. (1) We observe that
most correct patches do not increase battery consumption,
e.g., 69 out of 80 correct patches (TrainSet in Section 8.1)
show the same or decreased battery consumption compared
to unpatched versions. (2) We notice that most faulty patches
degrade the battery efficiency due to unstable attitudes and/or
deviated planned path, e.g., 71 out of 80 faulty patches
(TrainSetr in Section 8.1) deplete the RV’s battery. (3)
Many patches affect battery efficiency, e.g., we found 446
and 382 patches related to the battery performance from
ArduPilot and PX4, respectively.

The battery consumption is already related to other in-
variants, e.g., increasing mission completion time naturally
leads to increasing the battery consumption. Yet, it helps
PATCHVERIF more clearly distinguish between correct and
faulty patches. As shown in Figure 8, when we conduct
an ablation study of the physical invariants on the datasets
TrainSet. and TrainSetr (as defined in Section 8.1),
Efficiency (p4) enables PATCHVERIF to improve the F1-
score from 89.1% to 94.9%.

We note that PATCHVERIF allows RV developers to add
additional invariants to PATCHVERIF’s bug oracle. Yet, our
evaluation (Section 8) already shows that these five invariants
are enough to correctly classify most patches.

B Using Other Classification Algorithms
B.1 Decision Trees

We compare SVMs with decision trees (an optimized version
of the CART algorithm [57]) for making baseline classifica-
tion performance and evaluating SVMs’ effectiveness. We
first find optimal parameters for the decision trees to compare
SVMs with the decision trees fairly. We then evaluate the
decision trees using the same dataset as SVMs’ ones. Partic-
ularly, we use 5-fold cross-validation for obtaining optimal
parameters for our training dataset and preventing overfitting
of the model. “Maximum tree depth” parameter is a limit
to stop the further splitting of nodes in a decision tree. We
noticed that 3 yields better results than other values in both
RV programs. “Alpha” parameter controls how much pruning
must be done in the decision tree. We set this parameter to
0.07 in ArduPilot and 0.075 in PX4 since these values show
the best accuracy compared to other values.

To evaluate the trained decision tree and SVM models, we
shuffle the order of the data and run 5-fold cross-validation.
We repeat the shuffling and cross-validation 1,000 times to
obtain average inference accuracy. As a result, the decision
tree shows an average 1.8% lower F1-score than SVM’s ones.

B.2 Neural Networks

We also compare SVMs with neural networks. Particularly,
the neural network consists of seven layers and two denses.
“Dropout” is used to prevent the model overfitting by randomly
disconnecting the outgoing edges of hidden units specified
in the parameter, which we set to 0.2. We leverage “Tanh” as
activation function at each layer, “Mse” loss function, “Adam’
optimizer, and “Loss” metrics since these parameters yield
the best result compared to other parameters. Instead of a
constant “Epoch”, we use “early stopping”, automatically
stopping train steps when a monitored metric has stopped
improving. Specifically, we leverage “Loss” as the monitor-
ing metric, 10 patience number, and “auto” mode since we
noticed that these parameters are the best to reduce the model
overfitting. The “Threshold for classification” parameter is for
setting a threshold to decide whether a set of features is buggy
behaviors or not. We set the threshold to 0.5 because we train
the neural network models through a balanced dataset. These
neural network models yield similar results to other architec-
tures we have tested. The neural network models show an
average 7.2% lower F1-score than SVMSs’ ones.

We notice that the number of faulty patches in the training
dataset is not enough. To tackle this issue, we conduct the
following two steps: (i) obtaining artificially created bugs
from a Generative Adversarial Network (GAN) [23] and (ii)
training a neural network model [24] through bugs obtained
from an RV control software and the GAN model. We create
separate GAN and neural network models for each RV control
software and leverage them for training and classification.

We first obtain a total of 100 bug cases from the GAN
model. We call the artificial bug cases Traingyy. Then, we

il

https://tinyurl.com/57rbbku8
https://tinyurl.com/43crr4sw

train a neural network model through 40 correct patches,
40 faulty patches per RV software, and Traing,y, which en-
ables PATCHVERIF to learn how the five physical invariant
properties change between correct and faulty patches. These
GAN and neural network models yield higher accuracy than
other neural network architectures we have experimented with.
However, the GAN and neural network models still show an
average 5.5% lower F1-score than SVMs.

We note that we have tried using Traing,y for the deci-
sion trees and SVMs, but we observed negligible changes in
the accuracy of these models. Therefore, we decided not to
incorporate Traingy for them.

B.3 Constant Threshold Oracle

PATCHVERIF allows RV developers to use another classi-
fier (e.g., constant thresholds), offering flexibility. Unfortu-
nately, ArduPilot and PX4 do not have such thresholds be-
cause their test suites only leverage different mission comple-
tion times per test case. We obtain the thresholds in ArduPilot
using the following steps. (1) We randomly select 64 cor-
rect and 64 faulty patches from TrainSetr and TrainSet¢
(Section 8.1). (2) We calculate a normalized difference in
each physical invariant property when we run the same mis-

sion on both unpatched and patched software: % where
P; and P represent i-th physical invariant in an unpatched
version and i-th invariant in a patched RV software, respec-
tively. (3) We obtain f; by adding up all normalized differ-
ences, i.e, f3 =Y 5, Pip_i P where n means the total number
of physical invariants, e.g., in case of PATCHVERIF, the n
is 5 because it uses five physical invariants. (4) We obtain
the minimum value f,;,from a set of £;. We leverage f,;,
as the constant threshold to decide whether differences in
physical invariant properties are symptoms of faulty patches.
(5) We classify other 16 correct and 16 faulty patches from
TrainSetr and TrainSetc, i.e., these patches are not used
for obtaining f,;,. Then, we repeat the steps (1)-(5) five times,
i.e., running 5-fold cross-validation. As a result, using con-
stant thresholds to distinguish the faulty and correct patch
classes yields 80.8% precision, 89.5% recall, and 83.7% F1-
score. The high F1-score is caused by the fact that correct and
faulty classes are significantly different.

Yet, we decided to leverage ML-based classifiers because
(i) ArduPilot and PX4 do not explicitly mention such con-
stant thresholds in their documentation and (if) some patches
require us to distinguish multi-dimensional features which
the constant thresholds cannot handle. For example, a correct
patch increases the time to finish a mission but decreases
position errors.

C Details of Taint Analysis

To implement the static taint analysis, we first construct a
data-flow graph (DFG) through the following steps: (1) con-
vert the RV control software into bitcode that is the interme-
diate representation (IR) of LLVM, (2) transform the bitcode

Listing 4 An example patch code snippet [26] for illustrating
the inter-dependency issue in RV software. Developers add
one line of patch code at line 2.

1 void NavEKF3_core::InitialiseVariables() {

2 rngOnGnd = 0.05f;

30 ...}

4

5 void NavEKF3_core::EstimateTerrainOffset () {
6 terrainState = MAX (rngOnGnd, ...); ... }
7

8§ bool NavEKF3_core::getHeightControlLimit () {
9 height -= terrainState; ...}

10 ...

to its single static assignment (SSA) form, (3) perform An-
dersen’s pointer analysis, which is an inter-procedural, path-
insensitive, and flow-sensitive points-to analysis, to handle
data propagation through pointers, and (4) construct the DFG
that contains all data propagation through scalar and pointer
operations. Then, we run the taint analysis on top of the DFG.

In particular, we assign variables in a patch code snippet
as taint sources. Yet, deciding taint sinks in the RV control
software is not obvious because variables in the software
are highly inter-dependent. This is because the RV software
consists of control loops, and almost every variable in the
loops refers to variables in other functions. Ideally, inputs
to actuators would be taint sinks (i.e., hardware abstraction
layer (HAL) of device drivers). However, at this low level, we
lose any physical context that the inputs have due to the high
inter-dependency among variables. For example, as shown
in Listing 4, developers add a simple patch code at line 2.
rngOnGnd represents the offset at which a range finder sen-
sor is mounted on an RV. rngOnGnd’s value is propagated
to terrainState at line 6 and height at line 9. Here, al-
most every function in the RV software refers to the altitude
(i.e., height) because RV software’s main task is maintaining
proper attitude and altitude. When we analyze a data flow of
rngOnGnd, its value is propagated to 3,227 out of the 7,407
variables (43.6%) in the RV software. Due to the high inter-
dependency among variables in the RV software, it might be
challenging to perform data-dependency analysis (e.g., taint
tracking) [29].

To tackle the high data-dependency, we might consider
dynamic analysis without the help of static analysis. Yet, we
note that such dynamic analysis needs to find patch-triggering
inputs from the whole input space of RVs. Our ablation study
(ABy) in Section 8.8 shows that (i) static analysis reduces the
huge input space to the input set most likely to trigger a patch,
and (ii) dynamic analysis without the help of static analysis
is unlikely to trigger the patch code because it wastes most of
the time to test inputs unrelated to the patch code. Therefore,
we assign the synonym table (Figure 4) as the taint sinks.
Whenever a new tainted data propagation occurs, we compare
the new tainted variable’s name with the RV’s physical states
and environmental conditions on the synonym table.

	Introduction
	Background
	Motivating Example
	Threat Model
	Design Challenges
	PatchVerif
	Analyzing Physical Impact of a Patch
	Inferring Inputs Related to the Patch
	Creating Test Cases
	Analyzing Patch Type
	Mutation Engine
	Running Test Cases
	Bug Oracle
	Mutating Test Cases

	Implementation
	Evaluation
	Evaluation Setup
	Training Results
	Previously Unknown Bugs and Responsible Disclosure
	Analysis of the Discovered Bugs
	False Negatives and False Positives
	Case Studies
	Case Study 1: Object Avoidance Failure
	Case Study 2: Terrain-Following Failure

	Time Requirements
	Ablation Study
	Comparison with Other Works

	Limitations and Discussion
	Related Work
	Conclusions
	Additional Experiments about the Five Physical Invariants
	Using Other Classification Algorithms
	Decision Trees
	Neural Networks
	Constant Threshold Oracle

	Details of Taint Analysis

