
Finding Traceability Attacks in the Bluetooth Low Energy
Specification and Its Implementations

Jianliang Wu1,2, Patrick Traynor3, Dongyan Xu1, Dave (Jing) Tian1, and Antonio Bianchi1
1Purdue University, 2 Simon Fraser University, 3 University of Florida

{wu1220, dxu, daveti, antoniob}@purdue.edu, traynor@ufl.edu

Abstract
Bluetooth Low Energy (BLE) provides an efficient and con-

venient means for connecting a wide range of devices and
peripherals. While its designers attempted to make tracking
devices difficult through the use of MAC address randomiza-
tion, a comprehensive analysis of the untraceability for the
entire BLE protocol has not previously been conducted. In this
paper, we create a formal model for BLE untraceability to rea-
son about additional ways in which the specification allows for
user tracking. Our model, implemented using ProVerif, trans-
forms the untraceability problem into a reachability problem,
and uncovers four previously unknown issues, namely IRK
(Identity Resolving Key) reuse, BD_ADDR (MAC Address
of Bluetooth Classic) reuse, CSRK (Connection Signature Re-
solving Key) reuse, and ID_ADDR (Identity Address) reuse,
enabling eight passive or active tracking attacks against BLE.
We then build another formal model using Diff-Equivalence
(DE) as a comparison to our reachability model. Our evalu-
ation of the two models demonstrates the soundness of our
reachability model, whereas the DE model is neither sound
nor complete. We further confirm these vulnerabilities in 13
different devices, ranging from embedded systems to laptop
computers, with each device having at least 2 of the 4 issues.
We finally provide mitigations for both developers and end
users. In so doing, we demonstrate that BLE systems remain
trackable under several common scenarios.

1 Introduction

Bluetooth Low Energy (BLE) wirelessly connects billions of
devices. While BLE makes connecting devices with a range of
user interfaces (e.g., from headless systems such as speakers
to mobile phones and laptop computers) simple, the proto-
col’s designers understood that such connectivity could make
device owners traceable. To avoid this problem, BLE MAC
addresses are randomly generated and periodically changed.
In practice, however, this defensive measure has been broken
repeatedly due to inconsistent adherence to the standard or
poor implementations [13, 14, 22, 25, 33].

While MAC address tracking for BLE users has been well
studied, a systematic analysis of traceability across the entire
protocol has not yet been performed. Accordingly, this paper
conducts the first comprehensive analysis of untraceability
for BLE. To begin, we define untraceability as the inability
of a passive or active adversary to use specification-defined1,
protocol-level unique identifiers to de-anonymize/track a de-
vice. From this, we build a formal model by abstracting two
operating roles (i.e., central and peripheral2), three relations
between a tracker and a target device (i.e., the target device
has never paired, is now paired, and was paired but is un-
paired with the tracker), and five communication scenarios
(i.e., pairing, scanning, connection establishment, encrypted
communication, and authenticated communication). We then
follow each potential identifier as it passes through the pro-
tocol to determine whether it represents a traceable attribute.
As such, our model covers all connectivity scenarios across
the entire lifecycle of BLE communications while removing
impossible conditions (i.e., false positives).

In so doing, we make the following contributions:
• First Comprehensive Study of BLE Untraceability:

We develop a formal model for BLE untraceability that
covers all communication modes (e.g., advertising/scan-
ning/encrypted communication, etc.) and all roles. We
then implement our model in ProVerif [9] by transform-
ing the untraceability problem into a reachability prob-
lem, and identify four design limitations in the speci-
fications, namely IRK reuse, BD_ADDR reuse, CSRK
reuse, and ID_ADDR reuse, enabling a total of eight dif-
ferent tracking attacks against BLE. Compared with a
diff-equivalence model, our reachability model is sound,
as we will discuss in Section 3. Our model is publicly
available [3].

• Confirm Vulnerabilities in Real Devices: We validate
1This paper is based on Bluetooth version 5.3. The findings and mitigations

in this paper may also be applicable to other versions.
2Central and peripheral correspond to the now deprecated “master” and

“slave” roles previously used in the protocol.

our findings using 13 different BLE-enabled devices
(ranging from embedded devices and cell phones to lap-
top computers) and demonstrate that all such implemen-
tations contain at least two of these vulnerabilities. Exter-
nally, Google rated two of our vulnerabilities as severe,
assigned two CVEs, and awarded us a bug bounty.

• Propose Mitigations: We have reported our discoveries
to the Bluetooth Special Interest Group (SIG), which is
responsible for maintaining the standard, and proposed
possible updates to the standard. While the SIG consid-
ers longer-term fixes, we also discuss several steps that
developers and end-users can take to limit their exposure
to these vulnerabilities.

A comprehensive understanding of how BLE devices can
be tracked is crucial. Especially, the advent of systems like
COVID-19 Exposure Notification [28] means that some con-
nectivity scenarios previously considered unlikely (e.g., regu-
larly connecting with devices owned by someone else) are now
both practical and can result in a BLE device being tracked. We
provide two videos [1, 2] to show how an adversary can track
a target device through our newly disclosed vulnerabilities.

2 Background

Bluetooth Classic (BC) uses a fixed Media Access Control
(MAC) address, allowing a tracker to trivially track the device
by passively sniffing the traffic [18, 45]. Bluetooth Low Energy
(BLE) introduces a privacy feature based on the resolvable
MAC address mechanism to provide anonymity and prevent
naïve device tracking based on a fixed MAC address. The core
idea of this feature is that a BLE device uses Resolvable Private
MAC Addresses (RPAs) [11, p.2668] generated based on an
Identity Resolving Key (IRK). A BLE device must also have
an Identity Address (ID_ADDR) [11, p.2666] representing
its unique identity. During pairing, the BLE device uses the
key distribution to share its IRK and ID_ADDR with a peer
device so that the peer device can associate the IRK with the
ID_ADDR. By switching to different RPAs, the BLE device’s
MAC address appears random to a tracker, while the paired
peer device can use the IRK associated with the BLE device’s
ID_ADDR to resolve the RPA and recognize the BLE device.
Note that if the BLE device enables this privacy feature, it
should not include its ID_ADDR in any of its messages [11,
p.275] to avoid naïve tracking.

2.1 BLE Privacy Feature
To enable the resolvable MAC address feature, two procedures,
RPA generation and resolution, are needed. A target device
generates RPAs based on an IRK and uses these RPAs to
gain anonymity. Meanwhile, a paired peer device can use the
same IRK to resolve the RPAs and identify the target device
to guarantee general communication with the target device.

MSB LSB

0 1 hash part (h)

22 bits 24 bits

random part (r)

Figure 1: Format of a Resolvable Private Address (RPA). The
hash part (h) is generated by a hash function using the random
part (r) and a secret key (IRK).

RPA generation. An RPA has two major parts, a random
part (r) and a hash part (h), as shown in Figure 1. To gen-
erate a valid RPA, the device first randomly generates r.
Then the device calculates h based on r and the IRK using
the formula:ℎ = 𝑎ℎ(𝐼𝑅𝐾,01||𝑟), where 𝑎ℎ() is a hash func-
tion defined in the specification [11, p.1559] based on the
AES-128 block cipher. Lastly, a new RPA is generated as
rpa=01||r||h.
RPA resolution. When the peer device receives an RPA, it
extracts r and h from the RPA. Then, the peer device calculates
a localh value following the same formula based on r and the
stored IRK. Lastly, the peer device compares localh with h.
If they match, the peer device resolves the target device’s RPA
successfully and thus identifies the target device. The device
repeats the above steps for each of the IRKs if it has multiple
IRKs stored. If localh is different from h after trying with
all stored IRKs, the peer device cannot resolve the RPA and
thus cannot identify the target device.

2.2 Key Distribution and Removal
As mentioned, to enable the privacy feature of BLE and use
RPAs, a device must have an IRK to generate its RPAs. To
ensure a paired peer device can resolve the RPAs and recog-
nize the BLE device, the BLE device shall distribute its IRK
to the peer device. The key distribution is performed through
the pairing procedure, during which two devices establish a
mutually trusted relationship. Besides the IRK, the two de-
vices may also generate or exchange other keys, including
the Long-Term Key (LTK), which is used for encryption, and
the Connection Signature Resolving Key (CSRK), which is
used for signing messages. After pairing, the two devices can
recognize each other when using RPAs as well as perform
encrypted communication using LTK.

For example, consider two devices, Alice and Bob, that have
never been paired. If they want to communicate, they pair with
each other to establish a trusted relationship. During pairing,
Alice stores the keys received from Bob so that she can reuse
them (e.g., using the LTK for encryption) when she communi-
cates with Bob again. Similarly, Bob also stores Alice’s keys.
If Alice does not communicate with Bob anymore, she unpairs
from (or forgets) Bob to terminate the trust with Bob. When
Alice unpairs from Bob, Alice removes all keys related to Bob.
Since the unpairing depends on Alice (i.e., the initiating party)
and does not involve any communication with Bob, Bob is
unaware of the unpairing and still stores Alice’s keys after the

unpairing. Nothing prevents a peer device from keeping these
keys after unpairing.

2.3 Threat Model
We define an adversary, which we will refer to as a tracker,
that intends to de-anonymize and track a target device using
the protocol-level information of BLE.

To be comprehensive, we consider a target BLE device
supporting both the central role (e.g., smartphones) and the
peripheral role (e.g., smart locks [17]). Additionally, we as-
sume the target device supports all communication scenarios
defined in the specification for each role, such as encrypted
communication. The target device can be a BLE-only device
(e.g., a smart lock) or a BC/BLE dual-stack device (e.g., a
smartphone). For a dual-stack device, we assume it does not
initiate BC communications since prior research [18, 45] has
shown that a BC device can be tracked. In other words, we as-
sume the BC stack is not in use and is in the non-discoverable
mode [11, p.1258] on a BC/BLE dual-stack device. Note that
a BC device can still respond to requests containing its MAC
address (i.e., paging requests [11, p.257]). Likewise, we as-
sume the target device always uses RPAs and does not use a
fixed MAC address to prevent naïve tracking by monitoring
messages carrying its MAC address. This configuration is the
default setting on modern mobile devices, such as iPhones
and Android phones (e.g., Google Pixels).

For trackers, we consider both passive and active trackers.
A passive tracker is an observer who can only eavesdrop on
the BLE channel, while an active tracker interacts with the
target device following the specification. We assume that the
tracker can deploy one or more devices to track the physical
location of the target device, which is a common setting for
tracking attacks [22, 25, 33] and real-world tracking scenarios,
such as indoor positioning [36, 37, 40].

3 Research Questions

Systematically studying BLE untraceability at the protocol
level requires answering fundamental questions (Q) regarding
BLE traceability and exposes unique challenges (C). Solutions
to these challenges will pave the way to a better understanding
of BLE untraceability and privacy.
Q1. Is a BLE device traceable? Existing research [22, 25,
33] considered a device as traceable if and only if its messages
carry a fixed MAC address. As such, it is unclear if a BLE
device is still traceable when it changes its MAC addresses by
enabling the BLE privacy feature. In fact, besides the tracking
based on the MAC address, nothing guarantees that there
are no other ways to track a privacy feature-enabled BLE
device. For this reason, (C1) without a clear definition of
BLE traceability (or untraceability), it is impossible to
determine whether a BLE device is traceable or not.

Approach: Instead of considering only the MAC address
as a device’s identifier, we consider a piece of information
a privacy-sensitive identifier if it is unique per device. After
determining these identifiers, we consider a device trackable
not only if a tracker can directly observe messages containing
any identifier but also if a tracker can identify messages that
are indirectly generated using any identifier. In terms of the
tracker, we consider two scenarios where a tracker can track a
target device, either passively or actively. We define a BLE
device as untraceable if neither a passive tracker nor an active
tracker can identify and track this BLE device by linking any
messages it sends to any of its identifiers. We will present
more details in Section 4.1.
Q2. In which communication scenario can a BLE device be
tracked? A BLE device may support several communication
scenarios, such as encrypted and authenticated communication.
In addition, a BLE device can act as different roles behaving
differently (i.e., the central role vs. the peripheral role). More-
over, the specification allows various implementation choices.
For instance, a BLE stack can use either a public address or
a random MAC address as a device’s ID_ADDR. Ideally, a
BLE device should be untraceable in all BLE communica-
tion scenarios no matter what role it is in. For this reason,
(C2) the complexity of BLE communication imposes chal-
lenges for comprehensively and systematically studying
BLE untraceability.
Approach: To address this challenge, we use formal analysis
techniques and build a symbolic model by abstracting five
communication scenarios covering the whole BLE communi-
cation lifecycle. In each communication scenario, we model
a target BLE device with two different roles, the central role
and the peripheral role. Moreover, we explore all three possi-
ble relations between a target device and a tracker. With our
communication and relation abstractions, our model compre-
hensively covers all the scenarios of a target device defined in
the specification. We will present more details in Section 4.2.
Q3. How do we formally verify BLE untraceability? For-
mal untraceability usually refers to the notion of “strong un-
linkability” [5], which is defined based on Process Equiva-
lence (PE). However, since PE involves relations between
traces rather than one single trace, automatically verifying
PE is challenging [7, 8, 26, 31]. To avoid the challenges
posed by proving PE, existing work defined untraceability
in an alternative way. They abstract untraceability into three
conditions that can be represented by reachability proper-
ties [7, 30]. This definition improves the PE-based defini-
tion in several ways. However, these three conditions are
themselves difficult to verify, and they require either restric-
tion to a narrow set of protocols [30] or providing multiple
manually-defined lemmas [7] (using a theorem prover such as
Tamarin [35]). In order to automate untraceability verification,
other work [21, 23, 46] adopted a definition of untraceability
by using Diff-Equivalence (DE) properties [24], which are
another type of reachability properties. If a protocol’s DE

properties hold, it means that among different executions of
the protocol, the message they exchange is the only difference.
Though DE-based properties can be automatically verified,
this approach may lead to false attacks [10, p.124] [44, p.129].
In Section 5.2, we will further show that modeling BLE un-
traceability based on DE properties can lead to both false
attacks and missed attacks. All these reasons lead to: (C3)
verifying untraceability based on DE properties may lead
to false attacks.
Approach: In this paper, we consider a protocol as untrace-
able if a tracker cannot distinguish two instances of the proto-
col she interacts with. Instead of using DE properties to verify
untraceability, we explicitly model the tracker’s capabilities
(e.g., injecting probing messages) and the Bluetooth proto-
col’s states, and transform the untraceability of a BLE device
into a reachability problem that can be proved without false
attacks. In this way, we can use existing verification tools (e.g.,
ProVerif or Tamarin) to automatically verify the untraceabil-
ity of a BLE device, as a sound technique for finding attacks.
Specifically, we first extract five pieces of information from the
specification as the device’s identifiers. Then, we build tracker
modules corresponding to each identifier to check whether a
received message can be linked to the corresponding identi-
fier of a target device. Lastly, we model a device as it emits
a receiving event each time it receives a message and emits
a sending event each time it sends a message. In the tracker
modules, the tracker emits a sending event when sending a
probing message and emits a receiving event when receiving a
message that can be linked to an identifier. In this way, the un-
traceability of a device can be represented by the reachability
of corresponding event combinations.

Note that our definition of untraceability is narrower than
the DE-based definition, which is narrower than the PE-based
definition that is similar to the three-condition-based definition.
In theory, the DE-based, the PE-based, and the three-condition-
based definitions can capture the attacks discovered based on
our definition. Nonetheless, using a more specific definition,
our approach overcomes the challenges of the complexity
or inability to automate verification in the three-condition-
based and the PE-based definitions and the inclusion of false
attacks in the DE-based definition. More details can be found
in Section 4.3.

4 Model Design and Implementation

In this section, we present our definition of BLE untraceabil-
ity at the protocol level followed by the design and imple-
mentation of our model to verify the BLE untraceability. We
implement our model using ProVerif [9] due to its modeling
features, such as the event feature (which we will introduce in
detail in Section 4.3.3). We believe other symbolic reasoning
tools, such as Tamarin [35], are also suitable here.

4.1 Definition of BLE Untraceability
We consider BLE untraceability regarding all protocol-level
information that can be used as a device’s unique identifiers.
Furthermore, we call the messages that can be linked to iden-
tifiers linked messages (LKDmsgs) and others irrelevant mes-
sages (IRRmsgs). A tracker can link a message to an identifier
if the message contains this identifier or the tracker can de-
rive the identifier from the message. For example, one BLE
device may use RPAs for advertising. The advertisement is a
LKDmsg of the corresponding IRK since the RPA contained
in the advertisement is derived from this IRK.

We consider both passive and active trackers and summarize
the following two tracking scenarios:
T1: (Traceability in Passive Tracking) When the target
device is communicating with another BLE device, a passive
tracker can observe LKDmsgs.
T2: (Traceability in Active Tracking) When the target de-
vice is not communicating with another BLE device: 1) an
active tracker probes the target device with LKDmsgs and
receives any replying messages; 2) an active tracker probes
the target device with IRRmsgs and receives LKDmsgs.

Accordingly, we define a BLE device as untraceable, if
neither a passive tracker nor an active tracker can identify
and track this BLE device by linking any messages to any
of the device’s identifiers (both T1 and T2 are false).

We use 𝐾 , 𝐵, Δ, and 𝐴 to represent all communication
scenarios, roles of the target device, the relations between
the target device and the tracker, and the tracker’s capabili-
ties, respectively. One BLE communication scenario of the
target device 𝜃 can be represented by a three-tuple ⟨𝜅,𝛽,𝛿⟩,
where 𝜅 ∈ 𝐾,𝛽 ∈ 𝐵,𝛿 ∈ Δ. We use 𝑢𝑛𝑡𝑟𝑎𝑐𝑒_𝑝𝑎𝑠𝑠𝑖𝑣𝑒(𝜃,𝛼)
and 𝑢𝑛𝑡𝑟𝑎𝑐𝑒_𝑎𝑐𝑡𝑖𝑣𝑒(𝜃,𝛼), where 𝛼 ∈ 𝐴, to denote that the tar-
get device is untraceable when it performs communication
𝜃 with the tracker 𝛼 in the passive tracker and active tracker
scenarios, respectively. Therefore, whether a BLE device is
untraceable can be represented with the following formula:

∀𝜅 ∈𝐾,∀𝛽 ∈ 𝐵,∀𝛿 ∈ Δ,∀𝛼 ∈ 𝐴,
𝑢𝑛𝑡𝑟𝑎𝑐𝑒_𝑝𝑎𝑠𝑠𝑖𝑣𝑒(⟨𝜅,𝛽,𝛿⟩ ,𝛼)∧𝑢𝑛𝑡𝑟𝑎𝑐𝑒_𝑎𝑐𝑡𝑖𝑣𝑒(⟨𝜅,𝛽,𝛿⟩ ,𝛼) (1)

4.2 BLE Communication Abstraction
According to the specification, we abstract BLE communi-
cation into five scenarios, namely pairing (PAIR), scanning
(SCAN), connection establishment (CE), encrypted communi-
cation (ENCC), and authenticated communication (AUTHC)
covering all BLE communication scenarios, as shown in Fig-
ure 2. If the BLE device is BC/BLE dual stack, we also add
BC paging as an extra scenario, since a BC device can still
perform paging, as explained in Section 2.3.

In addition, we cover all possible relations between two de-
vices during the entire lifecycle of their BLE communication.
Specifically, we assume the target device may have three rela-
tions with a tracker: 1. The target device has never paired with

CE

PAIR

Pair with a peer device

Connect

ENCC AUTHC
Encrypted

communication
Authenticated

communication

SCAN
Connect

Device discovery

Disconnect

Disconnect

Initial
State

Figure 2: Transitions between the five communication scenar-
ios in the lifecycle of a BLE communication.

a tracker (never); 2. The target device is currently paired with
the tracker (paired); 3. The target device was paired with the
tracker but is unpaired now (unpaired). Our implementation
can be found in our code repository [3].
Pairing (PAIR). Since the security of the pairing procedure
is not the focus of this paper and has been explored in prior
work [48], we use the out-of-band (OOB) association model
in our model and assume that the OOB channel is secure.

In the last step of pairing, the target device shares its IRKs,
CSRKs, and ID_ADDRs with a peer device. The LTK is de-
rived by the two devices individually, and thus not shared. As
we will discuss in Section 4.3.1, it is not clear in the specifica-
tion whether a device should use a per-pairing or per-device
CSRK. In our model, we consider both cases. In the per-device
design, the target device uses one randomly generated CSRK
for all pairings, while the target device randomly generates
a CSRK for each pairing in the per-pairing design. We also
model both the per-device and the per-pairing designs for IRK.

The target device and the peer device are implemented
as process macros in ProVerif communicating through an
open channel. The LTKs, IRKs, CSRKs, and ID_ADDRs are
stored in corresponding tables (databases for storing data in
ProVerif) after the key exchange so that they can be reused in
other communication scenarios.
Scanning (SCAN). The scanning starts with a peripheral
device broadcasting advertising messages containing its MAC
address. Upon receiving the advertising message, a central
device sends a scan request message containing the central
device’s MAC address. Finally, the peripheral device replies
with a scan response. All the target device’s MAC addresses
in the messages are RPAs, as discussed in Section 2.3.

The target device and peer device are also implemented as
process macros. The target device retrieves its IRK from the
IRK table to generate RPAs. Since the messages are sent over
the air, all messages are exchanged via an open channel.
Connection Establishment (CE). Connection establishment
also starts with a peripheral device advertising. Once receiving
the advertising message, a central device sends a connection
request message containing its MAC address to a peripheral
device to establish a connection. Like scanning, the target
device also uses RPAs in its messages and retrieves its IRK

from the IRK table to generate RPAs. The two devices are
also implemented as process macros and exchange messages
via an open channel.
Encrypted Communication (ENCC). After the establish-
ment of a connection, if the upper-layer application requires
encryption to guarantee message confidentiality and authen-
ticity, two devices can start encrypted communication. The
two devices first derive a session key and a session nonce
from two exchanged nonces and the LTK. Then, they encrypt
messages using the session key and session nonce and trans-
mit. To generalize the message transmission, we model the
central device sending a request message and the peripheral
device replying with a response message. The two devices are
implemented as process macros, and they obtain their LTKs
from corresponding LTK tables where the LTKs are stored.
All nonces and messages are exchanged over the air, and thus
modeled as exchanged via an open channel.
Authenticated Communication (AUTHC). After connec-
tion establishment, besides ENCC, two devices can also per-
form authenticated communication to provide authenticity
guarantees (without confidentiality). The central device re-
trieves its CSRK from the CSRK table and generates a sig-
nature of its message. Then, the central device appends the
signature to the message and sends it to the peripheral device.
Finally, the peripheral device retrieves the central device’s
CSRK from the corresponding table and verifies the signature.
Both devices are implemented as process macros, and the
authenticated message is sent via an open channel.
Paging (PAGE, BC/BLE only). In the non-discoverable
mode, a BC/BLE dual-stack target device does not respond
to BC inquiries, but it still responds to BC page requests [11,
p.1258]. If the target device receives a page request that con-
tains its BD_ADDR, the target device replies with a page
response. Paging on the target device is also implemented as
process macros. Since the page request and page response are
sent over the air, we model that these messages are exchanged
via an open channel.

4.3 Verification of BLE Untraceability
To verify BLE untraceability, we first extract all protocol-level
information that can be used as a device’s unique identifiers
(Section 4.3.1). Then, we transform the untraceability of a BLE
device into reachability properties by modeling a tracker’s
capabilities (Section 4.3.2) and representing untraceability
as a reachability problem (Section 4.3.3). In this way, we
can verify BLE untraceability using existing tools without
worrying about false attacks, as we will explain in Section 5.2.

4.3.1 BLE Protocol-Level Identifiers

We systematically study the specification by examining all
protocols that must be implemented by a BLE device (i.e.,
the BLE link layer [11, p.2653], the attribute protocol [11,

Table 1: Protocol-level identifiers of a BLE device and their corresponding major properties. Per-device: a device uses the same
value in different pairings. Per-pairing: a device uses different values in different pairings.

Name Value Spec. Rec. Type Usage
PK Public Key. Randomly generated Per-pairing Short-term Calculate Diffie-Hellman key
LTK Long-Term Key. Derived from exchanged values of the two pairing BLE devices, e.g., MAC

addresses and nonces Per-pairing Short-term Derive a session key that is used
for encryption

IRK Identity Resolving Key. Randomly generated or assigned during manufacturing [11, p.1588] Per-device Long-term Generate and resolve RPAs
CSRK Connection Signature Resolving Key. Randomly generated or assigned during

manufacturing [11, p.1588]
Per-pairing/
Per-device

Short-term/
Long-term

Generate and verify signatures
for authenticated communication

ID_ADDR Identity Address. Public address or static random address Per-device Long-term Device identity

Target device
(Alice)

BLE device
(Bob)

Passive
tracker

msg_A1...

msg_A1

msg_Anmsg_An

...

Verify whether received
messages can be linked to

an identifier.

M1 Five BLE
communication

scenarios

Five BLE
communication

scenarios

Paging
(BC/BLE only)

..

M5

Figure 3: Illustration of the five passive tracker modules (M1-
M5) in our model.
p.1406], the generic attribute profile [11, p.1464], and the
security manager protocol [11, p.1549]). Based on this study,
we extract five pieces of information that can be an identifier
of a BLE device due to their uniqueness, as listed in Table 1.
We categorize the identifiers into two types, i.e., long-term
and short-term. The long-term identifiers are permanent or
valid until a device revokes them, while the short-term ones
are one-time identifiers or identifiers valid per-pairing. Note
that all these identifiers will be sent to a paired peer device
during pairing.

As the table shows, some identifiers are supposed to be
unique per-pairing while others are per-device. Particularly,
the specification recommends a BLE device changing its Pub-
lic Key (PK) after every pairing (per-pairing) [11, p.974].
Since the nonces used to derive the Long-Term Key (LTK)
are different in each pairing, the LTK should also change in
each pairing (per-pairing). Unlike the PK and LTK, the speci-
fication [11, p.1622] states that, “The distributed IRK shall be
the same for all devices it is distributed to”, which indicates
that a device should distribute the same IRK to all devices it
pairs with (per-device). The Connection Signature Resolving
Key (CSRK) is used to support sending authenticated data
over an unencrypted connection [11, p.274]. It is not clear in
the specification whether the CSRK should be per-pairing or
per-device. We interpret this ambiguity in the specification as
both are allowed. Finally, the ID_ADDR, which represents a
device’s identity, can be either a public address [11, p.2666] or
a static random address [11, p.2666]. In a BC/BLE dual-stack
device, the public address is also the MAC address of BC
(BD_ADDR) [11, p.2122].

4.3.2 Tracker Modeling

Figure 3 and Figure 4 illustrate the overall design of the tracker.
We design the tracker following the generic passive and active

Target device
(Alice)

Active
tracker

probing_1

...

probing_n

Verify whether received messages can be linked
to an identifier.

M1' Five BLE
communication

scenarios

Paging
(BC/BLE only)M5'

...

Figure 4: Illustration of the five active tracker modules (M1’-
M5’) in our model.

trackers modeling and offering different tracker instantiations
to be plugged in. Specifically, we instantiate one tracker mod-
ule for each identifier (M1-M5 and M1’-M5’ in Figure 3 and
Figure 4 respectively). Each tracker module follows the usage
of the corresponding identifier according to the BLE specifica-
tion when checking whether a received message is a LKDmsg
of the identifier. We design five tracker modules corresponding
to the five identifiers. Each module comprehensively covers
all specification-defined ways to check whether a message is
a LKDmsg of an identifier. These five modules are adjusted
accordingly in the passive and active tracker scenarios and
when the target device acts as the central role and the periph-
eral role, resulting in 20 (5x2x2) tracker modules in total. We
now present the detailed design of each of the tracker modules.
Our implementation can be found in our code repository [3].
PK tracker module. According to the specification [11,
p.1630], a device’s PK is shared in plaintext and only used to
calculate the Diffie-Hellman key during pairing. Therefore,
this tracker module checks whether an eavesdropped or re-
ceived message is a LKDmsg of the target device’s PK by
checking whether they are equal.
LTK tracker module. The only use of an LTK is to derive
a session key for encrypting the data transmitted in ENCC.
Accordingly, the LTK tracker module verifies whether a re-
ceived message is a LKDmsg of the target device’s LTK by
trying to derive a session key from the LTK and to decrypt
this message using the session key. A message is a LKDmsg
of the LTK if this message can be successfully decrypted with
the derived session key.
IRK tracker module. The specification uses the IRK to
generate RPAs and allows for a distribution of the encrypted
IRK to a peer device during pairing. Accordingly, the IRK
tracker module leverages two ways to verify whether a re-
ceived message is a LKDmsg of the target device’s IRK. First,

for messages that contain RPAs, this tracker module tries to
resolve the RPA with the target device’s IRK. The message is
a LKDmsg of the IRK if the RPA can be resolved. Second, for
encrypted messages, our module tries to decrypt the message
and check whether the decrypted message is equal to the IRK.
CSRK tracker module. Like IRK, the specification defines
two ways to use the CSRK. The first one is to generate a sig-
nature of a message during the authenticated communication,
and the second one is to distribute the encrypted CSRK to a
peer device during pairing. Accordingly, our module verifies
the signature of a message (if a signature is present) using
the CSRK. The message is a LKDmsg of the CSRK if the
signature verification is successful. Our module also tries to
decrypt the message and check whether the decrypted message
is equal to the CSRK.
ID_ADDR tracker module. According to the specifica-
tion, to prevent tracking, a target device should not use its
ID_ADDR in any of its messages [11, p.2889]. Therefore, the
only usage of ID_ADDR by the target device is to send to
a peer device during pairing (protected by encryption when
sent over the air). Accordingly, the ID_ADDR tracker mod-
ule tries to decrypt received over-the-air messages and check
whether the decrypted message is equal to the ID_ADDR.
As discussed in Section 2.3, if the target device is BC/BLE
dual-stack, it can still accept BC page requests. As such, this
tracker module also constructs and sends a LKDmsg of the
ID_ADDR (BC page request) to probe the target device.

4.3.3 Event-Based Untraceability Representation

In ProVerif, an event can be used to mark a specific stage of
a protocol without affecting its execution. During the verifi-
cation, events can be emitted. If an event is emitted, it means
that all operations before this event are executed.

To represent untraceability as a reachability property, in
the model of Alice (the target device), Alice emits a send-
ing/receiving event after sending/receiving a message. In the
passive tracker model, the tracker emits a receiving event if
the received message is a LKDmsg of an identifier. Therefore,
T1 can be transformed into the following reachability property
in ProVerif:
P1: query msg: bitstring; event(alice_send(msg)) &&
event(tracker_receive(msg))

If and only if P1 is violated (reachable), both events
(alice_send and tracker_receive) happen in a single
trace, meaning that the message sent by Alice can be received
by the tracker, and that this message is a LKDmsg of one of Al-
ice’s identifiers. Thus, the tracker can track Alice. Accordingly,
Alice is untraceable by a passive tracker if P1 holds.

In the active tracker model, the tracker emits a sending
event after sending a probing message and a receiving event if
receives a replying message. Therefore, T2 can be transformed
into the following reachability property in ProVerif:

P2: query probe: bitstring, rsp: bitstring;
event(tracker_send(probe)) && event(alice_receive(probe))
&& event(alice_send(rsp)) && event(tracker_receive(rsp))

Similarly, P2 can be violated (reachable), if and only if these
four events (tracker_send, alice_receive, alice_send,
and tracker_receive) happen in one single trace. In this
trace, Alice receives a probing message from the tracker and
replies with a message received by the tracker. Since either the
probing message or the replying message is a LKDmsg of one
of Alice’s identifiers, the tracker can track Alice. Conversely,
if P2 holds, Alice is untraceable by an active tracker.

Note that P1 and P2 can be violated in multiple ways since
Alice emits an event for each message she sends or receives.
To find all violations (all the possible ways to track a BLE
device), after a violation is revealed, we disable the corre-
sponding events of Alice and run the verification again until
no violations are detected. In summary, by combining the
tracker modules (M1-M5 and M1’-M5’) and the untraceabil-
ity transformation (P1 and P2), we can automatically verify
the untraceability of a BLE device in a systematic and com-
prehensive manner.

5 Model Evaluation

To discover potential privacy issues leading to device tracking
attacks, we use our model to verify the untraceability of Alice
(the target device) by querying the two reachability properties
(i.e., P1 and P2). We first verify these two properties in the one-
session setting, i.e., each process runs once. If a property holds,
we will further verify if it still holds in the two-session setting,
i.e., each process runs twice. Note that if a property is violated
in the one-session setting, it will also be violated in the two-
session setting. Therefore, we do not need to re-verify it in the
two-session setting. We will discuss the property verification
in the settings of three or more sessions in Section 8. Using our
model, we were able to identify four privacy issues that allow a
tracker to track Alice if she has been paired with a device under
the tracker’s control. In this section, we present our verification
results corresponding to these privacy issues. Lastly, we build
an alternative model attempting to verify the untraceability
of Alice using DE (diff-equivalence) properties, and we will
show the issues of this alternative modeling approach.

5.1 Identified Privacy Violations
When a violation is detected, ProVerif provides a correspond-
ing attack trace. We first analyze these traces and categorize
similar traces into the same attack if, in these traces, the tracker
follows the same procedure to conduct the tracking attack. In
the same attack, Alice might act as different roles in different
communication scenarios. Based on the attacks, we summa-
rize four issues (root causes) that enable these tracking attacks.

Among these attacks, some are straightforward (i.e., At-
tack 1 and Attack 4) because they do not require extra user

Table 2: Detected privacy violations, their corresponding root
causes and affected communication scenarios. 1, 2, 3, and 4:
violation caused by Issues 1, 2, 3, and 4, respectively.

Alice’s Role Communication
Tracker Type

Passive Active
1

Central

PAIR
1

2 3
3 4
4 SCAN 1 1
5 CE 1 1
6 ENCC
7 AUTHC 3 3
8 PAGE 2
9

Peripheral

PAIR
1

10 3
11 4
12 SCAN 1 1
13 CE 1
14 ENCC
15 AUTHC
16 PAGE 2

actions nor specialized hardware. Others require additional
steps due to the extra prerequisite of the attack, such as user
actions in Attacks 2, 3, 6, 7, and 8 and a Software-Defined
Radio (SDR) in Attack 5. Among the 8 attacks, Attack 4 is
expected when we noticed that BD_ADDR is not used in BLE
yet shared during pairing in our earlier BLE experiment. Our
analysis further concretizes the violation by generating attack
traces. Conversely, all the other 7 attacks are discovered by
our formal modeling and analysis without any prior hints. In
the rest of this section, we will focus on explaining the de-
tected privacy violations listed in Table 2, the corresponding
tracking attacks, and the summarized issues causing these vi-
olations. The full result of the verification is shown in Table 7
in Appendix B. All the attack traces can be generated using
our code [3].
Issue 1: IRK reuse. The violations indicated by 1 in Table 2
are caused by Alice reusing the IRK for different devices she
pairs with. Thus, she distributes the same IRK to all devices
(Bob and the tracker) she pairs with. Since the IRK is per-
device, the same IRK remains valid even after Alice unpairs
from the tracker, and Alice still uses this IRK for future connec-
tions. Hence, the tracker can use this IRK to identify and track
Alice even after Alice unpaired from the tracker. This issue af-
fects both the central role and the peripheral role because both
roles can send messages containing RPAs generated using the
IRK. Because IRK is a long-term identifier, the attacks (i.e.,
Attacks 1, 2, and 3) exploiting this issue are valid until the
device explicitly revokes it (e.g., reset network configurations
or factory reset).

Violations in the Passive column, rows #4, 5, 12, and 13
share a similar trace, representing the same device tracking
attack (Attack 1). We will elaborate on this attack and provide
a concrete tracking scenario based on this attack trace in Sec-
tion 6.2.1. In this example, we will demonstrate that a tracker
can track an Android phone when its COVID-19 Exposure
Notifications system is enabled.

The traces of violations in rows #1 and 9 are similar, leading
to the same attack (Attack 2). As the trace indicates, after
Alice unpairs from the tracker, the active tracker can initiate
a new pairing with a random BLE device. The tracker can
identify this random BLE device as Alice if the received IRK
in the new pairing is Alice’s IRK, which is obtained during
the previous pairing with Alice.

Violations in the Active column, rows #4, 5, and 9 also
share a similar trace, resulting in the same attack (Attack 3).
The trace shows that when Alice is not communicating with
Bob, after Alice unpairs from the tracker, the active tracker can
send probing advertising messages to Alice. If Alice replies to
the advertising messages with either scan request or connec-
tion request messages, the tracker can receive these messages.
Since Alice’s IRK obtained by the tracker is still valid after
Alice unpairs from the tracker, the tracker can use this IRK to
resolve the RPA in the message and identify Alice. Compared
to Attack 1, Attack 2 and Attack 3 are less practical since they
require Alice to perform certain actions, such as replying to
an advertising message or accepting a new pairing.
Issue 2: BD_ADDR reuse. The issue leading to the viola-
tions denoted by 2 in Table 2 is that Alice reuses her public
address, which is also her BC’s MAC address (BD_ADDR [11,
p.2122]) if Alice is BC/BLE dual-stack, as its ID_ADDR in
BLE communications. The traces of these two violations are
similar, resulting in the same attack (Attack 4). We will de-
tail this attack and provide a concrete attack example in Sec-
tion 6.2.2, where a tracker can track a BC/BLE dual-stack
Android phone as long as its Bluetooth is enabled. Since
BD_ADDR is a long-term identifier (e.g., even unchangeable
on some devices, as we will further demonstrate in Table 5),
Attack 4 remains valid until the device changes its BD_ADDR,
or even forever.
Issue 3: CSRK reuse. The violations indicated by 3 in Table 2
are caused by the design limitation which allows the CSRK to
be long-term (i.e., allowing a BLE device to reuse the CSRK
when pairing with different devices). In this case, Alice uses
the same CSRK for all devices she pairs with. Like IRK, Alice
distributes the same CSRK to all devices she pairs with, and
this CSRK remains valid after Alice unpairs from the tracker.
As a result, the tracker can use this CSRK to identify Alice
by verifying the signature in an authenticated message or
directly comparing two CSRKs. This issue only affects the
central role since only the central role can send authenticated
messages [11, p.1511]. Because CSRK can be a long-term
identifier, attacks exploiting this issue (i.e., Attacks 5, 6, and
7) are applicable until the device explicitly revokes its CSRK
(e.g., reset network configurations or factory reset).

The violation in the Passive column, row #7 shows that
after Alice unpairs from the tracker, the passive tracker can
still track Alice when she sends authenticated messages to
Bob (Attack 5). The attack trace suggests that, when Alice
sends authenticated messages to Bob, these messages may be
eavesdropped by a passive tracker. Since after Alice unpairs

from the tracker, the CSRK stored on the tracker is still valid,
the tracker can use this CSRK to verify the signature in the
eavesdropped authenticated message. Thus, the tracker can
identify Alice if the signature verification is successful. Since
Alice sends Bob authenticated messages on general-purpose
channels [11, p.2670] with frequency hopping, this attack
requires an SDR to sniff the authenticated messages.

The violation in the Active column, row #7 shows that the
unpaired active tracker can identify Alice using her CSRK
(Attack 6). The generated trace indicates that, after unpairing,
the active tracker can send probing advertising messages first.
If Alice connects to the tracker and sends authenticated mes-
sages to the tracker, the tracker can use the same way to verify
the signature and identify Alice using her CSRK. Compared
to Attack 5, Attack 6 does not require an SDR because Alice
directly communicates with the tracker. However, it needs
Alice to initiate the connection to the tracker.

The traces detecting violations in rows #2 and 10 are similar,
resulting in the same attack (Attack 7). After Alice unpairs
from the tracker, the active tracker can initiate a new pairing
with a BLE device. The tracker can recognize this BLE device
as Alice if the received CSRK in the new pairing is the same
as Alice’s CSRK obtained during the last pairing with Alice.
Though Attack 7 does not need an SDR, it requires Alice to
approve a new pairing with the tracker.
Issue 4: ID_ADDR reuse. The issue resulting in the violations
denoted by 4 in Table 2 is that Alice reuses the ID_ADDR
for all devices she pairs with, and this ID_ADDR remains
valid after unpairing. These two violations share a similar
trace and lead to the same attack (Attack 8). As the trace
suggests, after Alice unpaired with the tracker, the tracker can
proactively initiate a new pairing with random BLE devices
and identify a device as Alice if the received ID_ADDR in the
new pairing is the same as Alice’s. Attack 8 requires Alice to
approve a new pairing with the tracker. This issue affects both
roles since both roles would distribute the ID_ADDR during
pairing. Since ID_ADDR is a long-term identifier (e.g., does
not change until resetting network configurations or factory
reset), attack 8 is valid until the device explicitly changes its
ID_ADDR .

5.2 Comparison with DE-based Model
As discussed in Section 3 and Section 4, verifying BLE un-
traceability using reachability properties can avoid false at-
tacks identified by existing tools. To better understand the
effectiveness of avoiding false attacks, we implement a pri-
vacy model of BLE (per-device identifier design) based on
DE properties.

In this model, we model the five types of BLE communi-
cation and verify the DE properties of the identifiers listed
in Table 1. We use the choice[id,rand_id] functionality
provided by ProVerif to verify DE properties. If the property
holds (ProVerif outputs True), the tracker cannot tell if the tar-

Table 3: Results comparison between our reachability-based
model and an alternative DE-based model. ⚫: the alternative
model generates false attacks (i.e., false positives). ◼: the
alternative model cannot generate an attack trace (i.e., false
negatives). Cen: central; Per: peripheral; P: passive tracker;
A: active tracker

Communication
PAIR SCAN CE ENCC AUTHC PAGE

Ali
ce’

sre
lati

on
wit

hth
etr

ack
er,

Al
ice

’sr
ole

,an
dt

rac
ker

’st
yp

e
Ne

ver Ce
n P ⚫ ⚫ ⚫ ⚫

A ⚫ ⚫ ⚫ ⚫

Pe
r P ⚫ ⚫ ⚫

A ⚫ ⚫ ⚫

Pa
ire

d Ce
n P ⚫ ⚫

A ⚫ ◼

Pe
r P ⚫ ◼

A ⚫ ◼

Un
pai

red Ce
n P ⚫ ⚫

A ⚫ ◼

Pe
r P ⚫ ◼

A ⚫ ◼

get device uses id (the target device’s identifier) or rand_id
(a random identifier) during the communication. It means
that the tracker cannot use id to track the target device. Since
ProVerif verifies a stricter condition than the actual condition
when DE properties hold [10, p.62], it may generate false at-
tacks where the stricter condition fails but the DE property
holds. We consider an attack as false if and only if the follow-
ing two conditions are both true: 1) ProVerif outputs Cannot
be proved but still generates an attack trace, and 2) the attack
indicated by the attack trace is not feasible for tracking upon
validation. ProVerif may also find a true attack that both the
stricter condition and the DE property are violated. In these
two cases (i.e., finding false or true attacks), ProVerif outputs
Cannot be proved because it is not sure whether the DE
property is actually violated or not. Note that in these two
cases, ProVerif may or may not be able to find an attack trace
(no matter false or true attack trace).

Table 3 shows the comparison between the verification re-
sults generated by our reachability-based model and the alter-
native DE-based model. As the table shows, compared to our
reachability-based model, the DE-based model generates both
false attacks and missed attacks. The full verification results
of the DE-based model are shown in Table 6 in Appendix B.
Internally, DE properties are also represented by reachability
properties in ProVerif. However, since our reachability prop-
erties implying untraceability are more specific and precise,
our model can avoid the false attacks that are inevitable in the
DE-based model. Note that, in some cases, false attacks can
also be avoided by modeling the operations of a device more
precisely, such as the modeling in the three-condition-based
definition, as proposed by previous research [7, 30].

For the scenarios denoted by ⚫ in the table, the results of our
reachability-based model show that the untraceability holds.
However, the results of the DE-based model indicate that the
untraceability is violated. After inspecting the corresponding
attack traces, we found that these attack traces are false attacks.
With further investigation, these false attacks are caused by

the stricter condition adopted in proving the DE properties of
a protocol with branches. If a protocol contains two branches
(i.e., if and else branches), ProVerif proves the DE property
only when the two protocol instances always take the same
branch. Thus, ProVerif detects it as a violation if the if branch
is executed in one protocol instance while the else branch
is executed in the other instance. However, the protocol still
preserves untraceability if the tracker cannot distinguish the if
branch from the else branch.

In the scenarios where the untraceability can be violated (in-
dicated by ◼), the DE-based model cannot find an attack trace.
On the contrary, our reachability-based model can successfully
find the correct attack trace. After further study, we believe
the failure of attack trace construction of the DE-based model
might be caused by other approximations in ProVerif. For
example, ProVerif implements the private channel [10, p.123],
which is used in the DE-based model, in a way that ignores
the order and number of sent messages. The DE-based model
and the results can also be found in our code repository [3].

6 Real-World BLE Stack Evaluation

To better understand how the four identified issues affect real-
world devices, we perform a comprehensive evaluation cov-
ering mobile operating systems (OSes), desktop OSes, em-
bedded OSes, and a Bluetooth stack implementation that is
available on a variety of platforms. As shown in Table 4, we
select the two most popular mobile OSes (i.e., Android and
iOS) [42] and the two most popular open-source embedded
OSes that support BLE (i.e., Mbed [6] and Zephyr [19]) [38].
Additionally, we include the three most popular desktop OSes
(i.e., Windows, macOS, and Linux) [41] in our evaluation set.
Lastly, we evaluate BTstack [27] due to its cross-platform and
open-source nature, popularity, and detailed documentation.

We first evaluate whether these 13 devices are affected by
the four identified issues in Section 6.1. Then, we present two
case studies exploiting IRK reuse and BD_ADDR reuse re-
spectively to demonstrate the practicality of device tracking in
the real world in Section 6.2. Lastly, we talk about our reports
to related vendors of the devices and their corresponding re-
sponses in Section 6.3. In Appendix A, we investigate BLE
implementations of tested devices to understand how these
devices can change their identifiers to prevent the tracking.

6.1 Evaluation Results
We use one Linux laptop to emulate Bob (i.e., a benign de-
vice) to communicate with Alice (i.e., the device to evaluate).
We use another Linux laptop to emulate the tracker. We pair
Alice with Bob and the tracker, and then unpair Alice from the
tracker. Alice is affected by IRK reuse if Bob and the tracker
receive the same IRK from Alice. We verify whether Alice is
affected by BD_ADDR reuse by comparing the ID_ADDR

received by the tracker and Alice’s BD_ADDR. Alice is af-
fected if these two MAC addresses are the same. Like IRK
reuse, Alice is affected by CSRK reuse if Bob and the tracker
receive the same CSRK from Alice. To check whether Alice is
affected by ID_ADDR reuse, we compare Alice’s ID_ADDR
received by Bob and her ID_ADDR received by the tracker.
Alice is affected if these two ID_ADDRs are the same.

Table 4 shows the results of our evaluation of the tested
devices. As we can see, all the tested devices are affected by at
least two issues. Note that if a device is affected by one issue,
it is vulnerable to all tracking attacks exploiting this issue. For
example, if a device is affected by IRK reuse, it is vulnerable
to Attack 1, Attack 2, and Attack 3.

During our experiment, we find devices #5, 6, 7, and 11
do not distribute the CSRK during pairing, and thus are not
affected by CSRK reuse. Devices #8 and 9 are not affected by
BD_ADDR reuse because Zephyr and Mbed do not support
the BC stack. Through the experiment and code analysis, we
find that Zephyr’s BLE stack employs a different IRK and
ID_ADDR design. In the default setting, the device is affected
by IRK reuse and ID_ADDR reuse. However, it also allows the
upper-layer application developers to generate and use several
combinations of IRKs and ID_ADDRs at the same time on a
BLE device. In this case, whether the device is affected by IRK
reuse and ID_ADDR reuse is up to the application developers.

During the evaluation, we also find an implementation issue
on Windows 11, caused by not strictly following the specifica-
tion to implement BLE’s privacy feature [11, p.1353]. Specifi-
cally, Windows 11 uses its BD_ADDR rather than RPAs as its
MAC address when it is the central role. Therefore, a tracker
can sniff scan request messages or connection request mes-
sages and identify device #10 by simply observing whether
its BD_ADDR appears in these messages. In addition, the
tracker can also get the BD_ADDR of device #10 by sniffing
these two types of messages and track this device by actively
probing with page requests using the BD_ADDR.

6.2 Case Study
In this section, we present two practical tracking attacks ex-
ploiting IRK reuse and BD_ADDR reuse, respectively. The
first case study shows that a tracker can track a target device
that enables system services based on BLE advertising, such
as the COVID-19 Exposure Notifications system, by launch-
ing the Attack 1 attack exploiting IRK reuse. The second
case study demonstrates that a tracker can track a BC/BLE
dual-stack device even when the target device is not running
any Bluetooth applications by launching Attack 4 exploiting
BD_ADDR reuse.

For these attacks, we assume the tracker can obtain the vic-
tim device’s identifiers under two scenarios. First, the tracker
gets identifiers if the victim device pairs with a device under
the tracker’s control. Second, the victim device pairs with a
benign device which is compromised by the tracker later.

Table 4: Result of whether tested devices are affected by the four discovered issues and the design choice of the identifiers on
each tested device. Per-D: per-device design choice. Per-P: per-pairing design choice.

Device Operating System Stack Implementation
Design Choice Affected by

IRK CSRK ID_ADDR Issue 1 Issue 2 Issue 3 Issue 4
1 OnePlus 8 Pro Android 13 Gabeldorsche Per-D Per-P Per-D ✗ ✗ – ✗
2 Galaxy S21+ 5G Android 12L Fluoride Per-D Per-P Per-D ✗ ✗ – ✗
3 Pixel XL Android 10.0 Fluoride Per-D Per-P Per-D ✗ ✗ – ✗
4 Pixel 3 Android 9.0 Fluoride Per-D Per-P Per-D ✗ ✗ – ✗
5 iPhone 13 iOS 16.2 iOS stack Per-D – Per-D ✗ ✗ – ✗
6 iPhone SE (2nd gen) iOS 14.7.1 iOS stack Per-D – Per-D ✗ ✗ – ✗
7 iPhone 8 iOS 13.3.1 iOS stack Per-D – Per-D ✗ ✗ – ✗
8 nRF52840 DK Zephyr 2.7 Zephyr stack App Dep. Per-P App Dep. ✗ – – ✗
9 nRF52840 DK Mbed 6.15 Mbed stack Per-D Per-D Per-D ✗ – ✗ ✗

10 ThinkPad X1 Yoga Windows 11 Windows stack Per-D Per-P Per-D ✗ ✗ – ✗
11 MacBook Air (M1, 2020) macOS 13.1 macOS stack Per-D – Per-D ✗ ✗ – ✗
12 ThinkPad X1 Yoga Ubuntu 22.04 BlueZ 5.64 Per-D Per-P Per-D ✗ ✗ – ✗
13 Dell Latitude 5480 Ubuntu 22.04 BTstack 1.3.1 Per-D Per-P Per-D ✗ ✗ – ✗

These scenarios are not uncommon in the real world. For
example, a user may pair her phone with a BLE smart lock
when she moves into an Airbnb apartment and unpair it upon
leaving [17]. Similarly, a user may also pair her phone with a
rental car and unpair it upon returning the car. In these cases,
the smart lock and the rental car could be under the tracker’s
(e.g., the smart lock or car vendors) control when the user pairs
her phone with them. It is also possible that the smart lock
and the car are compromised after the user pairs her phone
with them. Note that after obtaining the identifiers, the tracker
can use other devices, such as Raspberry Pis, to track the
phone. For example, the tracker can deploy several devices
to perform location tracking or deploy just one device at a
specific location (e.g., near the target user’s home) to monitor
the user’s presence.

6.2.1 Attack 1: Tracking a Device with Background Ser-
vices based on BLE Advertising

Currently, BLE advertising is widely used in the background
services of mobile operating systems. Once enabled, these ser-
vices are running in the background continuously without the
user explicitly starting them, such as the COVID-19 Exposure
Notifications System [28] on Android and iOS, and the Apple
Continuity [4, 14, 43] services. If those devices use RPAs for
advertising, they can be affected by IRK reuse.

We take the COVID-19 Exposure Notifications system on
Android as a concrete example to show how a tracker can
track Alice (e.g., an Android phone). The tracker can take the
following steps to identify and track Alice:
1. Alice pairs with the tracker to perform data transmission

and sends her IRK (irkA) to the tracker during pairing.
2. Alice unpairs from the tracker after data transmission.
3. Alice’s COVID-19 service broadcasts advertising mes-

sages using RPAs generated from irkA.
4. The tracker sniffs the advertising messages and uses irkA

obtained in step (1) to resolve the RPA in the message.
5. If the RPA resolution is successful, the tracker can identify

and track Alice.
We provide a video demo for this tracking attack [2].

This attack is applicable under the real-world Airbnb case
mentioned earlier. In this case, the smart lock vendor or the
owner of the apartment could be the tracker who obtains the
phone’s IRK during pairing. Upon leaving, the user unpairs
her phone from the lock, however, the IRK obtained by the
tracker is still valid. After unpairing, if Alice gets, at any time
in the future, physically close to the lock, this lock may re-
ceive advertising messages. This is possible, especially when
the phone enables background services, such as COVID-19
Exposure Notification. In this case, the lock can resolve the
RPAs in the advertising message and identify this phone.

Our experiment shows that the COVID-19 Exposure Noti-
fications system running on devices #2, 3, and 4 is affected by
this tracking attack. In addition, the Apple Continuity service
running on devices #5, 6, 7, and 11 is also affected. The Ex-
posure Notifications system on iOS (devices #5, 6, 7) is not
affected because iOS does not use RPAs for advertising.

6.2.2 Attack 4: Tracking a Bluetooth-Enabled BC/BLE
Dual-Stack Device

According to the Bluetooth Special Interest Group (SIG),
BC/BLE dual-stack devices, such as smartphones and lap-
tops, account for more than half of all Bluetooth-enabled de-
vices [12]. In this case study, we demonstrate how a tracker
can launch Attack 4 to track a dual-stack device forever.

We use an Android phone (Alice) as a concrete example
to show how a tracker can track this phone when it is not
running any Bluetooth application. The tracker can follow the
following steps to launch the attack:
1. Alice pairs with the tracker to perform data transmission

and sends her ID_ADDR, which is also her BD_ADDR,
to the tracker.

2. Alice unpairs from the tracker after the data transmission
finishes and removes all its identifiers.

3. The active tracker probes Alice with page requests
(via HCI_Create_Connection commands) using Alice’s
BD_ADDR obtained in step (1).

4. The tracker can identify and track Alice if she replies with
a page request (either the connection can be established,

or the connection is rejected).
We also provide a video demo to demonstrate the practicality
of this tracking attack [1].

This tracking attack is also feasible in the Airbnb scenario
explained in Section 6.2.1. Compared to the tracking attacks
based on IRK reuse, this attack is effective as long as Bluetooth
is enabled, and it does not require the target device to run
any Bluetooth application, including the background services
based on BLE advertising. Our experiment shows that all dual-
stack devices (devices #1 to 7 and 10 to 13) are affected by
this tracking attack.

6.3 Responsible Disclosure
We responsibly disclosed the issues we found to the Blue-
tooth SIG. The Bluetooth SIG does not consider IRK reuse,
BD_ADDR reuse, and CSRK reuse as significant. The reason
is that, in order to track a target device, the tracker needs to
pair with the target device first, during which explicit user
approval is needed. We agree that pairing implies trust, and
for this reason, a paired device can trivially track its paired
peer devices. However, we believe a device should not be able
to track a previously paired and now unpaired peer device,
as we will further discuss in Section 8. At the time of paper
writing, Bluetooth SIG is still investigating ID_ADDR reuse.

We also disclosed our findings to related vendors. Specifi-
cally, we reported IRK reuse and BD_ADDR reuse to Google.
Google has confirmed our findings, rated both issues as high
severity, assigned two CVEs (CVE-2021-39673 and CVE-
2023-21307), and rewarded us $10,000 ($5,000 for each issue)
as a bug bounty. At the time of paper writing, Google has
fixed IRK reuse with an update for Android 13 by adopting
the same strategy as Windows 11, i.e., using a new randomly
generated IRK after unpairing from the last paired BLE de-
vice [29] (see Appendix A). Though this fix improves the
privacy of Android devices, we believe that fundamentally
addressing IRK reuse needs specification modifications (as
we will explain in Section 7.1). Google has also fixed the
BD_ADDR reuse issue, but the fix is not publicly available at
the time of paper writing. We also reported these two issues
to Apple. Apple considers the tracking based on IRK reuse
as matching the Bluetooth standard. In addition, Apple has
acknowledged BD_ADDR reuse and is actively working on
fixing it. We also reported IRK reuse, BD_ADDR reuse, and
the use of BD_ADDR in BLE connection establishment to
Microsoft, which has also confirmed our findings. Specifi-
cally, Microsoft considers BD_ADDR reuse as a general bug
and will fix it in the future. Since Windows does not proac-
tively advertise using RPAs or initiate connections, Microsoft
thinks IRK reuse and the use of BD_ADDR do not meet the
bar of security vulnerabilities. Moreover, we also reported
IRK reuse and BD_ADDR reuse to BlueKitchen (the ven-
dor of BTstack). BlueKitchen has confirmed our findings and
considers the tracking based on these two issues as aligned

with the current specification. Finally, we also reported IRK
reuse and BD_ADDR reuse to BlueZ, Zephyr, and IRK reuse,
BD_ADDR reuse, and CSRK reuse to Mbed developers. These
vendors are still investigating these issues.

7 Mitigations and Recommendations

To mitigate the four identified privacy issues, we propose
updates to the specification. We also provide suggestions to
developers and end users on Bluetooth implementation and
usage respectively to better protect users’ privacy.

7.1 Suggested Specification Updates
To fundamentally address the four revealed privacy issues,
updates to the current specification [11] are necessary.
1. Use per-pairing IRKs. The current specification recom-
mends using a per-device IRK, as shown in Table 1, which is
the root cause of IRK reuse. To fundamentally address this
issue, we propose to update the specification by suggesting
that a device should use a fresh random-generated IRK for
each pairing to have better privacy protection. In this way,
when unpairing from a paired peer device, the target device
can revoke the IRK sent to the peer device to prevent tracking
attacks based on IRK reuse. Our verification also proves that
(rows #32, 33, 40, and 41, columns 7 and 10 in Table 7), the
target device cannot be identified or tracked by a peer device
after unpairing from it. Therefore, the per-pairing design can
significantly improve the privacy of a BLE device.

The per-pairing IRK design works well for the central role
but may introduce performance overhead for the peripheral
role. The reason is that the central device first scans for ad-
vertising messages and then determines which IRK to use.
However, the peripheral device has to broadcast advertising
messages first, without knowing which central device may
connect to it. Therefore, to be recognized by all paired central
devices, the peripheral device needs to advertise using RPAs
generated by all valid IRKs. Accordingly, it takes longer for
two paired devices to reconnect.
2. Use random-generated ID_ADDR. For BC/BLE
dual-stack devices, the current specification requires using
BD_ADDR as BLE’s ID_ADDR [11, p.1615], which is the
root cause of BD_ADDR reuse. Therefore, to fundamentally
address this issue, a dual-stack device should use a random-
generated MAC address (different from its BD_ADDR) as
its ID_ADDR for BLE. In this case, when pairing with a
tracker, the target device’s BD_ADDR will not be leaked to
the tracker, preventing tracking attacks based on BD_ADDR
reuse, as indicated by our verification in Table 7 (rows #36
and 44, column 10).

Though improving privacy, using random-generated
ID_ADDR can affect user experience in the scenario where
two dual-stack devices communicate with each other using
both BC and BLE. The reason is that these two devices

cannot use the Cross-Transport Key Derivation (CTKD) [11,
p.1366] feature to derive the link key of BC from the LTK
or vice versa because the ID_ADDR is different from the
BD_ADDR. As a result, the user needs to pair these two
devices twice, once for BC and once for BLE.
3. Use per-pairing CSRKs. The current specification allows
using a per-device CSRK, as shown in Table 1, which is the
root cause of CSRK reuse. The fundamental mitigation to
this issue is using per-pairing CSRKs, as proved in Table 7
(rows #30 and 35, columns #7 and 10). Per-pairing CSRKs
is also the implementation choice for most tested devices. As
such, we propose to update the specification by disallowing
using per-device CSRK and requiring using a fresh random-
generated CSRK for each pairing.
4. Use per-pairing ID_ADDR. The current specification
suggests using a per-device ID_ADDR, as shown in Ta-
ble 1, which is the root cause of ID_ADDR reuse. Since the
ID_ADDR should not be included in any BLE messages when
the privacy feature is enabled [11, p.275], it does not affect the
device identification and connection establishment process.
As such, we suggest using per-pairing ID_ADDRs to funda-
mentally address ID_ADDR reuse, as indicated by Table 7
(rows #31 and 39, column 10).

7.2 Suggestions to Developers
We propose the following implementation suggestions to de-
velopers to improve BLE privacy while being compliant with
the current specification.
1. Do not use BD_ADDR in any BLE message. A tracker
can sniff a device’s BD_ADDR if it is used as the MAC ad-
dress in a BLE message, such as the use of BD_ADDR on
Windows 11 (Section 6.1). As such, a BLE device should use
random addresses [11, p.1355] rather than BD_ADDR in BLE
communication to prevent leaking a device’s BD_ADDR to a
tracker when only using BLE.
2. Do not derive IRK from IR. Deriving an IRK from an
Identity Root (IR) may result in a fixed IRK, such as the IRK
derivation on the nRF52840 DK development board with
Zephyr OS (see Appendix A). Therefore, a BLE stack should
randomly generate IRKs rather than deriving from the IR.
3. Refresh the IRK after unpairing from the last paired
device. As described in Section 6.3, Android 13 refreshes
its IRKs when unpairing from the last paired BLE device to
mitigate IRK reuse. Windows 11 also adopts the same imple-
mentation choice. Though this choice cannot fundamentally
address IRK reuse, it can still improve the device’s privacy.

7.3 Recommendations to End Users
1. Turn off Bluetooth if not in use. Turning off Bluetooth
is an effective way to defend against all tracking attacks
based on Bluetooth. For BC/BLE devices, tracking based on
BD_ADDR is always effective since a device’s BD_ADDR is

always valid, especially for unrooted mobile devices. Since
devices cannot selectively disable BC while using BLE [34],
turning off Bluetooth might be the only way to stop the track-
ing based on BD_ADDR. Compared with other approaches,
turning off Bluetooth is arguably the most practical one for
end users.
2. Reset Bluetooth after unpairing. For an Android device,
“Reset Wi-Fi, mobile & Bluetooth” revokes its current IRK (Ta-
ble 5 in Appendix A). Therefore, it is helpful for the device’s
privacy to perform this resetting after unpairing from a poten-
tial tracking device, especially when enabling the COVID-19
Exposure Notifications System. However, resetting Bluetooth
on Android also has side effects, such as losing Wi-Fi configu-
rations and information about other paired Bluetooth devices.
3. Unpair from and re-pair with all paired BLE devices
after unpairing from a BLE device. For Windows 11 and
Android 13 devices, unpairing from all BLE devices will re-
voke the current IRK (Table 5 in Appendix A). Therefore,
after unpairing from one potential tracking device, we suggest
unpairing this device from all currently paired BLE devices
to refresh the IRK and re-pairing with them. Accordingly,
unpairing and re-pairing will mandate extra operations from
users.
4. Factory reset after unpairing. For devices running
Mbed or Zephyr, factory resetting may remove the stored key
database and revoke the current IRK. Similarly, factory re-
setting an iOS device can also revoke its IRK (Table 5 in
Appendix A). Therefore, after unpairing an IoT device, an
iOS, or a macOS device from a potential tracking device, fac-
tory resetting this IoT device or iOS device can prevent the
identification and tracking based on IRK or CSRK. Concretely,
factory resetting may be feasible for IoT devices after unpair-
ing, but it might be impractical for other devices.

8 Discussion

Meaning of unpairing. As we discussed in Section 6.3, if
a user pairs device A (target device) with device B, it means
the user trusts device B. On the contrary, if the user unpairs
device A from device B, we claim that the trusted relation is
revoked. Thus, after unpairing, device B should not be able to
track a previously paired device A. Concretely, there are many
scenarios where a user may trust (i.e., pair her device with)
a device temporarily. For example, in the Airbnb example
(Section 6.2.1), the user trusts the smart lock temporarily. A
rental car is another example where the user pairs her phone
with the car when using it and unpairs her phone from the car
when returning it. However, the user currently has no clear way
to revoke this trust, since in many cases, the user’s device can
still be tracked after unpairing. Fundamentally, these issues
reveal that the semantics of unpairing is not well-defined in
the specification nor implemented coherently across vendors.
Limitations. Our model focuses on BLE untraceability at the
protocol level. Thus, it does cover the application level, since

it is device-specific, and it is not available at the protocol level.
For this reason, device tracking based on the application-level
information, e.g., Universally Unique IDentifiers (UUID), has
been explored in existing research [25, 33, 50], and is orthog-
onal to our work. Additionally, our model limits the attacker’s
capabilities to those modeled in the tracker modules, which
are weaker than the capabilities in the Dolev-Yao model. As a
result, our model can only discover tracking attacks related
to the identifiers covered in the tracker modules. Our model
cannot reveal attacks that are not related to the identifiers we
extracted from the specification. Nonetheless, since we enu-
merated all possible usages of the identifiers according to the
specification, we believe the modeling of the tracker capabili-
ties related to the identifiers is complete. Our model does not
support the setting with three or more sessions. We have tried
to verify the properties in the settings of three sessions and an
unlimited number of sessions. However, in these two settings,
we found that the verification of some properties (e.g., Row 10
Column 8 in Table 7) cannot terminate even after running for
600 hours. Finally, our model does not cover privacy issues
caused by side channels, such as timing [16].

9 Related Work

Bluetooth privacy. Fawaz et al. [25] and Kolias et al. [33]
studied the privacy information contained in BLE’s advertis-
ing messages and realized that the fixed field in the advertising
message can be used for user tracking. Das et al. [22] found
that most fitness trackers utilize fixed MAC addresses for BLE
and are vulnerable to user tracking. While none of the existing
works systematically studied BLE privacy, our work conducts
a systematic study and identifies new privacy issues.

Cominelli et al. [18] and Tucker et al. [45] demonstrated
that a BC device can be tracked if BC is in use or in the non-
discoverable mode. Ludant et al. [34] showed that the traffic
of BC and BLE from the same device can be captured and
linked together by a tracker exploiting the traffic transmission
timing information. Different from existing attacks [18, 34]
that require BC being used to track a device, device tracking
based on BD_ADDR reuse is still effective even when the BC
is in the non-discoverable mode and not being used.
Formal analysis of Bluetooth. Formal analysis has been
applied to the Bluetooth domain, but existing works focused
on security properties rather than privacy properties. Several
works [15, 20, 39, 48] analyzed the pairing procedure of Blue-
tooth and found its design weaknesses. Others [47, 48, 49]
modeled and analyzed the communications after pairing and
revealed new design weaknesses. Our work focuses on the
privacy properties of Bluetooth, a field that has not been sys-
tematically studied in existing research.
Formal analysis of privacy properties in other proto-
cols. The privacy of other protocols has been studied and
analyzed based on different definitions. Arapinis et al. [5]
analyzed the Basic Access Control protocol in the French e-

Passport based on the PE definition and realized that anyone
carrying such a passport can be physically traced. Delaune et
al. [23] formally verified three privacy properties that are also
based on PE in existing electronic voting protocols. Baelde et
al. [7] extended the work of Hirschi et al. [30] and verified the
RFID authentication protocol based on the three-condition def-
inition. Dahl et al. [21] analyzed the CMIX protocol [32] using
DE and found that it does not preserve privacy in many cases.
Wang et al. [46] also used DE to verify a privacy-preserving
5G authentication and key agreement protocol, and proved
the protocol resistant to linkability attacks. Different from
these, our work proposed a more specific definition of untrace-
ability for BLE, which overcomes the limitations of using
aforementioned definitions in automatic verification, as dis-
cussed in Section 3.

10 Conclusion

In this paper, we conduct a systematic study of BLE trace-
ability at the protocol level by conducting a formal analysis
of BLE untraceability, and we uncover four new privacy is-
sues allowed by the BLE specification. We further evaluate
13 real-world BLE devices and found that all of them are af-
fected by at least two of these issues. To mitigate the issues
we found, we propose mitigations to address these issues and
recommendations to end users.

Acknowledgments

We thank the anonymous reviewers and the shepherd for their
valuable comments and suggestions. This work was supported
in part by the National Science Foundation (NSF) under Grant
CNS-2145744 and the Office of Naval Research (ONR) un-
der Grants N00014-20-1-2128 and N00014-22-1-2671. Any
opinions, findings, and conclusions in this paper are those of
the authors and do not necessarily reflect the views of NSF or
ONR.

References

[1] Tracking a Bluetooth-enabled Android phone (with-
out any Bluetooth applications running). https://
tinyurl.com/yc4ym757, 2022.

[2] Tracking an Android phone which enables
COVID-19 Exposure Notifications System.
https://tinyurl.com/3d83yu6h, 2022.

[3] Code repository of our model. https://github.com/
purseclab/btprivacy, 2023.

[4] Apple. Use Continuity to connect your Mac, iPhone,
iPad, iPod touch, and Apple Watch. https://
support.apple.com/en-us/HT204681, 2022. Ac-
cessed: January 10, 2022.

https://tinyurl.com/yc4ym757
https://tinyurl.com/yc4ym757
https://tinyurl.com/3d83yu6h
https://github.com/purseclab/btprivacy
https://github.com/purseclab/btprivacy
https://support.apple.com/en-us/HT204681
https://support.apple.com/en-us/HT204681

[5] Myrto Arapinis, Tom Chothia, Eike Ritter, and Mark
Ryan. Analysing Unlinkability and Anonymity Using the
Applied Pi Calculus. In Proceedings of the IEEE Com-
puter Security Foundations Symposium (CSF), 2010.

[6] Arm Limited. Mbed OS. https://os.mbed.com/mbed-
os/, 2022. Accessed: January 9, 2022.

[7] David Baelde, Stéphanie Delaune, and Solène Moreau.
A Method for Proving Unlinkability of Stateful Proto-
cols. In Proceedings of the IEEE Computer Security
Foundations Symposium (CSF), 2020.

[8] Manuel Barbosa, Gilles Barthe, Karthik Bhargavan,
Bruno Blanchet, Cas Cremers, Kevin Liao, and Bryan
Parno. SoK: Computer-Aided Cryptography. In Pro-
ceedings of the IEEE Symposium on Security and Pri-
vacy (S&P), 2021.

[9] Bruno Blanchet. Modeling and Verifying Security Pro-
tocols with the Applied Pi Calculus and ProVerif. Foun-
dations and Trends in Privacy and Security, 1, 2016.

[10] Bruno Blanchet, Ben Smyth, Vincent Cheval, and Marc
Sylvestre. ProVerif 2.04: Automatic Cryptographic
Protocol Verifier, User Manual and Tutorial. http:
//tinyurl.com/2d9sv6dm, 2021. Accessed: March 1,
2022.

[11] Bluetooth Special Interest Group. Bluetooth Core Spec-
ifications 5.3, 2021.

[12] Bluetooth Special Interest Group. 2022 Bluetooth Mar-
ket Update. http://tinyurl.com/2xz5eh8s, 2022.
Accessed: April 15, 2022.

[13] Guillaume Celosia and Mathieu Cunche. Saving Pri-
vate Addresses: An Analysis of Privacy Issues in the
Bluetooth-Low-Energy Advertising Mechanism. In Pro-
ceedings of the EAI International Conference on Mobile
and Ubiquitous Systems: Computing, Networking and
Services (MobiQuitous), 2019.

[14] Guillaume Celosia and Mathieu Cunche. Discontinued
Privacy: Personal Data Leaks in Apple Bluetooth-Low-
Energy Continuity Protocols. Proceedings on Privacy
Enhancing Technologies, 2020.

[15] Richard Chang and Vitaly Shmatikov. Formal Analysis
of Authentication in Bluetooth Device Pairing. Proceed-
ings of the LICS/ICALP Workshop on Foundations of
Computer Security and Automated Reasoning for Secu-
rity Protocol Analysis (FCS-ARSPA), 2007.

[16] Tom Chothia and Vitaliy Smirnov. A Traceability Attack
Against e-Passports. In Proceedings of the International
Conference on Financial Cryptography and Data Secu-
rity (FC), 2010.

[17] CNET. 9 devices every Airbnb host should put in their
rental. http://tinyurl.com/27epk3c9, 2018. Ac-
cessed: Novebver 10, 2021.

[18] Marco Cominelli, Francesco Gringoli, Paul Patras, Mar-

gus Lind, and Guevara Noubir. Even Black Cats Cannot
Stay Hidden in the Dark: Full-band De-anonymization
of Bluetooth Classic Devices. In Proceedings of the
IEEE Symposium on Security and Privacy (S&P), 2020.

[19] Zephyr Project Community. Zephyr Project. https://
www.zephyrproject.org/, 2020. Accessed: February
3, 2020.

[20] Cas Cremers and Dennis Jackson. Prime, Order Please!
revisiting Small Subgroup and Invalid Curve Attacks
on Protocols Using Diffie-Hellman. In Proceedings of
the IEEE Computer Security Foundations Symposium
(CSF), 2019.

[21] Morten Dahl, Stéphanie Delaune, and Graham Steel. For-
mal Analysis of Privacy for Vehicular Mix-Zones. In
Proceedings of the European Symposium on Research
in Computer Security (ESORICS), 2010.

[22] Aveek K. Das, Parth H. Pathak, Chen-Nee Chuah, and
Prasant Mohapatra. Uncovering Privacy Leakage in BLE
Network Traffic of Wearable Fitness Trackers. In Pro-
ceedings of the International Workshop on Mobile Com-
puting Systems and Applications (HotMobile), 2016.

[23] Stéphanie Delaune, Steve Kremer, and Mark Ryan. Ver-
ifying privacy-type properties of electronic voting pro-
tocols. Journal of Computer Security, 17(4), 2009.

[24] Stéphanie Delaune, Mark Ryan, and Ben Smyth. Auto-
matic Verification of Privacy Properties in the Applied
Pi Calculus. In Proceedings of the IFIP International
Conference on Trust Management, 2008.

[25] Kassem Fawaz, Kyu-Han Kim, and Kang G. Shin. Pro-
tecting Privacy of BLE Device Users. In Proceedings
of the USENIX Security Symposium (USENIX Security),
2016.

[26] Ihor Filimonov, Ross Horne, Sjouke Mauw, and Zach
Smith. Breaking Unlinkability of the ICAO 9303 Stan-
dard for e-Passports Using Bisimilarity. In Proceedings
of the European Symposium on Research in Computer
Security (ESORICS), 2019.

[27] BlueKitchen GmbH. BlueKitchen BTSTACK. https:
//bluekitchen-gmbh.com/, 2020. Accessed: Febru-
ary 3, 2020.

[28] Google. Exposure Notifications: Using technology to
help public health authorities fight COVID-19. http:
//tinyurl.com/y6w5k44p, 2020. Accessed: November
1, 2020.

[29] Google. Reconfigure Address policy on last bond re-
moved. http://tinyurl.com/28cbtwzc, 2023.

[30] Lucca Hirschi, David Baelde, and Stéphanie Delaune. A
Method for Verifying Privacy-Type Properties: The Un-
bounded Case. In Proceedings of the IEEE Symposium
on Security and Privacy (S&P), 2016.

[31] Ross Horne, Sjouke Mauw, and Semen Yurkov. Unlinka-

https://os.mbed.com/mbed-os/
https://os.mbed.com/mbed-os/
http://tinyurl.com/2d9sv6dm
http://tinyurl.com/2d9sv6dm
http://tinyurl.com/2xz5eh8s
http://tinyurl.com/27epk3c9
https://www.zephyrproject.org/
https://www.zephyrproject.org/
https://bluekitchen-gmbh.com/
https://bluekitchen-gmbh.com/
http://tinyurl.com/y6w5k44p
http://tinyurl.com/y6w5k44p
http://tinyurl.com/28cbtwzc

bility of An Improved Key Agreement Protocol for EMV
2nd Gen Payments. In Proceedings of the IEEE Com-
puter Security Foundations Symposium (CSF), 2022.

[32] Freudiger Julien, Maxim Raya, Márk Félegyházi, Panos
Papadimitratos, and Jean-Pierre Hubaux. Mix-Zones for
Location Privacy in Vehicular Networks. In Proceed-
ings of the ACM Workshop on Wireless Networking for
Intelligent Transportation Systems (WiN-ITS), 2007.

[33] Constantinos Kolias, Lucas Copi, Fengwei Zhang, and
Angelos Stavrou. Breaking BLE Beacons For Fun But
Mostly Profit. In Proceedings of the European Workshop
on Systems Security (EuroSec), 2017.

[34] Norbert Ludant, Tien D. Vo-Huu, Sashank Narain, and
Guevara Noubir. Linking Bluetooth LE & Classic and
Implications for Privacy-Preserving Bluetooth-Based
Protocols. In Proceeding of the IEEE Symposium on
Security and Privacy (S&P), 2021.

[35] Simon Meier, Benedikt Schmidt, Cas Cremers, and
David Basin. The TAMARIN Prover for the Symbolic
Analysis of Security Protocols. In Proceedings of the In-
ternational Conference on Computer Aided Verification
(CAV), 2013.

[36] Sugandh Memon, Mehran M Memon, Faisal K Shaikh,
and Shakeel Laghari. Smart Indoor Positioning Using
BLE Technology. In Proceedings of the IEEE Inter-
national Conference on Engineering Technologies and
Applied Sciences (ICETAS), 2017.

[37] Michael Kwet. In Stores, Secret Surveillance Tracks
Your Every Move. http://tinyurl.com/y4947sg5,
2019. Accessed: June 30, 2022.

[38] OSRTOS. List of open source real-time operating sys-
tems. https://www.osrtos.com/, 2023.

[39] Mohit Sethi, Aleksi Peltonen, and Tuomas Aura. Mis-
binding Attacks on Secure Device Pairing and Boot-
strapping. In Proceedings of the ACM Asia Conference
on Computer and Communications Security (AsiaCCS),
2019.

[40] Petros Spachos and Konstantinos N Plataniotis. Ble
beacons for indoor positioning at an interactive iot-based
smart museum. IEEE Systems Journal, 14(3), 2020.

[41] Statcounter GlobalStats. Desktop Operating System
Market Share Worldwide. http://tinyurl.com/
y26aw45a, 2023.

[42] Statcounter GlobalStats. Mobile Operating System
Market Share Worldwide. http://tinyurl.com/
y2sgeyg3, 2023.

[43] Milan Stute, Alexander Heinrich, Jannik Lorenz, and
Matthias Hollick. Disrupting Continuity of Apple’s
Wireless Ecosystem Security: New Tracking, DoS, and
MitM Attacks on iOS and macOS Through Bluetooth
Low Energy, AWDL, and Wi-Fi. In Proceeding of the

USENIX Security Symposium (USENIX Security), 2021.
[44] The Tamarin Team. Tamarin-Prover Manual. https:

//tinyurl.com/2b3m9tc4, 2021. Accessed: January
10, 2022.

[45] Tyler Tucker, Hunter Searle, Kevin Butler, and Patrick
Traynor. Blue’s clues: Practical discovery of non-
discoverable bluetooth devices. In Proceedings of the
IEEE Symposium on Security and Privacy (S&P), 2023.

[46] Yuchen Wang, Zhenfeng Zhang, and Yongquan Xie.
Privacy-Preserving and Standard-Compatible AKA Pro-
tocol for 5G. In Proceedings of the USENIX Security
Symposium (USENIX Security), 2021.

[47] Jianliang Wu, Yuhong Nan, Vireshwar Kumar,
Dave (Jing) Tian, Antonio Bianchi, Mathias Payer, and
Dongyan Xu. BLESA: Spoofing Attacks against Re-
connections in Bluetooth Low Energy. In Proceedings
of the USENIX Workshop on Offensive Technologies
(WOOT), 2020.

[48] Jianliang Wu, Ruoyu Wu, Dongyan Xu, Dave (Jing) Tian,
and Antonio Bianchi. Formal Model-Driven Discov-
ery of Bluetooth Protocol Design Vulnerabilities. In
Proceedings of the IEEE Symposium on Security and
Privacy (S&P), 2022.

[49] Jianliang Wu, Ruoyu Wu, Dongyan Xu, Dave (Jing) Tian,
and Antonio Bianchi. SoK: The Long Journey of Exploit-
ing and Defending the Legacy of King Harald Bluetooth
(To appear). In Proceedings of the IEEE Symposium on
Security and Privacy (S&P), 2024.

[50] Chaoshun Zuo, Haohuang Wen, Zhiqiang Lin, and Yin-
qian Zhang. Automatic Fingerprinting of Vulnerable
BLE IoT Devices with Static UUIDs from Mobile Apps.
In Proceedings of the ACM SIGSAC Conference on Com-
puter and Communications Security (CCS), 2019.

Appendix

A Identifier Revocation Investigation

As mentioned, the issues in Section 5 stem from the fact that
the target device’s identifiers received by the tracker are still
valid after the target device unpairs from the tracker. Therefore,
if the target device revokes (i.e., stops using) such identifiers
after unpairing, it can avoid these issues. For this reason, to
better evaluate the impact of the tracking attacks based on
these issues, we want to figure out “how often and under what
circumstances does a device revoke its shared identifiers?”

We dynamically test each of the 13 devices listed in Table 4.
Specifically, we first pair each of the tested devices with two
Linux laptops and then unpair the tested device from the two
laptops. During pairing, we capture the traffic on the two lap-
tops, from which we can get the IRK, CSRK, and ID_ADDR

http://tinyurl.com/y4947sg5
https://www.osrtos.com/
http://tinyurl.com/y26aw45a
http://tinyurl.com/y26aw45a
http://tinyurl.com/y2sgeyg3
http://tinyurl.com/y2sgeyg3
https://tinyurl.com/2b3m9tc4
https://tinyurl.com/2b3m9tc4

Table 5: IRK, CSRK, and ID_ADDR revocation policies.
When the device changes its

IRK CSRK ID_ADDR

1
Reset Wi-Fi, mobile & Bluetooth
or Factory reset
or Unpair from last paired BLE device

Unpair Never

2 Reset Wi-Fi, mobile & Bluetooth
or Factory reset Unpair Never

3 Reset Wi-Fi, mobile & Bluetooth
or Factory reset Unpair Never

4 Reset Wi-Fi, mobile & Bluetooth
or Factory reset Unpair Never

5 Erase all content and settings –§ Never
6 Erase all content and settings –§ Never
7 Erase all content and settings –§ Never
8 Remove stored key database† Unpair Remove stored

key database‡
9 Remove stored key database Remove stored

key database
Remove stored
key database

10 Unpair from last paired BLE device Unpair Never
11 Erase all content and settings –§ Never
12 Remove stored IRK Unpair Never
13 Remove stored key database Unpair Never

§: CSRK is not distributed during pairing. †: The default IRK is fixed. ‡: The default
ID_ADDR is fixed.

of the tested device. Then, we perform pairing and traffic cap-
turing for a tested device under different scenarios, such as
rebooting, resetting settings, factory resetting, and removing
the key database. Lastly, we compare the IRKs, CSRKs, and
ID_ADDRs in the traffic captured under different scenarios.
Besides dynamic testing, we also analyze the source code of
the implementations (if available) to confirm our results.

Table 5 shows the results of our experiment. All devices
except devices #1 and 10 require performing resetting oper-
ations to revoke their IRK, such as “Reset Wi-Fi, mobile &
Bluetooth” or factory resetting on Android (devices #2-4). It
is noteworthy that, on iOS and macOS (devices #5, 6, 7, and
11), the IRK is revoked only after performing the “Erase All
Content and Settings” operation. The IRK remains the same
after conducting either the “Reset Network Settings” opera-
tion or the “Reset All Settings” operation. For devices #8, 9,
12, and 13, the user needs to explicitly remove the file storing
the IRK to revoke it.

The BLE stack on Windows 11 (device #10) uses a different
strategy from others to revoke its IRK. The IRK remains
the same as long as, at least one BLE device is paired with
device #10. After unpairing from the last paired BLE device,
device #10 automatically revokes its IRK. Compared with
other BLE stack implementations, Windows 11 may still be
affected by IRK reuse, but it provides better protection against
it. For example, if the user unpairs device #10 from the tracker
when no other BLE device is paired, device #10 revokes its
IRK after unpairing. Consequently, the tracker cannot identify
device #10 using the obtained IRK since it is no longer valid.
In a security update [29] for Android 13, Google adopted the
same strategy to fix the IRK reuse issue.

The BLE stack on Zephyr has a default IRK calculated from
an Identity Root (IR) value defined in the specification [11,

p.1624]. Zephyr first tries to read this IR value from the Blue-
tooth controller. If the controller returns the IR value, Zephyr
Table 6: Verification result of DE-based model with per-device
identifiers. ✓: property holds.

Relation Role ID
Passive Tracker Active Tracker

Result Comm. Result Comm.
1

Never
(target
device

has never
paired

with the
tracker)

Cen
PK CP1† PAIR CP1† PAIR

2 LTK CP1† ENCC CP1† ENCC
3 IRK CP1† CE CP1† SCAN
4 CSRK CP1† AUTHC CP1† AUTHC
5 ID_ADDR ✓ – ✓ –
6

Per
PK CP1† PAIR CP1† PAIR

7 LTK CP1† ENCC CP1† ENCC
8 IRK ✓ – ✓ –
9 CSRK CP1† AUTHC CP1† AUTHC

10 ID_ADDR ✓ – ✓ –
11

Paired
(target

device is
currently

paired
with the
tracker)

Cen
PK CP1† PAIR CP1† PAIR

12 LTK CP1† ENCC CP2‡ –
13 IRK CP3§ CE CP3§ SCAN
14 CSRK CP3§ AUTHC CP3§ AUTHC
15 ID_ADDR ✓ – CP3§ PAGE
16

Per
PK CP1† PAIR CP1† PAIR

17 LTK CP3§ ENCC CP2‡ –
18 IRK CP2‡ – CP3§ CE
19 CSRK CP3§ AUTHC CP3§ AUTHC
20 ID_ADDR ✓ – CP3§ PAGE
21 Unpaired

(target
device

was paired
with the
tracker,
but is

unpaired
from the
tracker)

Cen
PK CP1† PAIR CP1† PAIR

22 LTK CP1† ENCC CP2‡ –
23 IRK CP3§ CE CP3§ SCAN
24 CSRK CP3§ AUTHC CP3§ AUTHC
25 ID_ADDR ✓ – CP3§ PAGE
26

Per
PK CP1† PAIR CP1† PAIR

27 LTK CP3§ ENCC CP2‡ –
28 IRK CP2‡ – CP3§ CE
29 CSRK CP3§ AUTHC CP3§ AUTHC
30 ID_ADDR ✓ – CP3§ PAGE

CP1†: ProVerif outputs “Cannot be proved” but generates a false attack trace.
CP2‡: ProVerif outputs “Cannot be proved” and cannot generate an attack trace.
CP3§: ProVerif outputs “Cannot be proved” but generates a true attack trace.

calculates the default IRK based on this IR value. Otherwise,
Zephyr randomly generates the default IRK. In this case, if
the IR value returned from the controller is fixed, the default
IRK will be fixed. During our experiment, we find that the
IR value on the nRF52840 DK development board is fixed,
leading to a fixed default IRK. For this reason, the tracker can
identify and track the device forever if she can get the device’s
fixed default IRK.

In general, our experiment indicates that different vendors
interpret the specification differently. In turn, different BLE
stacks implement different strategies to revoke these identifiers
offering different privacy guarantees, making it almost impos-
sible for an end user to understand the privacy consequences
of using a specific Bluetooth device.

B Full Results of Untraceability Verification

Table 7 lists the full results of the verification using our
reachability-based formal model. Note that all the properties
that hold in the one-session setting still hold in the two-session
setting. Table 6 shows the full results of the verification based
on an alternative (diff-equivalence-based) formal model.

Table 7: Verification results of property P1 and P2 under all communication scenarios, runtime of the verification under one-
session and two-session settings (if needed), and the corresponding identifier if a property is violated. ✗: expected violations. ✗1:
violations caused by Issue 1. ✗2: violations caused by Issue 2. ✗3: violations caused by Issue 3. ✗4: violations caused by Issue 4.

Relation Role Comm.

Per-device Design† Per-pairing Design§

Passive Tracker Active Tracker Passive Tracker Active Tracker

P1 Runtime
1Sess/2Sess ID P2 Runtime

1Sess/2Sess ID P1 Runtime
1Sess/2Sess ID P2 Runtime

1Sess/2Sess ID
1 2 3 4 5 6 7 8 9 10 11 12

1

Never
(target
device

has never
paired

with the
tracker)

Cent.

PAIR ✓ 9.4s/1m26s – ✓ 0.4s/1.4s – ✓ 8.4s/1m49s – ✓ 0.1s/0.1s –
2 SCAN

✓ 9.4s/18.1s – ✓ 0.1s/0.1s – ✓ 8.1s/30.1s – ✓ 0.1s/0.1s –3 CE
4 ENCC ✓

9.3s/
1h19m43s – ✓ 0.1s/0.1s – ✓

9.0s/
1h47m27s – ✓ 0.1s/0.1s –

5 AUTHC ✓ 9.0s/18.4s – ✓ 0.1s/0.1s – ✓ 8.2s/22.1s – ✓ 0.1s/0.1s –
6 PAGE ✓ 9.8s/18.1s – ✓ 0.1s/0.1s – ✓ 8.3s/21.9s – ✓ 0.1s/0.1s –
7

Peri.

PAIR ✓ 1.9s/4m54s – ✓ 0.5s/8.8s – ✓ 2.8s/6m29s – ✓ 0.1s/0.1s –
8 SCAN

✓ 1.8s/25.7s – ✓ 0.1s/0.1s – ✓ 2.7s/41.2s – ✓ 0.1s/0.1s –9 CE
10 ENCC ✓

1.9s/
4h54m56s – ✓ 0.1s – ✓

2.4s/
5h40m57s – ✓ 0.1s/0.1s –

11 AUTHC ✓ 1.8s/25.5s – ✓ 0.1s/0.1s – ✓ 2.9s/25.5s – ✓ 0.1s/0.1s –
12 PAGE ✓ 1.8s/25.2s – ✓ 0.1s/0.1s – ✓ 2.7s/25s – ✓ 0.1s/0.1s –
13

Paired
(target

device is
currently

paired
with the
tracker)

Cent.

PAIR ✓
53.2s/

22m29s –
✗ 42.2s/– IRK

✓
37.6s/

30m10s – ✓ 6.3s/7.2s –14 ✗ 47.1s/– CSRK
15 ✗ 47.4s/– ID_ADDR
16 SCAN ✗ 40.3s/– IRK ✗ 23.3s/– IRK

✓ 43.3s/35.6s – ✗ 5.2s/– IRK
17 CE ✗ 38.5s/– IRK ✗ 45.6s/– IRK ✗ 5.9s/– IRK
18 ENCC ✓ 59.5s/36.7s – ✗ 4m21s/– LTK ✓ 40.5s/52.9s – ✗ 26.5s/– LTK
19 AUTHC ✗ 39.0s/– CSRK ✗ 49.1s/– CSRK ✓ 43.4s/52.5s – ✗ 6.1s/– CSRK
20 PAGE ✓ 52.5s/34.9s – ✗ 20.7s/– ID_ADDR ✓ 37.1s/52.7s – ✓ 5.9s/7.3s –
21

Peri.

PAIR ✓
1m36s/

1h29m6s –
✗ 55.2s/– IRK

✓
1m57s/

1h25m33s – ✓ 35.0s/42s –22 ✗ 52.6s/– CSRK
23 ✗ 41.9s/– ID_ADDR
24 SCAN ✗ 1m38s/– IRK ✗ 23.6s/– IRK ✗ 1m44s/– IRK ✗ 40.9s/– IRK
25 CE ✗ 1m52s/– IRK ✓ 24.3s/22.8s – ✗ 1m10s/– IRK ✓ 25.8s/43.4s –
26 ENCC ✓

1m33s/
3m45s – ✗ 7m36s/– LTK ✓

1m37s/
2m24s – ✗ 15m25s/– LTK

27 AUTHC ✓ 1m38s/37.6s – ✓ 24.4s/26.5s – ✓ 1m51s/36.9s – ✓ 38.8s/42.5s –
28 PAGE ✓ 2m29s/36.8s – ✗ 26.9s/– ID_ADDR ✓ 1m11s/36.2s – ✓ 35.6s/41.9s –
29

Unpaired
(target
device

has been
paired

with the
tracker,
but is

currently
unpaired
from the
tracker)

Cent.

PAIR ✓ 37.4s/22m26s –
✗1 33.9s/– IRK

✓
42.0s/

33m38s – ✓ 33.1s/32.4s –30 ✗3 38.2s/– CSRK
31 ✗4 43.7s/– ID_ADDR
32 SCAN ✗1 41.2s/– IRK ✗1 22.4s/– IRK

✓ 37.8s/52.3s – ✓ 29.7s/27.9s –33 CE ✗1 40.0s/– IRK ✗1 25.8s/– IRK
34 ENCC ✓ 48.6s/34.5s – ✓ 23.1s/26.0s – ✓ 39.2s/52.1s – ✓ 30.8s/36.4s –
35 AUTHC ✗3 42.3s/– CSRK ✗3 25.0s/– CSRK ✓ 46.0s/52.1s – ✓ 34.0s/36s –
36 PAGE ✓ 47.1s/34.7s – ✗2 24.6s/– ID_ADDR ✓ 42.3s/51.7s – ✓ 35.1s/36.5s –
37

Peri.

PAIR ✓
3m1s/

1h29m6s –
✗1 43.0s/– IRK

✓
1m10s/

1h25m33s – ✓ 33.7s/42s –38 ✗3 39.0s/– CSRK
39 ✗4 40.7s/– ID_ADDR
40 SCAN ✗1 2m7s/– IRK ✗1 38.2s/– IRK

✓ 55.2s/35.8s – ✓ 33.9s/41.3s –41 CE ✗1 1m57s/– IRK ✓ 25.3/27.9s –
42 ENCC ✓

1m45s/
3m44s – ✓

7m38s/
44m8s – ✓ 55.9s/35.5s – ✓ 34.9s/41.4s –

43 AUTHC ✓ 2m55s/37.7s – ✓ 39.7s/39.7s – ✓ 54.2s/35.8s – ✓ 33.6s/41.3s –
44 PAGE ✓ 3m5s/36.9s – ✗2 32.9s/– ID_ADDR ✓ 34.8s/35.7s – ✓ 35.3s/41.8s –

† : Alice uses a per-device randomly generated IRK and CSRK, and uses its public address (BD_ADDR) as the ID_ADDR.
§ : Alice uses per-pairing randomly generated IRKs, CSRKs, and ID_ADDRs.

	Introduction
	Background
	BLE Privacy Feature
	Key Distribution and Removal
	Threat Model

	Research Questions
	Model Design and Implementation
	Definition of BLE Untraceability
	BLE Communication Abstraction
	Verification of BLE Untraceability
	BLE Protocol-Level Identifiers
	Tracker Modeling
	Event-Based Untraceability Representation

	Model Evaluation
	Identified Privacy Violations
	Comparison with DE-based Model

	Real-World BLE Stack Evaluation
	Evaluation Results
	Case Study
	Attack 1: Tracking a Device with Background Services based on BLE Advertising
	Attack 4: Tracking a Bluetooth-Enabled BC/BLE Dual-Stack Device

	Responsible Disclosure

	Mitigations and Recommendations
	Suggested Specification Updates
	Suggestions to Developers
	Recommendations to End Users

	Discussion
	Related Work
	Conclusion
	Identifier Revocation Investigation
	Full Results of Untraceability Verification

