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Abstract
After a sophisticated attack or data breach occurs at an organi-
zation, a postmortem forensic analysis must be conducted to
reconstruct and understand the root causes of the attack. Un-
fortunately, the majority of proposed forensic analysis systems
rely on system-level auditing, making it difficult to reconstruct
and investigate web-based attacks, due to the semantic-gap be-
tween system- and web-level semantics. This limited visibility
into web-based attacks has recently become increasingly con-
cerning because web-based attacks are commonly employed
by nation-state adversaries to penetrate and achieve the initial
compromise of an enterprise network. To enable forensic ana-
lysts to replay and investigate web-based attacks, we propose
WEBRR, a novel OS- and device- independent record-and-
replay (RR) forensic auditing system for Chromium-based
web browsers. While there exist prior works that focus on web-
based auditing, current systems are either record-only or suffer
from critical limitations that prevent them from deterministi-
cally replaying attacks. WEBRR addresses these limitation
by introducing a novel design that allows it to record and de-
terministically replay modern web applications by leveraging
JavaScript Execution Unit Partitioning.

Our evaluation demonstrates that WEBRR is capable of re-
playing web-based attacks that fail to replay on prior state-of-
the-art systems. Furthermore, we demonstrate that WEBRR
can replay highly-dynamic modern websites in a deterministic
fashion with an average runtime overhead of only 3.44%.

1 Introduction

With the recent rise in enterprise data breaches, it is impor-
tant that forensic investigations be carried out to fully under-
stand how an adversary achieved each stage of the cyber-kill
chain [1]. To address this growing need, researchers have de-
veloped system-level state-of-the-art auditing systems [2–12],
including whole-system record-and-replay approaches [4, 5,
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13–15]. Unfortunately, a major limitation of all these systems
is that they provide extremely limited visibility into web-
based attacks, because a large semantic gap exists between
system-level abstractions (e.g., processes, sockets, files) and
the necessary semantics required to investigate web-based at-
tacks (e.g., HTML/CSS rendering and JavaScript execution).

As an initial attempt to address this gap, security-grade
browsers with some auditing capabilities have been pro-
posed [16, 17] and security researchers have begun studying
web-specific auditing systems [18–20]. However, these sys-
tems (e.g., [18, 19]) are record-only systems and do not offer
replay functionalities. In practice, having the capability to
record and replay web-based attacks is highly desired dur-
ing a forensic analysis, because it allows the investigator to
interactively investigate (e.g., via dynamic analysis) the at-
tack in a postmortem fashion. Additionally, record-only logs
have limited capability of expressing the visual component
of attacks, which is especially concerning in the context of
the web, since many web-based attacks have a visual com-
ponent (e.g., social engineering attacks). While prior work
has attempted to provide GUI information [8, 19, 20], these
systems can only provide limited data such as textual infor-
mation and GUI metadata. However, for modern browsers,
this is not enough information to express what was rendered
on the page, because styling or layout information cannot be
provided in a meaningful way. This limitation is alleviated by
record and replay technology, since it allows the analyst to
render exactly what the user saw during the attack.

While a few web-oriented record and replay systems have
been proposed, the majority of prior work focused on sup-
porting debugging and testing [21–25]. Unfortunately, these
debugging systems were not designed with security auditing
in mind, and consequently, they do not have the necessary
properties to be deployed in a forensic setting. For example,
forensic-grade record and replay systems need recording to be
always on, but the popular debugging tool, Mozilla’s rr [21],
can lead to a performance overhead of more than 4x (as shown
in §5.4). Additionally, Jalangi [24] and Mugshot [22] rely on
instrumenting the JavaScript (JS) code of web applications to



System Design
Goal

Instrumentation
Layer

Deterministic
Replay

Always
On

Tamper
Proof Portable

RR [21] Debugging OS ✓ ✗ ✓ ✗

Mugshot [22] Debugging JavaScript ✓ ✓ ✗ ✓

Jalangi [24] Debugging JavaScript ✓ ✗ ✗ ✓

WebCapsule [26] Forensics Browser ✗ ✓ ✓ ✓

WebRR Forensics Browser ✓ ✓ ✓ ✓

Table 1: A comparison of WEBRR with existing record and
replay systems. It covers three main aspects: the forensic
properties that existing systems lack, the instrumentation layer
where these systems have been implemented, and the design
objectives of these systems.

support record and replay. Unfortunately, instrumenting JS
code is unsuitable in a forensic setting, because these systems
can easily be detected and in some cases evaded (e.g., the
recording may be disabled by the malicious web application).

To summarize, we argue that to support forensic-grade
record and replay, the system needs to satisfy the following
fundamental properties:

• Replay Determinism – Deterministic replay is critical for
reliable forensic analysis. If the replay diverges from the
recorded browsing trace, this may prevent the attack from
replaying correctly or at all. Therefore, the analyst may
not be able to reconstruct the root causes of the attack,
or even worse they may determine that an attack did not
occur at all because it failed to replay.

• Always-On Recording – Because attacks are unpredictable
and ephemeral, audit log recording must be always on.

• Tamper Proof – The auditing system must not be easily
tampered with or disabled by an adversary.

• Portable – Web-based, forensic record and replay systems
need to be OS- and device-independent.

The current state-of-the-art for in-browser record-and-
replay systems is WebCapsule [26], which attempts to meet
the needs outlined above by instrumenting Chromium’s
rendering-engine to support record-and-replay of web-based
attacks. Unfortunately, WebCapsule’s design does not allow
for achieving deterministic replay, due to design limitations
that prevent it from preserving the correct execution order
of callbacks, events, and script execution during the replay.
Due to its inability to preserve the correct order, it introduces
executional divergence during the replay, which eventually
causes the replay to become non-deterministic or crash during
an investigation. Unfortunately, due to this limitation (which
is also acknowledged in the original paper, [26], Section 5.4),
WebCapsule is unable to replay a number of real-world at-
tacks, as we demonstrate in our evaluation (§5.3).

In order to highlight the advantages of WEBRR over prior
work more clearly, we have included a reference table, Tab. 1.
This table lays out the limitations of the prior work most
similar to WEBRR, detailing which forensic properties they
lack. To address these fundamental limitations, we propose a
novel system named WEBRR, an always-on forensic auditing

system that enables deterministic record and replay of mod-
ern web applications. WEBRR re-imagines how to replay a
website by leveraging the concept of JavaScript Execution
Unit Partitioning to partition a web app’s JS into a sequence
of javaScript execution units (JEUs), where a JEU represents
a script, callback, or event handler(s). Next, during the replay,
WEBRR replays the application by replaying each individ-
ual JEU while also preserving the recorded execution order.
This allows WEBRR to be resilient to executional divergence
that would otherwise cause the replay to fail. However, there
were still several challenges that had to be addressed in order
to properly leverage this novel technique, including having
to synchronize the DOM prior to each JEU execution and
ensuring that all sources of non-determinism are recorded.
Nevertheless, WEBRR is capable of handling all of these is-
sues. Finally, unlike previous work, we designed WEBRR to
simultaneously record both a web application and its Service
Worker (SW). This is important because Service Worker abuse
enables an increasingly large variety of sophisticated web-
based attacks ([27–30]). To the best of our knowledge, we are
the first web-based record-and-replay system to demonstrate
this capability.

In our evaluation, we show that WEBRR achieves deter-
ministic replay and demonstrate the replay of a number of
real-world attacks (§5.2), while also showing that prior ap-
proaches fail to correctly replay these attacks (§ 5.3). Ad-
ditionally, we demonstrate that WEBRR can replay Service
Workers execution, allowing us to properly replay modern
web applications.

In summary, we make the following major contributions:

• Forensic-grade record and replay of web-based attacks.
We implement WEBRR, a forensic-grade, record and replay
system that allows forensic analysts to replay fine-grained,
web-based attacks in a post-mortem fashion. We intend to
open source WEBRR and the datasets in the evaluation.

• Deterministic replay. We design WEBRR to enable deter-
ministic replay of modern web applications (including those
that use SW) while avoiding the enormous complexity of
replaying the entire browser and at the same time filling the
semantic gap between system- and web-level abstractions.

• Comprehensive evaluation. Through our extensive evalu-
ation, we demonstrate that WEBRR is capable of replaying
many different types of sophisticated, web-based attacks
that prior works fail to correctly replay. We also shows
that WEBRR is capable of replaying popular benign web-
sites found on the Tranco 1k list [31]. Furthermore, we
demonstrate that WEBRR’s recording runtime performance
and storage overhead are sufficiently low to make its de-
ployment in read-world enterprise environments practical.
For instance, our experiments show that WEBRR’s average
runtime overhead is under 3.44% when visiting popular
websites. Finally, we demonstrate WEBRR’s portability
by evaluating it on a diverse set of devices and operating



systems, including Linux, Android, and Windows.

2 Background

As WEBRR is built on the Chromium browser, we begin
with a brief overview of Chromium’s architecture. Chromium-
based browsers use a multi-process architecture. The main
process is the browser process, which is analogous to an
OS-level kernel. Web content is then rendered in sandboxed
render processes that do not have direct access to the network
or underlying filesystem. As WEBRR is mainly implemented
within the render process, we provide more detail about the
components of this process.

2.1 Render Process Architecture

Most of WEBRR is implemented via render process instru-
mentations, which allow us to extend Chrome’s DevTools [32,
33] with a custom forensic Inspector Agent [34]. To facilitate
the discussion of WEBRR’s design, we provide a high-level
overview of the Render Process architecture.
Rendering Engine Major Components. Each render pro-
cess includes four major components: (i) the rendering engine,
named Blink; (ii) the JS engine, named V8; (iii) the bindings
layer that connects V8 to Blink, and (iv) the platform layer.
The rendering engine is a highly multithreaded component
that renders a website. This includes HTML parsing, main-
taining the DOM, and implementing the web APIs that are
exposed to V8. Additionally, the rendering engine schedules
all macro-tasks consisting of JS code to be executed by V8.
Each render process also includes an instance of the V8 en-
gine, which executes all JS components (scripts, callbacks,
and event handlers) of a web application. The bindings layer
glues together Blink and V8 by exposing functionality such as
the Blink APIs needed to enable programmatic DOM changes
from JS code. The bindings layer includes over 4,000 APIs
and 2,000 call attributes that are exposed to V8. These ex-
tensive APIs are automatically generated when Chromium
is compiled, via a bindings generator that transcompiles We-
bIDL files into C++ code [35]. The platform layer is an ad-
ditional middle layer that communicates with the browser
process. Both Blink and V8 communicate with the browser
process through this layer.
Threading & Cross-Context Communication. The render
process includes many threads (e.g. render thread, HTML
parsing thread, compositing thread, etc.) To simplify the dis-
cussion, we focus on threads that execute JS code: the Ren-
derThread, WebWorker Thread(s), and the ServiceWorker
Thread (see §2.2). Scripts that are included or inserted into the
page’s document run on the RenderThread. Additionally, JS
code running on the RenderThread can create WorkerThreads.
However, only JS code running in the RenderThread can
access the DOM. JS code running in worker threads have

const URL = "https://malicious -server.com"

async function getpayload() {
const res = await fetch(URL, {

method: "POST",
body: {"type" : "getPayload"}})
document.body.innerHTML = await res.text()

}

async function heartbeat(idleDeadline) {
const res = await fetch(URL, {

method: "POST",
body: { "type" : "heartbeat",

"now" : Date.now()}})
window.requestIdleCallback(heartbeat)

}

window.requestIdleCallback(heartbeat)
setTimeout(getpayload(), 5000)

Listing 1: deliver.js

access to a number of APIs, including postMessage to enable
communication with the RenderThread, but cannot directly
manipulate the DOM. Due to this strong isolation from the
DOM, JS code can be viewed as single-threaded (with respect
of how it affects page rendering and events).

2.2 Service Workers

Service Workers (SWs) are JS workers that execute in the
background, independently from the web page that registered
them. SWs are designed to improve the offline web app expe-
rience during times of lost connectivity. Due to their special
role, SWs can register for events that are not available in the
window context. This includes the fetch event, which allows
the SW to intercept and modify all network requests related
to the origin that registered the SW. Additionally, SWs can
register for Push events, which allows them to receive push
messages from a backend server and issue browser notifica-
tions. Recent work has shown that SWs can be leveraged to
launch a variety of sophisticated web-based attacks [27–30].

3 Motivating Example & Our Approach

In this section, we provide an example to motivate
WEBRR’s design decisions and to point out the limitations
of prior work. This motivating example, shown in Listing 1,
is inspired by how modern browser exploitation frameworks
like BeEF [36] monitor and deliver payloads to their victims.
BeEF (Browser Exploitation Framework) is an open source
framework commonly used by nation-state adversaries to
launch web-based attacks on their victims [37–39]. First, the
malicious script, deliver.js, establishes a heartbeat between
the victim and the server using the heartbeat function. The
heartbeat is used to monitor the user’s browsing session and



to send fingerprinted information to the server (we omit the
fingerprinting for clarity). Next, the script uses the fetch API
to get the malicious payload from the server. Finally, once the
response for the payload is received, it will change the HTML
of the page to the contents in the response.

In this example, WEBRR’s goal is to replay the entire in-
teraction between the malicious app and the victim. Unfor-
tunately, we found that prior work [26] fails to replay the
payload delivered by deliver.js due to uncaptured non-
determinism which arises from the heartbeat mechanism.
Specifically, the number of heartbeats that occur prior to re-
ceiving the payload is nondeterministic. This is because idle
callbacks are only executed in the browser’s idle periods
(which vary across different executions). When attempting to
replay this on prior work, we found that the payload response
is not returned, but instead an empty response related to the
heartbeat is returned. Upon further investigation, we found the
underlying issue to be that the JS execution diverges during
the replay, because fewer heartbeats occurred in the replay,
compared to the original execution. Consequently, when the
getPayload callback is executed, WebCapsule returns the
wrong network response. This is due to executional diver-
gence, which occurs due to the non-deterministic behaviors
that arise in JS scheduling. While WebCapsule does attempt to
alleviate this issue by using a key-value data structure, where
the keys are URLs and the values are FIFO-based queue of re-
sponses, this is not effective in scenarios where the URLs are
the same (e.g., server-side routing is being used). More con-
cerning, we found that executional divergence fundamentally
breaks key design assumptions made by WebCapsule. Specif-
ically, WebCapsule assumes the order of JS execution will
be the same during the replay and recording. Because of this
assumption, when executional divergence occurs during the
replay, WebCapsule can no longer reliably return the values
observed during the recording for sources of non-determinism
(e.g., Math.random, Date values, network requests, etc.) be-
cause it cannot determine if the callback or script requesting
the non-deterministic value is the same one as during the
recording. During a forensic investigation, executional diver-
gence can lead to the attack failing to be replayed and lead the
forensic investigator coming to the conclusion that an attack
did not occur at all.

3.1 Our Approach

The reason prior works fail to properly replay web applica-
tions when executional divergence occurs is because they view
the web application as a single monolithic unit of execution,
which is fundamentally different then the event-loop execu-
tion model used by JS, where individual units of javaScript
(scripts, event handlers, and callbacks) are scheduled to be exe-
cuted one-by-one. Additionally, in modern browsers, external
factors such as user inputs, network latency time, and CPU
load influence the order in which these units are executed.

Consequently, if the order of execution changes during the
replay, due to executional divergence, prior work is unaware
of these changes, and it fails to replay the attack.

In order to address this, we reimagine how to replay the web
application by partitioning the web application’s javaScript
execution, into a sequence of individual JavaScript Execu-
tion Units (JEUs). This allows us to independently replay
these units and enforce the same order-of-execution that was
observed during recording, which alleviates the issue of exe-
cutional divergence. For example, in WEBRR’s approach, the
deliver.js script would include a JEU for the deliver.js script,
another JEU for the getPayload callback, and a JEU for each
time the heartbeat was executed. Next, during the replay
WEBRR will schedule each JEU to be executed at the same
point in the execution sequence. This makes the sequence
in which the JS execution become deterministic. Finally, as
JEU’s are replayed, WEBRR ensures that any sources of non-
determinism that were queried upon by the JEU return the
same values observed in the recording.

Threat Model. We envision WEBRR deployed in an en-
terprise environment to enable forensic investigations to be
conducted on web-based attacks. As users interact with web-
sites, our system generates logs capable of replaying each
visit. We assume that these recorded logs are tamper-proof,
which can be achieved by encrypting the logs and storing
them on a secure file server. As these logs store personal
information about the user, the user’s privacy must be consid-
ered. To minimize the personal information released during
an investigation, the logs from different sites and time periods
can be encrypted with different keys. These keys can then
be securely stored in a key escrow, as proposed in previous
work [26]. Then, only the logs necessary for the investigation
can be decrypted and shared with analysts. Additionally, we
assume that the browser application is not compromised at the
time of the attack and, as such, the logs can be trusted (note:
assuming a trusted computing base is common in the auditing
community [2–6, 8–12, 18, 19, 26, 40–46]). If the browser
is compromised, WEBRR will still record everything from
the attack setup, until the actual compromise occurs. There-
fore, an analyst can replay the attack up until the point of
compromise. We present such an example in our evaluation.

4 WEBRR

WEBRR is designed to be a forensic-grade record and re-
play system. With this goal in mind, we developed WEBRR
such that it can be an always-on, portable, tamper proof, and
deterministic system. In a forensic setting, WEBRR’s record-
ing needs to be always-on, since it will not be known when
the attack occurs ahead of time. To support this always-on
property, WEBRR’s design takes special care to not introduce
any instrumentation that significantly hinders the browser’s
performance. Next, to maximize portability, WEBRR was



implemented within Blink and on top of Chromium’s exist-
ing DevTools framework [32]. By strategically placing our
instrumentation in Blink, it allows WEBRR to be OS- and
device- independent and support a large set of different op-
erating systems and devices. Additionally, while WEBRR is
designed as a prototype in Chrome, it can be easily ported
to other browsers that use Blink (e.g., Brave, Edge, Opera,
etc.). Next, we designed WEBRR to be tamper proof such that
the customizations are not accessible from JS applications
(e.g., we do not attach any new properties to the window ob-
ject). Finally, WEBRR seeks to provide a deterministic replay
that allows analysts to faithfully replay attacks, enabling a
accuracy and fine-grained forensic investigation.

High-Level Record & Replay Strategy. During the record-
ing WEBRR will partition the execution into individual units
using JS execution unit partitioning (discussed in §4.1). Next,
during the replay we sequentially replay each JEU in a syn-
chronous manner while also preserving the recorded execu-
tion order (discussed in §4.2). Additionally, during the replay,
WEBRR must ensure that right before a JEU is replayed, the
the DOM state is consistent with what was observed during
recording at this point in the execution sequence. Therefore,
during the recording, WEBRR will record the DOM state
and synchronize the DOM when necessary in the replay (dis-
cussed in §4.3). Finally, as JEUs are executing during the
replay, they will query upon sources of non-determinism such
as network requests and non-deterministic web APIs (dis-
cussed in §4.4).

4.1 JavaScript Execution Unit Partitioning

During the recording, our goal is to partition the JS execution
into a sequence of JEUs. A JS execution unit (JEU) represents
a single unit of JS execution, such as when a script is inserted
into the DOM, an event is fired, or a callback is executed.
In order to partition the execution, we add hooks into Blink,
which allow us to record when a JEU begins and ends execu-
tion using our JS-Execution Unit Recorder (JEU Recorder)
module. Below, we explain the locations that we instrumented
in Blink to partition the JS execution into a sequence of units.

Script Units. In Blink, when a script tag is inserted into
the DOM, the corresponding page’s ScriptController is
called, which calls V8 to execute the associated script. Specifi-
cally, the ExecuteScriptAndReturnValue passes the script
to V8 to be executed. To record script execution, we insert
hooks at the point where Blink passes control to V8. For each
script executed, WEBRR records the frame id, script id, se-
quence number, and hash of the script’s source code. We do
not have to record the script’s source code because this will
be recorded by the Blink-Platform recording shims when the
network request for the script is made. This is also the case for
inline scripts since they are stored in the HTML document.

Callback Units. Callbacks represent the execution of call-
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Figure 1: An overview of WEBRR’s Replay Dispatcher run-
ning on the render thread.

backs registered by the application’s JS code. The most com-
mon web APIs used to register callbacks are setTimeout
and setInterval. When setTimeout and setInterval
are called, Blink creates a DOMTimer object. This ob-
ject encapsulates the callback and Blink will schedule the
DOMTimer::Execute on the render thread to execute the call-
back after the specified time period. To record these callback
units, we add hooks inside DOMTimer::Execute to record
when the callback’s execution begins and finishes. Addi-
tionally, setTimeout and setInterval return a timeout id,
which we record to determine which callback is registered
during the replay. Finally, WEBRR also supports record-
ing callbacks registered with requestIdleCallback and
requestAnimationFrame using a similar approach.
Event Units. To record events, we insert hooks into the
EventTarget::FireEventListeners and record the nec-
essary information to reconstruct the event during the replay.
Additionally, to minimize the data footprint, we only record
events that actually have event listeners registered for them.

4.2 Replaying JEUs

During the replay, WEBRR schedules the execution of each
JEU to force the web application’s JS code to execute in the
same order as what was recorded. To achieve this, we designed
a replay scheduler, which ensures that all JEUs are replayed
in the same sequence as observed during the recording. The
scheduler has two major components, the Replay Queue and
Replay Dispatcher which are discussed below.

When a replay is initialized, a recording is loaded into
WEBRR. The JEUs recorded by the JEU Recorder are stored
in the replay queue. The queue is a FIFO queue and oper-
ations are inserted based on when they occurred during the
recording. At a high-level, a replay operation is a data struc-
ture that contains metadata related to a JEU (more details
in §4.2.1). During the replay, operations are pulled off the
queue and scheduled to be executed on the render thread by
the Replay Dispatcher. This process is completed until the
queue is empty. This approach is displayed in Fig. 1. First,
when the replay begins, WEBRR schedules the replay dis-
patcher by posting it as a task on the render thread’s task



Replay
Dispatcher

DOM
Replayer

JS
Replayer

Event 
Replayer

example.com
FrameId: 1

ReplayFrame
bar.com

FrameId: 2

ReplayFrame
foo.com

FrameId: 3

ReplayFrame

example.com
FrameId: 1

ReplayFrame

Figure 2: A high-level overview of the workflow that occurs
when the replay dispatcher is executed on the render thread.

queue. Next, the render thread’s scheduler will execute the
replay dispatcher task. When this occurs, the dispatcher will
pop the next replay operation off the queue, process it, and ex-
ecute it on the render thread. How the operation is “processed”
varies based on the type of replay operation that is popped
off the queue (discussed further in §4.2.1). Finally, after the
operation has been completed, WEBRR repeats this process
by placing the dispatcher task back in the render thread’s
task queue until the replay operation queue is empty. At first
glance, the process of repeatedly rescheduling the dispatcher
to be executed on the render thread may appear unnecessary.
However, this is necessary in order to ensure the other com-
ponents of the rendering pipeline (e.g., layout and paint) are
given time to be executed, in addition to the replay operations.

4.2.1 Replay Operations

Internally, each operation is a map data structure that contains
the necessary information for the replay engine to process
the operation. In Fig. 2, we provided a high-level descrip-
tion of how a replay operation is processed. First, the replay
dispatcher pulls a replay operation off the queue. Next, the
dispatcher dispatches this operation to the correct frame. This
is necessary when the page we are replaying has multiple
frames (iframes). Internally, we do not dispatch this operation
directly to the frame. Instead, we dispatch it to WEBRR’s
internal ReplayFrame class, which is a thin wrapper around
Blink’s LocalFrame. Blink uses LocalFrame objects to en-
capsulate and isolate the rendering of individual frames. Dur-
ing the replay, WEBRR also isolates the replay of different
frames, and the ReplayFrame is responsible for driving the
replay of the LocalFrame it encapsulates. The remainder of
this section discusses the JSReplayer and the Event Replayer.

4.2.2 JSReplayer

The JSReplayer is responsible for replaying all script and call-
back JEUs in the correct order. To achieve this, the JSReplayer
takes over the responsibility of scheduling script and callback
units to be executed on the render thread. Specifically, when
JS registers callbacks using APIs such as setTimeout and
setInterval, Blink does some bookkeeping and then places

the registered callbacks into the render thread’s task queue to
be executed later. However, during a replay, WEBRR needs
to control when callbacks execute to ensure the replayed
sequence of JEUs matches the recorded sequence. To ac-
complish this, the JSReplayer maintains a registration data
structure that it uses to determine when each script or callback
should begin executing. During replay, when Blink is about to
place a callback on the render thread’s task queue, WEBRR
intervenes and instead saves the callback in the registration
data structure according to a unique id. At this point, WEBRR
has complete control over when the callback starts and waits
until the correct time to execute it. While this discussion
mainly focuses on callbacks, the approach for handling script
tags is similar and is discussed in detail below.

Script Registration. In Blink, each LocalFrame has a ref-
erence to a ScriptRunner object and a ResourceFetcher
object. The ResourceFetcher class downloads resources
from the network for the frame, and the ScriptRunner serves
as a middleman between the ResourceFetcher and the
render thread’s scheduler. The ScriptRunner manages the
state of scripts as they transition from a pending state to
a ready state. When a script is in a "pending" state, the
ScriptRunner is waiting on this script’s source code to be
fetched from the network by the ResourceFetcher. Once
the ResourceFetcher has completed downloading the script,
the script will transition to a ready state, which in turn will sig-
nal the ScriptRunner to schedule this script to be executed
on the render thread. During the replay, we add registration
hooks in the ScriptRunner::NotifyScriptReady method
to force all scripts that are in the ready state to register them-
selves with their frame’s JSReplayer.

Callback Registration. Web apps can register callbacks
to be executed at a later point in time using APIs such as
setTimeout and setInterval. Within Blink, when a call-
back is registered using these APIs, it creates a DOMTimer
object, which manages executing this callback. During the re-
play, we add hooks to the timer’s constructor, such that when
a DOMTimer is created, it will be registered with the JSRe-
player. WEBRR also supports replaying callbacks registered
with requestIdleCallback and requestAnimationFrame
using a similar approach.

Script & Callback Execution. The final aspect of the JSRe-
player is how and when it executes script and callback units.
When the JSReplayer receives a replay operation, the oper-
ation contains a unique identifier that is used to determine
which JEU should be executed. For scripts, this is the hash
of the source code and for callbacks, it is the id provided by
the return value. Next, the JSReplayer will look up the cor-
rect JEU in its registration map by using the unique-identifier.
Finally, the JSReplayer will synchronously execute the JEU.



4.2.3 EventReplayer

The EventReplayer is responsible for replaying event-related
replay operations, and it achieves this by reconstructing the
original event that occurred during the recording and then
firing this event at the correct EventTarget, which will in-
voke any event listeners for this event. Event reconstruc-
tion is done by creating an Event object using the infor-
mation provided in the replay operation. Specifically, each
replay operation contains the necessary information to cre-
ate a blink::Event class or one of its subclasses (e.g.,
MouseEvent, KeyboardEvent, etc.).

4.2.4 JS Microtasks & Asynchronous Functions

The final type of operation that WEBRR needs to ad-
dress is the execution of JavaScript microtasks. Micro-
tasks in JavaScript (e.g., Promises, queueMicrotask, try/catch,
async/await) are brief, non-blocking tasks designed to run
immediately after the completion of the current task (JEU)
and before deferring to the event loop (for a more detailed ex-
planation, interested readers may refer to [47]). For instance,
when a promise is resolved, its .then() or .catch() handlers
are added as microtasks. Furthermore, when a async function
is invoked, it returns a promise. Any operations following
the await keyword within the asynchronous function will be
performed as a microtask.

WEBRR manages microtasks by allowing them to execute
without interference. Specifically, WEBRR only schedules
JEUs (scripts, callbacks, events) with its replay scheduler,
without inhibiting or disrupting the execution of microtasks.
This strategy is based on the principle that microtasks will
invariably be performed after the JEU that scheduled them. In
essence, during replay, a new JEU will not execute until the
previous JEU and all of its associated microtasks have been
completed. The correctness of this approach has been verified
and validated in §5.6 of our evaluation.

4.3 Maintaining the DOM State
During the replay, WEBRR must ensure that right before a
JEU is replayed, the state of the DOM exactly matches what
was observed during the recording right before the related
JEU was executed. This ensures that during replay, the JEU
will be provided the same inputs that it observed during the
recording phase. A main challenge is that browsers support
script attributes such as async and defer, which allow the
page’s HTML to be parsed in parallel to the fetching of re-
sources; this is a possible source of non-determinism during
replay. Therefore, to achieve deterministic replay, the state
of the DOM must be tracked and recorded. To achieve this,
WEBRR uses a DOM Recorder, which records insertions into
the DOM tree made by the parser. For each DOM node in-
serted, we record the necessary information to reconstruct the
same DOM tree during the replay in the correct sequence.

During the replay, to ensure that the state of the DOM is
exactly the same as during recording before a JEU is executed,
WEBRR disables Blink’s HTML parser and uses a custom
DOMReplayer to control when DOM nodes are inserted into
the page’s document (note that during recording, WEBRR
does not change the parser or page rendering; changes are
applied only during replay). The main challenge for the DOM-
Replayer is that it needs to ensure that prior to the execution
of a JEU, the DOM state is the same as it was during the
recording. In order to achieve this, we create additional replay
operations to represent DOM construction operations. These
DOM construction operations are then placed in the same
replay queue as the replay operations related to JEUs, such
that if a DOM construction operation occurred prior to the
execution of the JEU is it guaranteed to occur prior to its
execution during the replay.

4.4 Handling Sources of Nondeterminism

The final piece to WEBRR’s replay system is the shims
used to capture and replay sources of non-determinism. As
JEUs are executing during the replay, they will query upon
sources of non-determinism such as network requests and
non-deterministic web APIs. To support a deterministic re-
play, WEBRR must record these values. This is achieved by
using a set of shims (Blink-Platform shims, Blink-V8 shims,
and V8-Platform shim) which are discussed in the remainder
of this section. Additionally, during the replay all shims are
placed in replay mode and any function calls that pass through
them will return the value observed in the recording.

4.4.1 Blink-Platform Shims

The Blink-Platform shims record responses to all network
requests made by an application. This includes network
requests that fetch resources (e.g., images, scripts, etc.)
and ajax requests made by JS via xmlhttprequest and
fetch APIs. We implemented this shim at the Blink-
Platform layer because all network request made by the
application flow through this layer. This allows us to
create a single recording hook that can record all net-
work responses. Specifically, the ResourceFetcher class
is used to handle all network requests for a render process.
The ResourceFetcher::HandleLoaderFinish method is
called when a response is received. We implement WEBRR’s
recording shim at this point to record the network response.
During the replay, WEBRR needs to uniquely identify each
network request so that it can return the correct response. For
this, WEBRR maintains a map data structure where the key
identifies the unique request and the value is the recorded
response. The key contains the request’s URL, resource type,
and HTTP method. We found this approach to work well in
practice with no collisions. For the response, WEBRR records
the response’s HTTP status, headers, and payload.



4.4.2 Blink-V8 Bindings Layer Shims

The Blink-V8 bindings layer shims capture non-deterministic
values that flow into V8 via the web APIs exposed by Blink.
While most web APIs are deterministic, there are several APIs
that return non-deterministic values. For example, the APIs
exposed by the Performance module are dependent on the
current execution speed, which differs across execution. Ad-
ditionally, we consider APIs related to storage and cookies to
be non-deterministic. The full list of non-deterministic APIs
WEBRR records are provided at [48]. This list was devel-
oped by comparing the return values of several thousand web
API invocations (222,118 to be specific) during our extensive
experimental evaluations.

The main challenge with capturing non-deterministic val-
ues returned by web APIs is the amount of APIs that needs
to be hooked. As discussed in §2, the bindings layer exposes
the web APIs that are implemented in Blink to JS applica-
tions. These APIs are exposed through C++ code, generated
using Chromium’s Bindings compiler [35]. To avoid manu-
ally hooking every API, we customize the bindings compiler
to add our hooks to the necessary APIs during compilation.
These customizations rely on modifying the templates used by
the compiler to generate the C++ code for web attributes [49]
and web APIs [50]. This approach can also facilitate porting
WEBRR’s instrumentation to future browser releases.

For each attribute or method that we need to hook, WEBRR
introduces a small snippet of code that redirects the control to
our recording engine when a hooked web API is called. Next,
WEBRR records the method or attribute that was called and
the value that will be returned and then returns control back
to the bindings layer and the execution flow resumes as usual.

4.4.3 V8-Platform Shims

The V8-Platform shims record non-deterministic data that
flows into V8 via the V8-platform boundary including values
returned by the Date object’s methods and values returned by
Math.random. To record these values, we made minor modi-
fications to the V8 engine at the V8-Platform layer. First, calls
to the Date module go through the platform layer to get the
current time via CurrentClockTimeMillis, which returns
the current time’s timestamp. We add a small wrapper around
this method that records return values. For each recorded
value, we record the execution context’s id to determine con-
text this value occurred. Instrumenting Math.random works
in a similar way, where WEBRR inserts a small wrapper
around calls to Math.random to record return values.

4.4.4 Workers & Frame Communication

As previously discussed in §2, JS can run script operations on
background threads using the Web Worker’s Interface [51].
It is important to point out that web workers have their own
context (i.e., they do not share memory with JS running on

the render thread). Instead, communication between workers
and render contexts occurs via message passing through the
postMessage API. We decided to not record worker threads
and instead record the communication between the threads,
which allows us to isolate the replay of threads. Currently,
WEBRR supports recording inbound messages to the render
thread. However, it could easily be extended to support re-
playing workers in isolation. Since WEBRR’s main goal is to
support replaying web-based attacks and attacks rarely occur
in the worker context, we leave this to future work.

We also want to point out that frames (i.e. iframes and main-
frame) also run in their own contexts and communicate via the
postMessage interface. WEBRR’s approach to handling this
communication is to treat it as a source of non-determinism
and record all messages passed between frames.

4.5 Replaying Service Workers

To support replaying SWs, we developed a SW-mode, which
allows a forensic analyst to replay an application’s SW in iso-
lation (i.e., it does not need to replay the "webpage" portion
of the web app). In SW-mode, WEBRR updates the replay
scheduler so that the replay dispatcher task is posted to the
SW’s task queue, instead of the render thread’s task queue.
This allows the dispatcher to be executed on the SW thread
and execute replay operations in the SW’s context. Addition-
ally, we added support for events that are only available in
the SW context (e.g., push notifications, sync, and lifecycle
events [52]). One challenge we had to address was how to
record both the web application’s main context and the SW
context at the same time, since an attack may occur in ei-
ther contexts. In order to achieve this, we we strategically
designed WEBRR’s recording engine to be stateless, so that
its recording hooks could be called on different threads. This
allows the the APIs and JEU Recorder to be able to record
the SW and render threat simultaneously.

5 Evaluation

Our evaluation addresses the following research questions:
• How well does WEBRR replay sophisticated real-world

web-based attacks during a forensic investigation?
• Can WEBRR replay highly dynamic web applications?
• How well does WEBRR perform compared to existing

state-of-the-art systems?
• What is the runtime performance overhead and data storage

requirements of WEBRR’s recording engine?

5.1 Experimental Setup

We complete WEBRR’s evaluation on a diverse set of devices
and operating system to demonstrate WEBRR’s portability.
For Linux, we used a standard desktop with a AMD Ryzen 9



5950X 16-Core 2.2GHz CPU and 128 GB of physical mem-
ory, running Ubuntu 20.04. For Windows, we used a standard
desktop with an AMD Ryzen 9 3900X 12-Core 3.9GHz CPU
and 128 GB of physical memory running Windows 10. For
Android, we used an emulated Pixel 6 XL device running
Android version 12.0 (S) - API 31. We implemented WEBRR
by instrumenting Chromium version 83.0.4103.97

5.1.1 Evaluation Metrics

To evaluate WEBRR’s capability to deterministically replay
web-based attacks and benign websites, we consider four
major factors: (i) the website is correctly recorded, (ii) the
JEU sequence in the replay matches the JEU sequence of the
recording, (iii) sources of non-determinism return the values
observed during recording, and (iv) the replay is visually
deterministic. We discuss how we measure each factor below.
Successful Recording. We consider the recording to be
successful if the website was recorded, the browser did not
crash, and there were no significant issues with the website.
Comparing JEU sequences. For each experiment, we log the
sequence of JEUs both during recording and replay and com-
pare how closely the two sequences align. To measure JEU
sequence alignment, we use the Levenshtein Distance [53]
(i.e., edit distance) Algorithm, which is a common approach
used for measuring the difference between two sequences. In
this evaluation, smaller distance values are better and a score
of zero means the sequences are perfectly aligned.
Verifying Return Values of Nondeterministic Sources. An-
other important aspect of the replay that needs to be evaluated
is (i) if our replay shims are correctly returning the values ob-
served during the recording and (ii) that we support all APIs
that may be returning non-deterministic values. To measure
this, we customize WEBRR so that it records every web API
that is invoked in the Blink-V8 bindings Additionally, for
APIs that return primitive types, we record these values. This
allows us to record the web API sequence that occurred dur-
ing the recording and the replay. Each entry in the sequence
is a tuple that includes the method name and the value the
API call returned. Next, similar to how we compared the JEU
execution sequences, we compare the API call sequences,
which allows us to verify that each invoked API returns the
same value as what was observed during the recording.
Visually Deterministic. We consider a replay to be visually
deterministic if the visual layout of the replayed execution
is consistent with what was observed during the recording.
To evaluate visual determinism, we take screenshots during
the recording and replay prior to the execution of a JEU unit
related to user inputs (notice that, for the sake of this mea-
surements, we instrumented WEBRR to synchronously take
screenshots precisely at the time of user inputs by temporar-
ily pausing the render thread prior to taking the screenshot).
Essentially, this allowed us to create pairs of screenshots (rec,

repl) that capture the page rendering at the exact same point
in the execution sequence for the record and replay traces.
Therefore, we expect the screenshots to be visually equivalent.
To measure the similarity between these screenshots, we train
a deep learning-based similarity function, similar to state-of-
the-art methods used in recent phishing detection work [54].
Specifically, we use SimCLRv2 [55], a contrastive learning
method for measuring image similarity. This method trains a
neural network to output encoding vectors for input images
such that similar images map to similar image embeddings.
Starting from the publicly available pre-trained SimCLRv2
model, we fine-tuned it to measure the similarlity among web
pages, using a dataset of 7,203 web page screenshots col-
lected by us from the Tranco 1K [31] list of websites. During
the evaluation, we embed the corresponding recorded and
replayed screenshot pairs (rec, repl) for a given website, and
report the mean cosine similarity between the two embedding
vectors over all pairs for the same website. If the cosine sim-
ilarity between the two vectors is one, it means the model
considers these screenshots to be an exact match.

5.2 Record & Replay Evaluation
In this section, we evaluate how well WEBRR is able to replay
web-based attacks and popular-but-benign websites.
Attacks Used. We evaluated WEBRR on seven real-world
web-based attacks, shown in the Attack column in Tab. 3. We
evaluate the same set of attacks on all three test platforms:
Linux, Windows, and Android. We chose these attacks be-
cause they i) represent a diverse set of different web-based
attacks, ii) are commonly observed at enterprise organiza-
tions [56], and iii) similar attacks have been used to evalu-
ate prior work [11, 29, 30, 37]. We also included a drive-by-
download attack because it exploits a bug in the version of
Chromium on which WEBRR is built and demonstrates that
WEBRR is also able to replay attacks that exploit the browser
itself (see §6 for a discussion of related limitations). The first
attack (attack 1) is a phishing-based attack that was collected
from OpenPhish [57]. The second attack (attack 2) is a creden-
tial harvesting attack inspired by a real-world attack carried
out by the OceanLotus APT group [58].

For the other attacks, we set up several different types of
attacks locally and evaluated how well WEBRR could replay
them. This included a keylogger that relied on XSS (attack
3), a Clickjacking attack (attack 4), and a driveBy attack that
relied on exploiting a type-confusion vulnerability in V8 to
(attack 5). Furthermore, we record and replay two recent web
attacks that make use of Service Workers (SW) and thus
can target modern progressive web apps (attacks 6 and 7).
For each attack, we started WEBRR in recording mode and
navigated to the malicious website that hosted the attack.
Next, we interacted with the website so that it would trigger
the attack. For all of the attacks, we verified that WEBRR
properly recorded the attack without errors.



OS Website R
ec

-J
EU

Se
q.

Le
n.

R
ep

-J
EU

Se
q.

Le
n.

JE
U

-S
eq

. E
. D

.
R

ec
-A

PI
Se

q.
Le

n.

R
ep

-A
PI

Se
q.

Le
n.

A
PI

Se
q.

E.
D

.
R

ep
la

ye
d

Lin. stackoverflow 134 134 0 12,868 12,865 13 ✓
Lin. wikipedia 181 181 0 52,700 52,700 4 ✓
Lin. whitehouse 60 60 0 6,148 6,148 4 ✓
Lin. mozilla 141 141 0 8,078 8,078 0 ✓
Lin. craigslist 345 345 0 26,534 26,536 8 ✓

Win. stackoverflow 146 146 0 14,477 14,477 11 ✓
Win. wikipedia 173 173 0 6,790 6,794 14 ✓
Win. whitehouse 39 39 0 5,878 5,878 5 ✓
Win. mozilla 91 91 0 4,557 4,565 12 ✓
Win. craigslist 52 52 0 4,546 4,546 10 ✓

Andr. stackoverflow 161 161 0 15,391 15397 18 ✓
Andr. wikipedia 69 69 0 26,790 26,790 12 ✓
Andr. whitehouse 32 32 0 5,909 5,911 13 ✓
Andr. mozilla 67 67 0 1,769 1,769 0 ✓
Andr. craigslist 58 58 0 6,820 6,822 0 ✓

Table 2: Evaluation of replayed benign websites. For each
site, we show the recording operating system (OS), recorded
JEU sequence length (Rec-JEU Seq. Len.), replayed JEU
sequence length (Rep-JEU Seq. Len.), JEU sequence edit
distance (JEU-Seq. E. D.), recorded API sequence length
(Rec-API Seq. Len.), replayed API sequence length (Rep-API
Seq. Len.), API sequence edit distance (API Seq. E. D.), and
replayed correctly (Replayed).

Popular Websites Used. We used the benign websites in
the Website column in Tab. 2. The diverse set of websites
we selected were all found on the Tranco 1k list [31]. We
visited each website using WEBRR in recording mode on
Windows 10, Ubuntu 20.04, and Android 12. During each
visit, we heavily interacted with the website to simulate a
typical visit to this website. For all of the websites, we verified
that WEBRR properly recorded the browsing sessions.

5.2.1 JavaScript Execution Determinism

In this section, we focus on evaluating the JS execution and
how accurately it was replayed during the experiments. Af-
ter recording each attack and website used, we replayed the
browser trace s using WEBRR in replay mode. Next, we com-
pared the recorded JEU execution sequence to the replayed
sequence. For the attacks, the results are shown in Tab. 3 in
the JEU Sequence Edit Distance Column. We see that for all
attacks, the edit distance between the recorded and replayed
execution sequence was zero, which means the sequences
were exact matches. Additionally, for all benign websites,
the JEU execution sequence during the replay matched the
recorded sequence, which is shown in Tab. 2. This shows that
WEBRR can replay the JEU execution sequence exception-
ally well for web-based attacks and popular benign websites.

The final portion of the evaluation verified that the sources
of nondeterminism return the same values. These results are
shown in the API Sequence Edit Distance column in Tab. 3 for
the attacks and in Tab. 2 for the popular websites. We found
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Lin. Phish. 96 96 0 326 326 0 ✓
Lin. Cred. Harv. 977 977 0 3,733 3,733 0 ✓
Lin. KeyLogger 51 51 0 97 97 0 ✓
Lin. Click. Jack. 189 189 0 131 131 0 ✓
Lin. DriveBy 93 93 0 263 263 0 ✓
Lin. StealthyPush. 10 10 0 73 73 0 ✓
Lin. XXS-SW 2 2 0 10 10 0 ✓

Win. Phish. 96 96 0 326 326 0 ✓
Win. Cred. Harv. 15 15 0 1389 1389 0 ✓
Win. KeyLogger 55 55 0 61 61 0 ✓
Win. Click. Jack. 38 38 0 259 259 0 ✓
Win. DriveBy 298 298 0 2441 2441 0 ✓
Win. StealthyPush. 10 10 0 73 73 0 ✓
Win. XXS-SW 2 2 0 10 10 0 ✓

Andr. Phish. 55 55 0 5,127 5,127 0 ✓
Andr. Cred. Harv. 211 211 0 5,504 5,504 0 ✓
Andr. KeyLogger 92 92 0 80 80 0 ✓
Andr. Click. Jack. 32 32 0 266 266 0 ✓
Andr. DriveBy 353 353 0 2,571 2,571 0 ✓
Andr. StealthyPush. 10 10 0 73 73 0 ✓
Andr. XXS-SW 2 2 0 10 10 0 ✓

Table 3: Web-Based Attack Results. See Tab. 2 for column
descriptions.

that for all attacks, the APIs queried returned the same values
as what was observed during the recording. For the popular
websites, we see that for almost all APIs the values returned
are the same as what was observed during the recording. How-
ever, we see that in a few scenarios (≤ 18 out of 15,397, or
≈ 0.1% of cases) some APIs returned different values during
replay. We found that for these scenarios, we returned the
wrong node type [59] for the Document node. This issue is
related to the unique method we are using to reconstruct the
DOM during replay, and could be resolved with some addi-
tional engineering effort. Despite this issue, we would like to
emphasize that this did not have any side effects on the remain-
ing portions of the replay. Since we were able to replay all
remaining components and APIs in a fully deterministic man-
ner, we argue this is a successful replay of the websites. Also,
in our evaluation we discovered a few engineering-related
challenges with replaying highly-optimized websites such as
Amazon, which we discuss in §6.

5.2.2 Visual Determinism

In this section, we focus on evaluating the visual component
of WEBRR’s replay. For each attack, we collected screenshot
pairs and generated embedding vectors for each screenshot
using the approach described in §5.1.1. The number of screen-
shots pairs created for each attack and the average cosine
similarity between the pairs is shown in Tab. 4. We found that
for the attacks, WEBRR performed exceptionally well and
had an average cosine similarity of 1.00 for all attacks. This
means the model found the screenshots to be exact matches.
We also found that WEBRR can achieve a high visual deter-



Screenshots Avg. Cosine Similarity

Attacks

Phishing 13 1.00
Credential Harvesting 23 1.00
KeyLogger 16 1.00
Clickjacking 12 1.00

Popular
Websites

mozilla.org 39 1.00
wikipedia.org 10 .99
whitehouse.gov 10 1.00
craigslist.org 14 1.00
stackoverflow.com 22 .94

Table 4: The experimental results for visual determinism.

minism accuracy for the replayed popular benign websites.
For stackoverflow, we found that the average cosine similarity
dropped to 0.94 due to replaying SVG images. The underlying
issue is that WEBRR currently does not support replaying
SVG icons, which are heavily used on stackoverflow. How-
ever, we would like to emphasize that the screenshots taken
still appeared extremely similar, despite the lower than nor-
mal accuracy (our visual similarity metric is highly sensitive
to rendering changes). The correct replay of SVG elements
could be addressed with additional engineering effort, which
we leave to future work.

To validate these results, we separately computed the simi-
larity between negative samples. Specifically, we compared
the cosine similarity of 7,203 pairs of web page screenshots
taken from different popular websites, to confirm that our
model correctly assigns a high score only to pages that are
indeed visually very similar, and low scores to pages that are
visually dissimilar (because they belong to different sites with
different designs). On average, the similarity between pages
from different popular sites was 0.03, showing that the model
makes a clear distinctions between screenshots from the same
and different sites. We believe this results further support the
validity of our visual determinism evaluation.

5.3 Comparison with Existing Systems
In this section, we evaluated the performance of existing sys-
tems like WebCapsule [26], Mugshot [22], and RR [21] by
their ability to replay the attacks used for assessing WEBRR.
We considered two criteria to determine the success of a re-
play. Firstly, the visual aspects of the attack, for example,
the social engineering components, had to be displayed accu-
rately during the replay. Secondly, any user interactions, such
as clicks or key inputs, with the visual components had to be
replayed correctly.
WebCapsule. is a forensic-based record-and-replay system
for Chromium-based browsers. Unfortunately, evaluating We-
bCapsule directly using the metrics discussed in § 5.1.1 is
not possible. The reason is that this would require us to in-
strument WebCapsule’s source code, which was built on top
of Chromium version 36.0.1932.0 (released in 2014). After
several attempts, we determined that, due to its age, WebCap-

Attack WebRR WC Mugshot RR
Keylogger ✓ ✓ ✓† ✓

Phishing ✓ – ✓† ✓

Clickjacking ✓ – ✓† ✓

Credential Harvesting ✓ – ✓† ✓

Phishing∗ ✓ ✗ ✓† ✓

Clickjacking∗ ✓ ✗ ✓† ✓

Credential Harvesting∗ ✓ ✗ ✓† ✓

Table 5: Evaluation Results of WEBRR, WebCapsule,
Mugshot, and RR correctly replaying the web-based attacks.
* means the attack was backported and – means the attack
could not be recorded. † means the recording could be dis-
abled during the attack.

sule can no longer be compiled without major refactoring
(e.g., because of third-party dependencies being deprecated or
no longer available). Furthermore, porting WebCapsule to a
more recent Chromium version would require very extensive
software engineering efforts, due to how much the Chromium
code base has changed since 2014. Thus, this prevented us
from adding the necessary instrumentation that is required
to record the execution sequence and API calls, which are
needed to calculate the evaluation metrics discussed in §5.1.1.

To overcome this and perform the evaluation, we relied
on the compiled binary version of WebCapsule provided by
its authors [60]. Specifically, we used the binary version to
answer the following question: Can WebCapsule properly
replay the web-based attacks described in Section 5.2?

The results for these experiments are shown in Tab. 5. We
found that WebCapsule was only able to replay one of the
attacks, while WEBRR successfuly replayed them all. We
discuss the results in the remainder of the section.

For the Phishing, Credential Harvesting, and Clickjacking
attacks we found that these attacks were originally failing
during recording, due to the fact that the version of V8 that
WebCapsule relies on does not support ECMAScript6 (ES6),
which was causing the browser to throw syntax errors when
loading these attacks. To address this issue, we adapted these
attacks by backporting them such that they only used func-
tionality that predates ES6. We then verified for each adapted
attack that the attack worked as intended while using WebCap-
sule in recording mode. However, we found that WebCapsule
failed to replay the backported-versions of the attacks.

The Phishing and Clickjacking attacks both failed due to
executional divergence related to JS scheduling. This is be-
cause the order in which scripts were executed during replay
was different than what was observed during recording. For
the Clickjacking attack, we found that this lead to the attack
appearing to not be interacted with, because the attack was
using a random value to determine when to display the attack
and due to executional divergence, a different random value
was returned. This caused the user-input to become “out of
sync” with the JS execution and giving the appearance that the



user did not interact with the attack. For the Phishing attack,
the attack failed to load at all, because the wrong network
request was returned due to the number of heartbeats in the at-
tack being different in the recording and the replay. This lead
to WebCapsule returning a payload related to the heartbeat
instead of the payload response. We provide a video demo
of the phishing experiment1. For the Credential Harvesting
attack, the attack relied on storing data in the browser using
the localStorage API. We found that the attack used this data
to determine if the user was targeted by the attack [58]. If the
user was considered targeted, the attack would be deployed.
Otherwise, no attack occurred at all. Unfortunately, during
the replay we found that WebCapsule did not return the val-
ues observed during the recording, which lead to the attack
not being deployed during the replay, despite the user being
targeted. The underlying issue is that WebCapsule does not
consider the web APIs to be a source of non-determinism,
since it attempts to treat Blink as a blackbox. We provide a
video recording of the Credential Harvesting experiment2.

Mugshot. Mugshot [22] is a system designed for debug-
ging that records a web app’s execution on a user’s device
and enables a developer to replicate it on their own machine.
Although Mugshot’s source-code is not available, we discov-
ered a system called Reanimator [61] that was inspired by
Mugshot (stated in README). We then used Reanimator to
replay the attacks, but initially, it failed to reproduce the click-
jacking, credential harvesting, or phishing attacks accurately.
This issue was due to its lack of support for recording local
storage values and replaying callbacks registered via Win-
dow.requestAnimationFrame or Window.requestIdleCallback.
To rectify this, we enhanced the tool to support replaying
these features, adopting techniques described in the Mugshot
paper. Following these adjustments, Mugshot was able to re-
play all the attack scenarios correctly, which was anticipated.
However, when we factored in a scenario where the attacker
attempted to disable the recording, we found that Mugshot
was unable to replay any of the attacks. This is because since
Mugshot’s main design goal is debugging, it was not designed
to be tamper proof. Specifically, Mugshot records and replays
by inserting the “mugshot.js” script into the application and
executes at the same privilege level as a potentially malicious
web app itself. This makes it susceptible to tampering if an
adversary is aware of its existence. They can easily interfere
with the logs and override the recording hooks. We found,
for instance, that simply setting the logging object to unde-
fined could destroy the logs, and the hooks could be easily
overwritten given their shared execution context with the web
application.

RR. RR [21] is a system-level debugging utility tailored for
Linux applications. As anticipated, it was able to replay all
the tested attack scenarios on a Linux device. However, unlike

1Phishing Experiment: https://youtu.be/JGddenliISs
2Credential Harvesting Experiment: https://youtu.be/7yxKcbhBqeQ

WEBRR, RR lacks the capability to replay these attacks on
both Windows and Android platforms. More so, RR’s practi-
cality in a real-world setting is limited due to its considerable
effect on runtime performance. Specifically, it leads to over a
four-fold (459%) increase in page load times while recording,
an issue we elaborate on in §5.4.

5.4 Runtime Overhead

To assess the efficiency of our system, we measured the impact
WEBRR has on the page load time for websites listed in the
Tranco 1k [31]. This particular aspect is crucial to study be-
cause previous research indicates that slower page load times
can lead to user dissatisfaction, ultimately resulting in reduced
revenue for websites [62]. To carry out this experiment, we
calculated the page load time by finding the time difference be-
tween when the navigation starts (navigationStart event)
and when the page is fully loaded (loadEventEnd event). To
minimize the influence of network conditions on our study,
we conducted our tests in a simulated network environment
with a latency of 100 milliseconds and a download speed of
15Mbps (similar to prior approaches [63, 64]). Next, we vis-
ited the landing page of each website ten times, using both
WEBRR and a standard version of Chromium 83.0.4103.97.
After performing these tests, we averaged the load times of
the ten visits. This gave us a reliable measure of how the use
of WEBRR impacts the time it takes for a page to load. Fi-
nally, we ran a similar experiment using RR [21] to calculate
its impact on the page load time.

Our experiments found that WEBRR’s recording engine
impact on the page load time is extremely low with a median
increase of only 2.94% which results in a 0.037s increase
of the time. When looking at the outliers, we found that
websites that had extremely large HTML documents were
more impacted by WEBRR’s recording hooks, because we
record every DOM insertion made by the parser. For example,
the website hxxp://www.wp.pl is an outlier and has 10.54%
overhead. This is because the website’s homepage requires
WEBRR to record 20,000 insertions into the DOM tree. How-
ever, the overhead induced by our DOM recorder is only two
microseconds per insertion, which is low considering the trac-
ing precision is one microsecond. Nevertheless, for 95% of the
websites, WEBRR’s runtime overhead was less than 9.56%,
which shows that WEBRR’s recording is capable of being
deployed in real-world enterprise settings.

We have also completed the same experiment for RR to
compare its impact on page load times while recording. We
found that RR had a median increase in page load overhead
for the website by 402%. This significant increase is some-
what expected since RR’s main design goal is not forensics,
but instead debugging. Since it does not need to maintain
the always-on property, RR can constrain each thread in a
process to a single core (refer to Section 7 in [21]). This
allows it to achieve a deterministic replay, but it significantly

https://youtu.be/JGddenliISs
https://youtu.be/7yxKcbhBqeQ


List of Websites Used in Storage Evaluation

cnn.com, yahoo.com, theguardian.com, ebay.com, yelp.com, irs.gov, wikipedia.org,
washingtonpost.com, cbs.com, nytimes.com

Table 6: The 10 websites used for the storage overhead evalu-
ation (§5.5) of WEBRR.
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1 microtest-eval 1279 1279 0 42157 42157 0 ✓
2 microtest-eval 1553 1553 0 52457 52457 0 ✓
3 microtest-eval 1039 1039 0 35017 35017 0 ✓
4 microtest-eval 1781 1781 0 59142 59142 0 ✓
5 microtest-eval 1333 1333 0 44277 44277 0 ✓

Table 7: Evaluation of replayed microtasks website. See Tab. 2
for column descriptions.

hampers performance, particularly for applications that are
heavily reliant on multi-threading or multi-process apps, such
as Chromium. Therefore, RR is unfit for forensic settings
as it fails to maintain the crucial forensic property of being
always-on in a real-world environment.

5.5 Storage Overhead
To measure the disk space overhead, we ran WEBRR in
recording mode for a 50-minute browsing session and visited
10 heavily dynamic and popular websites. The websites used
in the evaluation are shown in Tab. 6. The compressed version
of WEBRR’s recording logs was only 873 MB for the en-
tire 50-minute session. This means that, on average, the disk
space requirement for WEBRR is only 17 MB per minute for
highly active browsing sessions. If we assume WEBRR is
deployed in a standard enterprise environment, it would only
require 8.38 GB of storage space for a typical 8-hour work-
day. Additionally, assuming a standard 262-day work year,
only 2.2TB of disk space will be required to store WEBRR’s
recording logs for a single work year. WEBRR also has the
capability of logging data of each tab to its own individual
file, which essentially means during an investigation, the in-
vestigator would only need to decompress the logs related to
the browsing sessions of interest. Finally, we want to point
out that WEBRR’s recording logs are currently include a sig-
nificant amount of debugging information, and the numbers
presented in this section represent an upper bound.

5.6 Asynchronous Function Execution
In these experiments, our goal was to validate the approach of
our system for managing asynchronous functions and micro-
tasks (this is elaborated on in §4.2.4). We aimed to confirm
that the microtasks were executed at the same time during

Version Ported Version
Release Date

Functions
Modified

83 ->84 Jul 14, 2020 0
84 ->85 Aug 25, 2020 12
85 ->86 Oct 6, 2020 10
86 ->87 Nov 17, 2020 13

Table 8: WEBRR’s maintainability evaluation results.

the playback as they were during the recording. For this, we
created a website designed to run a large number of call-
backs (the exact number for each recording is provided in the
"Rec-JEU Seq. Len" column of Tab. 7) in a short-period of
time. When activated, these callbacks would trigger anywhere
from 1 to 100 microtasks using methods such as Promises,
the async/await keywords, and the queueMicrotask function.
This led to several thousand microtasks being executed in
a brief time span. Next, we recorded and replayed the web-
site five times to check if the execution order of callbacks
and microtasks during replay was consistent with the original
recording. We replayed it multiple times because we were
executing numerous callbacks quickly using various registra-
tion techniques, such as setTimeout, registerIdleCallback, and
requestAnimationFrame. As a result, the order in which these
callbacks were invoked varied across runs.

To verify the correctness of the replay, we employed the
method detailed in the Metrics section (§5.1.1) and compared
the recorded and replayed sequences of JEUs. The findings
are shown in Tab. 7. In every test, we observed that the edit
distance between JEUs (column JEU-Seq. E.D.) and APIs
(column API Seq. E.D.) sequences was zero. This indicates
that all JS functions and APIs calls happened in the exact
same order during both the recording and the replay. Our
experiments highlight our system’s ability to accurately replay
microtasks in the right sequence. Furthermore, we analyzed
the benign websites from our study and found that all of
them, barring Wikipedia, employed numerous promises and
asynchronous functions. All these websites replayed correctly
based on our experiments.

5.7 Maintainability
We implemented WebRR as an InspectorAgent in the Dev-
Tools Framework, thus WEBRR requires a similar amount of
maintenance as existing DevTools Agents (it is comparable
in terms of LoCs to existing Agents). The implementation of
WEBRR is also self-contained in two directories, limited to
5,824 lines of C++ code, and 44 functions were hooked in the
Chromium code base to support its functionality.

To gauge its maintainability, we checked how often the
code with WEBRR’s hooks was updated across different ver-
sions. We did this by comparing consecutive versions to see
how many functions with WEBRR’s hooks had been modified.
We check for changes by diffing the files where we had made
modifications and then manually verifying if these changes



were located within the functions where our hooks were. Next,
if we identified a change inside the functions where our hooks
were located, we investigated if this change would impact our
hooks. We then repeated this experiment 4 times (for 4 differ-
ent code versions) and measured how often changes impacted
hooked functions. The results are reported in Tab. 8. We
found that among the functions where WEBRR’s hooks were
located, the median number that underwent modifications was
11. Our investigation revealed that the modifications had min-
imal or no effect on WEBRR’s hooks. For instance, in patch
version 85, the force_xhtml input variable was eliminated
from the LocalDOMWindow::InstallNewDocument method.
While WEBRR’s hook used to record this value when new
documents were created, its removal means we need to up-
date this hook. For the versions we analyzed, the process of
verifying changes took around 2-3 hours, and we estimate that
porting WEBRR to another version would require a single
developer approximately a few days to complete (including
code changes and testing/debugging). Obviously, future ver-
sions that include large structural changes may require a more
involved refactoring to port WEBRR. However, this would
be expected as part of the overall Chromium and DevTools
development process.

6 Discussion & Limitations

Transparency. WEBRR’s instrumentation does not guaran-
tee transparency. Instead, we designed WEBRR to be tamper-
proof, such that a web application cannot disable our instru-
mentation even if it can detect it (we assume an uncompro-
mised browser, as discussed in our threat model §3). Notice
that if a malicious web application decides not to behave ma-
liciously because WEBRR’s presence has been detected, this
will play in the defender’s favor.
Correctness. We studied WEBRR’s limitations by examin-
ing 10 popular websites that posed challenges during replay.
For each of these websites, we conducted an in-depth man-
ual analysis to understand why they did not replay correctly.
From our investigation, we identified three primary issues:
unsupported callbacks, problems with message channels that
lead to replay discrepancies, and unsupported components.

First, we observed that WEBRR naturally struggles to accu-
rately replay websites that use callback registration methods
that it does not yet support. For instance, when Reddit’s page
loads, it forms a custom root HTML element using the Cus-
tomElementRegistry.define method. This method requires a
constructor callback. Because WEBRR does not yet support
the replay of this particular method of callback registration,
the page does not load correctly. Additionally, WEBRR cur-
rently fails to replay Forbes because it does not yet support
replaying MutationObservers. However, we would like to
point out that, with additional engineering effort, WEBRR
can be extended to replay additional callbacks using the same

hooking techniques used for the callbacks WEBRR currently
supports.

The next limitation that we found with WEBRR is due to
MessageChannels. MessageChannels3 are objects that allow
for communication for scripts running in different brows-
ing contexts. Each channel has two attributes MessageChan-
nel.port1 & MessageChannel.port2. The app that creates the
channel uses port1 and passes port2 to another window using
window.postMessage. The receiver of port2 can then receive
messages through this channel and send messages through the
channel using MessagePort.postMessage. Currently, WEBRR
has a limitation, where it can only replay messages to port2,
but it cannot replay messages that are sent back to the creat-
ing context and received on port1. This is because during the
replay WEBRR will reconstruct the MessageEvent, and if it
discovers that a MessagePort was passed during the recording,
it will create a MessagePort object and store it into the Mes-
sageEvent and then fire this MessageEvent into the receiving
context. This allows us to replay messages that were passed
from the creating context. However, since we recreate this
MessagePort in the replay engine, it is not associated with a
MessageChannel object. Therefore, we cannot send a mes-
sage back to the creating context. To summarize, WEBRR’s
current approach is limited to unidirectional communication
for MessageChannels, where it can only replay messages that
are sent from the creating context to the external context.
Unfortunately, this issue causes us to fail to replay google,
zillow, amazon and yahoo. Overall, we believe this issue can
be addressed by instead of reconstructing message events,
to instead intercept them on the fly and then replay the cre-
ated message event. By intercepting the message events, it
would allow us to replay the message event in the correct
order, but also allow the message port to be attached to the
MessageChannel created in the original context.

The final issue we found was related to unsupported com-
ponents, such as WASM, WebRTC, SVG, and IndexedDB.
For example, WEBRR failed to replay twitch and youtube,
because it does not currently support WebRTC. Addition-
ally, WEBRR currently does not support IndexedDB events,
which prevents it from replaying Salesforce & MSN. How-
ever, we did observe that WEBRR can replay WebGL, which
relies on animation callbacks, which are supported by our
current WEBRR release. Finally, we believe that these com-
ponents could be replayed using similar design techniques
that WEBRR uses. For example, since websites instantiate
and invoke WASM through JS and WEBRR treats V8 as a
blackbox, it would be fairly straightforward to support replay-
ing WASM modules with additional engineering effort.

To conclude, we bound the completeness of WEBRR to the
components that are discussed in detail in the paper, which
include key pieces of the rendering engine, service workers,
and replaying JS that is executed via scripts and the supported

3https://developer.mozilla.org/en-US/docs/Web/API/MessageChannel



callbacks that are discussed (i.e., event handlers, timeouts,
idle callbacks, and animation callbacks). Despite these lim-
itations, we would like to point out that WEBRR was able
to replay several real-world complex benign websites and
real-world attacks, as demonstrated in § 5.2 on Linux, An-
droid, and Windows. With the kind of resources available
to the Chromium Devtools development team, these limita-
tions could be addressed in a reasonably small time through
additional engineering effort.

7 Related Work

Attack Investigations. The recent increase in enterprise data
breaches has led to a significant amount of novel forensic
analysis systems [2–6, 8–12, 40, 43]. Protracer [3] provides
fine-grained provenance information about a system’s execu-
tion history, and MPI [40] improve the accuracy of provenance
information by leveraging source-code annotations for exe-
cution partitioning. Unfortunately, these systems are limited
in investigating web-based attacks due to the semantic-gap
between system- and web-based semantics. OmegaLog [41]
attempts to address this issue by correlating application-level
logs to system-level audit logs. However, OmegaLog’s cor-
relation technique currently does not support the browser.
UIScope [8] attempts to provide additional semantic infor-
mation by correlating GUI-information to system-level audit
logs. Unfortunately, UIScope can only provided textual infor-
mation and GUI metadata about the UI. In contrast, WEBRR
allows the investigator to render exactly what was observed.
This is extremely important in the web since styling and lay-
out play a critical role in how the page is rendered.

To overcome the semantic gap, researchers have proposed
systems that emit web-based logs [18–20]. For example, JS-
Graph [19] emits audit logs of a user’s browsing session for
postmortem analysis. However, these systems are record-only
systems and lack the capability of replaying the web attack,
which limits these systems to only static analysis. WEBRR
addresses these limitations by providing a deterministic re-
play that allows analysts to faithfully replay attacks, enabling
a accurate, interactive and fine-grained investigation.
Record & Replay. There are several record and replay sys-
tems developed for debugging and testing [21–25, 65–67].
For example, Jalangi [24] supports a record and replay mode
that allows developers to attach debugging tools during the
replay. Unfortunately, these systems were not developed with
forensic analysis in mind and consequently, they cannot sup-
port the necessary properties that are required for a forensic
analysis system (discussed in § 1). To overcome this limi-
tation, researchers have proposed several record and replay
systems that are designed for forensic analysis. For exam-
ple, RAIN [4] is a system-level analysis systems that support
record and replay of sophisticated APT attacks. However, a
major shortcoming of these systems is that they are still lim-

ited in terms of providing a deterministic replay of the browser
because they treat the browser [4, 5, 13–15] as a black box,
which makes it challenging to ensure a deterministic replay
due to the high parallelization and multi-process architecture
of the browser. WEBRR overcomes this limitation by taking
advantage of the single-threaded nature of JavaScript to avoid
the need to synchronize threads during the replay.

8 Conclusion

In this work, we presented WEBRR, a novel forensic system
for replaying and investigating web-based attacks in the mod-
ern web. We showed that WEBRR can replay a diverse set
of web-based attacks including attacks that could not be re-
played with prior state-of-the-art systems. Finally, WEBRR’s
runtime performance is practical and only has a 3.44% in-
crease on the page load time on websites in the Tranco 1k.
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