
Batch PIR and Labeled PSI with Oblivious Ciphertext Compression

Alexander Bienstock∗ Sarvar Patel† Joon Young Seo‡ Kevin Yeo§

Abstract
In this paper, we study two problems: oblivious compression
and decompression of ciphertexts. In oblivious compression, a
server holds a set of ciphertexts with a subset of encryptions of
zeroes whose positions are only known to the client. The goal
is for the server to effectively compress the ciphertexts oblivi-
ously, while preserving the non-zero plaintexts and without
learning the plaintext values. For oblivious decompression,
the client, instead, succinctly encodes a sequence of plaintexts
such that the server may decode encryptions of all plaintexts
value, but the zeroes may be replaced with arbitrary values.
We present solutions to both problems that construct lossless
compressions only 5% more than the optimal minimum using
only additive homomorphism. The crux of both algorithms
involve embedding ciphertexts as random linear systems that
are efficiently solvable.

Using our compression schemes, we obtain state-of-the-art
schemes for batch private information retrieval (PIR) where
a client wishes to privately retrieve multiple entries from a
server-held database in one query. We show that our compres-
sion schemes may be used to reduce communication by up to
30% for batch PIR in both the single- and two-server settings.

Additionally, we study labeled private set intersection (PSI)
in the unbalanced setting where one party’s set is significantly
smaller than the other party’s set and each entry has associ-
ated data. By utilizing our novel compression algorithm, we
present a protocol with 65-88% reduction in communication
with comparable computation compared to prior works.

1 Introduction

Protecting user privacy is becoming a core problem in today’s
society with the continuing growth of cloud-based applica-
tions. There are many important cloud services that provide
∗New York University, abienstock@cs.nyu.edu. Part of work done

while interning at Google.
†Google, sarvar@google.com.
‡Google, jyseo@google.com.
§Google and Columbia University, kwlyeo@google.com.

databases of essential information that need to be retrieved
by users. In many cases, it is necessary to hide the queried
database entry to preserve the user’s privacy. This privacy
requirement has appeared in many cloud services provided
by large organizations including certificate transparency [3],
contact discovery [10], device enrollment [7], password leak
check [5, 6] and URL blocklists [8].

Private information retrieval (PIR) [24] is an important
cryptographic protocol that enables an user to retrieve en-
tries from a public database without revealing the identity of
queried entries. PIR has been studied in both the single- and
multi-server settings. The main difference is that multi-server
PIR requires stronger assumptions of non-colluding servers.
In our work, we will study both types of PIR protocols.

For many use cases, it is required that users retrieve a batch
of multiple entries from the same public database. Some
examples include anonymously retrieving encrypted recent
messages from a communication system [15], privately fetch-
ing relevant advertisements according to user interests [38,54]
and checking validity of multiple certificates [42, 49].

To solve this problem, prior works have studied the notion
of batch PIR where the user retrieves a set of t entries in a
single query. The naive approach of executing t single-query
PIR has the high computational overhead of O(tn) as state-
of-the-art single-query PIR schemes still require O(n) server
computation linear in the database size. Instead, current batch
PIR solutions drastically decrease computation at the cost of
increased communication. Angel et al. [14] presented a solu-
tion that reduce computation to 3n that required performing
1.5t independent PIR queries on smaller databases. Unfortu-
nately, the number of requests and responses are 50% larger
than the naive approach of t single-query PIR executions.

To reduce communication, prior works packed multiple
multiple single-query PIR requests into a single cipher-
text [13, 14] as well as encoding multiple PIR responses for
small database entries into a single ciphertext using vector-
ization techniques [52]. However, this still requires explicitly
encoding 0.5t “dummy” requests and responses. Furthermore,
response techniques only apply for small entries where ci-

Encoding
Size

Encoding
Time

Decoding
Time

Choi et al. [23] O(tλ) O(nλ) O(tλ)
Liu and Tromer [48] O(t log2 t logλ) O(nt) O(t3)

Fleischhacker et al. [31] O(t) O(n logn) O(t
√

n)
Fleischhacker et al. [31] O(tλ) O(nλ) O(tλ)

Ours: LSObvCompress (1+ ε)t O(nλ) O(tλ)

Figure 1: Comparison of ciphertext compression for n cipher-
texts with t non-zero values for failure probability at most
2−λ. Encoding size is measured in number of ciphertexts.

phertexts can pack multiple entries. In this work, we present
compression techniques to avoid encoding non-essential val-
ues that are applicable regardless of the database entry size.

While PIR considers the setting of public database, the
same problem also occurs for retrieving mutliple entries from
private databases with sensitive data where users should not
receive information irrelevant to them. This problem has been
studied as labeled private set intersection (PSI) or batch sym-
metric PIR. We will use labeled PSI throughout the rest of
our work. Examples use cases with a private database include
discovering any contacts using a service [44] and checking
all credentials of a user against a database of leaked creden-
tials [13]. In our work, we will also study ways to reduce
communication for labeled PSI using ciphertext compression.

1.1 Our Contributions

We identify two compression problems and present efficient
schemes for both problems relying only on additive homo-
morphism of the underlying encryption scheme. This leads
to improved batch PIR and labeled PSI constructions (when
the encryption scheme used for these constructions is indeed
somewhat homomorphic, as required in prior state-of-the-art
work).

Oblivious Ciphertext Compression. We study the problem
of oblivious ciphertext compression where a compressor is
given n ciphertexts of which t < n are non-zero. The compres-
sor is unaware of the identity of the t non-zero ciphertexts.
The decompressor has the private key for decryption and
knows the location of the t non-zero ciphertexts. The goal is
to enable the compressor to construct a succinct encoding that
may be correctly decoded by the decompressor.

We present LSObvCompress with encodings of (1+ ε)t
ciphertexts (where ε is a configurable parameter) while requir-
ing only homomorphic addition of ciphertexts. In practice, we
achieve ε to be as small as 0.05. Note, this is only 5% larger
than the optimal compression rate that would consist of only
t ciphertexts. Furthermore, oblivious compression requires
only O(nλ) homomorphic additions and decompression re-
quires only O(tλ) plaintext additions such that decompres-
sion is successful except with probability 2−λ. Our protocol,
LSObvCompress, utilizes novel techniques to compress ci-

Client
Storage

Request
Overhead

Response
Overhead

Baseline O(1) 1x 1x
Cuckoo Hashing [14] O(n) ⌈1.5/r⌉x 1.5x
Vectorized [52] O(n) ⌈1.5/r⌉x ⌈1.5/d⌉x
Keyword [57] O(1) ⌈1.5/r⌉x 1.5x
Distributed Point
Function (DPF)* [19]

O(1) 1.5x 1.5x

Ours: Single-Server O(1) ⌈(1+ ε)/r⌉x 1.5x
Ours: Single-Server O(1) ⌈1.5/r⌉x ⌈(1+ ε)/d⌉x
Ours: Two-Server* O(1) 1.5x (1+ ε)x

Figure 2: Keyword batch PIR comparisons for retrieving ℓ
entries from n-entry database. Request and response overhead
is compared to baseline of performing ℓ independent single-
query PIR executions. We use r and d to denote the number of
requests and plaintext database entries that can fit into a single
ciphertext. Asterisks(*) denote two-server PIR protocols.

phertexts by encoding them as random linear systems that are
efficiently solvable.

LSObvCompress significantly outperforms any prior com-
pression schemes applicable to our setting. In particular, all
prior schemes with efficient encoding and decoding produce
encodings with O(tλ) ciphertexts that is significantly larger
than LSObvCompress in practice. Only one previous solu-
tion produced encodings with O(t) ciphertexts [31], but the
decoding is prohibitively expensive requiring computation
of O(t

√
n) discrete logarithms. See Figure 1 for more com-

parisons. To be fair, we note that prior works study a more
challenging version of this problem (see Section 2.1).

Oblivious Ciphertext Decompression. Oblivious cipher-
text decompression switches the roles of compressor and
decompressor. The compressor is given n plaintexts p =
[p1, . . . , pn]

T , a subset I ⊂ [n] of t < n indices and a private
encryption key. The goal is to produce a succinct encrypted
compression of p. The decompressor must be able to cor-
rectly retrieve the ciphertext vector c̃ = [c̃1, . . . , c̃n]

T such that
c̃i must be an encryption of pi for all i ∈ I. There are no re-
quirements for any i /∈ I. The decompressor must decompress
obliviously without knowledge of the indices, I ⊂ [n].

We present LSObvDecompress with nearly identical effi-
ciency as LSObvCompress, with encodings of size (1+ ε)t
ciphertexts. In practice, we get ε to be as small as 0.05 that is
only 5% larger than optimal.

For decoding failure probability at most 2−λ, compression
requires O(tλ) plaintext additions while decompression re-
quires O(nλ) homomorphic additions. To our knowledge, no
prior works are applicable to this specific problem.

Batch PIR. We apply our compression techniques to obtain
state-of-the-art batch PIR schemes with reduced communica-
tion in both the single- and two-server settings. Our techniques
work for both small and large entry databases. See Figure 2
for detailed comparisons with prior works.

The cuckoo hashing framework of Angel et al. [14] trans-
forms any single-query PIR into a batch PIR protocol. To
retrieve ℓ entries, the batch PIR performs 1.5ℓ single-query
PIR executions. Recent work by Mughees and Ren [52] used
vectorization techniques to pack multiple small entries into
a single ciphertext. If d database entries fit into a ciphertext,
vectorized batch PIR returns ⌈1.5ℓ/d⌉ ciphertexts. However,
this only works for small entries where d ≥ 2.

In our work, we first present a batch PIR that can reduce
response size regardless of database entry sizes. In the cuckoo
hashing framework, at most ℓ PIR responses will be encryp-
tions of relevant values while the remaining 0.5ℓ will be en-
cryptions of zero. Using LSObvCompress, we reduce the re-
sponse size from 1.5ℓ to 1.05ℓ PIR responses. To our knowl-
edge, this is the first response reduction for batch PIR with
large database entries. We also show that our techniques are
compatible with the vectorization techniques of Mughees
and Ren [52]. If d entries fit into a ciphertext, our tech-
niques reduce the response size from ⌈1.5ℓ/d⌉ ciphertexts to
⌈1.05ℓ/d⌉ ciphertexts.

Similar ideas may also be used to reduce the request com-
munication as well. Again, the client only cares about ℓ PIR
requests and the remaining 0.5ℓ may be ignored. We lever-
age LSObvDecompress to reduce the total request size by
only compressing values of the ℓ important requests and, es-
sentially, ignoring the other 0.5ℓ requests. Combined with
packing techniques [14] where r single-server PIR requests
may fit into a ciphertext, we reduce request sizes from ⌈1.5/r⌉
to ⌈1.05/r⌉ ciphertexts. We stil apply apply vectorization [52]
to obtained ⌈1.5/d⌉ response ciphertexts.

Finally, we show similar response reduction may also
be obtained in two-server batch PIR protocols by applying
LSObvCompress to prior constructions [19].

Labeled PSI. Next, we show that LSObvCompress and
LSObvDecompress may also be used to construct improved
schemes for labeled PSI. In particular, one can combine our
above batch PIR construction, leveraging LSObvCompress
and LSObvDecompress, with any oblivious PRF (OPRF) to
obtain a labeled PSI protocol. Our labeled PSI schemes pro-
vides a 65-88% reduction in communication with comparable
computation over prior solutions [21, 25].

2 Preliminaries

Linear Algebra. We denote v as column vectors and vT as
row vectors. We denote the i-th entry of v by vi. For two
vectors n-length vectors v and u, we denote the dot product
operator as v ·u = ∑

n
i=1 vi ·ui. We define a n×m matrix using

its column vectors as M = [v1, . . . ,vm] where the i-th column
vector is vi of length n. We may also define a matrix using
its row vectors as M = [vT

1 , . . . ,v
T
n] where vT

i is the i-th row
vector of length m. We denote the matrix-vector product M ·
u = [v1 ·u, . . . ,vn ·u] where u is a m-length vector. We solve

the linear system associated with n×m matrix M and n-length
vector u by computing m-length vector v such that M ·v = u.

For a vector v of length n and subset I = {i1, . . . , ik} ⊆ [n],
we denote by vI = [vi1 , . . . ,vik] containing the entries of v with
indices in I. For n×m matrix M = [vT

1 , . . . ,v
T
n] and subset I =

{i1, . . . , ik} ⊆ [n], we denote the sub-matrix consisting of row
vectors with indices in I as Mr(I) = [vT

i1 , . . . ,v
T
ik]. Similarly, for

a n×m matrix M = [v1, . . . ,vm] and subset I = {i1, . . . , ik} ⊆
[m], we denote the sub-matrix consisting of column vectors
with indices in I as Mc(I) = [vi1 , . . . ,vik].

Homomorphic Encryption. Throughout our work, we will
define ciphertexts using c̃. A vector of ciphertexts will be
defined as c̃ = [c̃1, . . . , c̃n].

In our work, we will mainly consider lattice-based some-
what homomorphic encryption (SHE) where parameters are
chosen to support a limited number of homomorphic opera-
tions, as used in prior state-of-the-art constructions of batch
PIR and labeled PSI [21,22,25,51,53]. Our compression proto-
cols only use additive hommorphism of these schemes, where
noise grows additively. We refer to the full version for more
details on SHE and recent PIR schemes using SHE [51, 53].

2.1 Oblivious Ciphertext Compression

We define the notion of an oblivious ciphertext compression
scheme. For this primitive, we only assume additive homo-
morphism (ciphertext-ciphertext addition). The problem con-
sists of two parties: a compressor and a decompressor. The
compressor is given n ciphertexts, c̃ = [c̃1, ..., c̃n], to be com-
pressed. Both the compressor and the decompressor know the
number of non-zero plaintext entries t. In addition, the decom-
pressor has the private decryption key and the indices of the t
non-zero entries, I ⊂ [n]. If i ∈ I, then c̃i is an encryption of a
non-zero entry. The compressor’s job is to produce a succinct
encoding of the input ciphertexts with knowledge of only t.
The encoding is consumed by the decompressor to recover
the original t non-zero plaintext entries. We formally define
oblivious ciphertext compression below.

Definition 1 (Oblivious Ciphertext Compression). Let p =
[p1, ..., pn] ∈ Fn be a vector of n plaintexts with at most t
non-zero entries. Let E = (Gen,Enc,Eval,Dec) be an addi-
tive homomorphic encryption scheme, and let c̃ = [c̃1, ..., c̃n]
where c̃i = E .Enc(pkE , pi) for each i ∈ [n]. An oblivious ci-
phertext compression scheme consists of a pair of algorithms
(ObvCompress,Decompress) satisfying:

• ĉ←ObvCompress(pkE , c̃, t;R): Oblivious compression
takes in a public key pkE , n ciphertexts c̃ = [c̃1, ..., c̃n],
the number of non-zero plaintext entries t, and random-
ness R. It outputs compressed ciphertexts ĉ.

• p← Decompress(skE , ĉ, I;R): Decompression takes in
a secret key skE , compressed ciphertexts ĉ, the non-zero

plaintext entry indices I ⊂ [n] (|I| ≤ t) of p, and random-
ness R. It outputs the non-zero plaintext values {i, pi}i∈I .

Let γ = γ(λ) be the bit length of all n ciphertexts produced by
the homomorphic encryption scheme E . An oblivious cipher-
text compression is δ-compressing if the bit length of ĉ is at
most δ · γ · |c̃|. The failure probability is at most ε if, for each
plaintext vector p = [p1, ..., pn] and associated ciphertexts
c̃ = [c̃1, . . . , c̃n] with at most t non-zero values,

Pr[Decompress(skE , ĉ, I) ̸= {i, pi}i∈I]≤ ε

where ĉ← ObvCompress(pkE , c̃, t).

Comparison with Prior Work. Liu and Tromer [48] implic-
itly studied oblivious ciphertext compression, without explic-
itly defining the primitive. Fleischhacker et al. [31] considered
another variant closer to our compression problem that was
also implicitly studied in [48]. where the decompressor is not
given the identity of the non-zero plaintext indices, I ⊂ [n].
Therefore, this is a harder setting than our compression prob-
lem. It is not surprising that the resulting compression rates or
decoding efficiency are significantly worse than our construc-
tions (see Figure 1). To our knowledge, our specific variant
of compression has not been explicitly studied previously.

2.2 Oblivious Ciphertext Decompression
Next, we define oblivious ciphertext decompression that
switches the compressor and decompressor roles. The com-
pressor is given the plaintext vector, p = [p1, . . . , pn] and a
subset of t indices, I ⊂ [n] with |I|= t to produce a succinct
encoding ĉ. The decompressor is given ĉ and must produce
the ciphertext vector c̃ = [c̃1, . . . , c̃n]

T such that each c̃i is an
encryption of pi for all i ∈ I. No correctness is required for
i /∈ I. In other words, c̃i needs to be an encryption of pi only
when i ∈ I. However, the decompressor must obliviously de-
code without any knowledge of the relevant indices, I. In fact,
the compressed ciphertexts ĉ must not reveal any information
about neither the underlying plaintext values p= [p1, . . . , pn]

T

nor the relevant indices I. To our knowledge, no prior works
have studied this setting.

Definition 2 (Oblivious Ciphertext Decompression). Let
p = [p1, ..., pn]

T ∈ Fn be a vector of n plaintexts and I ⊂ [n]
be a subset of t < n indices. Let E = (Gen,Enc,Eval,Dec)
be an additive homomorphic encryption scheme. A oblivi-
ous ciphertext decompression scheme consists of a pair of
algorithms (Compress,ObvDecompress), where:

• ĉ←Compress(skE , p, I;R): The compression algorithm
takes in a secret homomorphic encryption key skE , a
vector of n plaintexts p = [p1, ..., pn]

T , a subset of t in-
dices I ⊂ [n] and randomness R. Then, it outputs the
compressed ciphertexts ĉ.

• p← ObvDecompress(pkE , ĉ,n;R): The decompression
algorithm takes in a public homomorphic encryption
key pkE , compressed ciphertexts ĉ, the number of total
plaintexts n, and randomness R. Then, it outputs the
ciphertext vector c̃ = [c̃1, . . . , c̃n]

T .

Let γ = γ(λ) be the bit length of all n ciphertexts produced
by the homomorphic encryption scheme E . A oblivious ci-
phertext decompression is δ-compressing if the bit length of ĉ
is at most δ · γ · |c̃|. The failure probability is at most ε if, for
each plaintext vector p = [p1, ..., pn]

T and subset I ⊂ [n] of
size t, the following holds:

Pr[∃i ∈ I | Dec(skE , c̃i) ̸= pi]≤ ε

where ĉ ← ObvCompress(skE , p, I) and [c̃1, . . . , c̃n]
T ←

Decompress(pkE , ĉ). We note that there are no correctness
requirements for ciphertexts c̃i such that i /∈ I.

The scheme is computationally oblivious if, for all pairs
of plaintext vectors p = [p1, . . . , pn]

T and p′ = [p′1, . . . , p′n]
T

and pairs of index sets I, I′ ⊂ [n] of size t, a computationally
adversary cannot distinguish between the following:

• ĉ← Compress(skE , p, I)

• ĉ′← Compress(skE , p′, I′).

2.3 Batch PIR and Labeled PSI
Batch (Keyword) PIR. In batch keyword PIR, the client
holds a batch of ℓ keys, {q1, . . . ,qℓ}, and the server holds a
public database D ∈ (K ×V)n of n key-value pairs with n
distinct keys, {(k1,v1), . . . ,(kn,vn)}. The client wishes to re-
trieve the database entries {D[q1], . . . ,D[qℓ]} from the server.
For any q ∈K , D[q] denotes the value associated with key q.
If q = ki, then D[q] = vi. Otherwise, D[q] =⊥. The following
two properties must hold:

• Correctness: If the protocol is executed correctly, the
client recovers {D[q1], . . . ,D[qℓ]} as desired.

• Query Privacy: The server learns no information about
the batch query, {q1, . . . ,qℓ}.

One can obtain the definition of single-query PIR if the batch
query contains only a single index, ℓ= 1. Furthermore, one
can obtain non-keyword PIR if we restrict the database’s
key universe to be K = [n]. Throughout our work, we will
consider keyword PIR unless otherwise specified.
(Unbalanced) Labeled PSI. In labeled PSI, the receiver and
sender hold sets X and Y respectively. The sender also holds
a database of associated labels {Ly | y ∈ Y}. The goal is for
the receiver to receive labels that appear in the intersection,
{(z,Lz) | z ∈ X ∩Y}. The following properties must hold:

• Correctness: If the protocol is executed correctly, the
receiver recovers {(z,Lz) | z ∈ X ∩Y} as desired.

• Receiver (Query) Privacy: The sender learns no infor-
mation about the receivers’s set X beyond its size |X |.

• Sender (Database) Privacy: The receiver learns no in-
formation about the sender’s set Y except for the desired
output and its size |Y |.

In the unbalanced setting, the receiver’s set X is typically
much smaller than the sender’s set Y , |X | ≪ |Y |. Note, labeled
PSI is similar to batch keyword PIR with the main difference
being the additional sender (database) privacy guarantee.

3 Oblivious Ciphertext Compression

In this section, we present our oblivious ciphertext compres-
sion scheme, LSObvCompress, based on linear systems. We
start with a simpler scheme before presenting our main con-
struction.

3.1 First Attempt: Balls-into-Bins
In this section, we start with a construction which leverages
the balls-into-bins random process. Given m bins and n balls,
each of the n balls are thrown into one of the m bins uniformly
at random. In the context of ciphertext compression, bins cor-
respond to compressed ciphertexts and balls correspond to
input non-zero ciphertexts. Throwing a ball into a bin cor-
responds to homomorphically adding an input ciphertext to
one of the compressed ciphertexts. Decompression works by
re-simuluating the ball throws for non-zero ciphertexts and
decrypting the values at relevant bins. The main observation
is that adding a zero-encrypting ciphertext can be thought of
as “skipping” the ball throw, as its addition doesn’t change
the value of the underlying plaintext. Conceptually, the algo-
rithm fails if any of the bins contains more than one ball. We
describe the algorithm below.

We suppose that both parties share a hash function H.
Upon receiving the input ciphertexts c̃ = [c̃1, . . . , c̃n]

T and
the number of non-zero plaintext entries t, the compression
algorithm first initializes a vector of m ≥ t zero ciphertexts
ĉ = [ĉ1, ..., ĉm]

T , where ĉi = E .Enc(pkE ,0). Then, for each
input ciphertext c̃i, the algorithm executes the following two
operations. First, compute index j = H(i) ∈ [m] where H is
a random function with range [m]. Next, homomorphically
add c̃i to ĉ j, that is, ĉ j = E .Eval(pkE ,+, [c̃i, ĉ j]). Finally, the
algorithm outputs the resulting vector ĉ.

The decompression algorithm receives the compression
ĉ = [ĉ1, . . . , ĉm]

T and non-zero plaintext entry indices I. For
every non-zero ciphertext index i ∈ I, the algorithm computes
j = H(i) and sets pi = E .Dec(skE , ĉ j). Finally, the algorithm
outputs all non-zero plaintext values, {i, pi}i∈I .

Note this algorithm can recover the original plaintext vector
as long as the hash outputs H(i) are all distinct for every i ∈ I.
However, the probability of collision is high unless m = Ω(t2)

(due to the birthday problem) that is a quadratic blowup with
respect to t. Ideally, we would like m to be not much larger
than t to obtain an efficient compression rate.
Reformulating as a Linear System. We generalize the afore-
mentioned scheme as constructing and solving a system of
linear equations. More specifically, the compression algorithm
is responsible for constructing a linear system that the decom-
pression algorithm attempts to solve to recover the original
plaintext vector. While this viewpoint seems rather unneces-
sarily complex, it will serve as an important basis to our main
construction. We outline the reformulated algorithm below.

For each i ∈ [n], the compression algorithm constructs a
column vector vi ∈ Fm where only the H(i)-th element is set
to 1 and the rest are set to 0. Let M = [v1, ...,vn] ∈ Fm×n be a
matrix. Note that both parties know matrix M as they share
hash function H. The compression algorithm computes and
outputs the matrix-vector multiplication ĉ = M · c̃.

The decompression algorithm takes in the vector ĉ and
produces its decryption p̂. Next, we reconstruct the matrix M
using the random function H. Let I = {i1, ..., it} be the set of
non-zero plaintext entry indices, and let Mc(I) = [vi1 , ...,vit]∈
Fm×t be a sub-matrix of M consisting of all column vectors
whose indices appear in I. Similarly, let p̂I = [p̂i1 , . . . , p̂it]
for entries of p̂ in I. The algorithm solves the linear system
associated with Mc(I) and p̂ to compute pI satisfying Mc(I) ·
pI = p̂I to recover the non-zero pi j = (pI) j for each j ∈ [t].

We note that the decompression algorithm can correctly
recover the plaintext vector if and only if the linear system
Mc(I) ·pI = p̂I has a unique solution (that is, Mc(I) has full
column rank). For our choice of M, this precisely happens
when all hash outputs H(i) are distinct for every i ∈ I.

3.2 Second Attempt: Random Matrices
Recall that in the first attempt, the generated matrix M consists
of random column vectors with Hamming weight exactly one
corresponding to the balls-into-bins process. This forced us to
set the number of rows and the encoding size to m = Ω(t2) to
avoid collisions. Taking a closer look, we notice that the way
we generate the column vectors are unnecessarily restrictive.
Indeed, for our scheme to succeed, we only require the Mc(I)
to have a unique solution. There is no need to restrict rows to
Hamming weight one vectors.

This crucial observation leads to the following approach.
Instead of sampling random column vectors with Hamming
weight 1, we instead sample column vectors uniformly at
random from {0,1}m. To do this, we can imagine the shared
hash function H : [n]→ {0,1}m outputs random binary col-
umn vectors of length m. Then, the shared matrix is M =
[H(1), . . . ,H(n)]. This way, the generated column vectors
will be linearly independent with high probability even when
m is small. The rest of the algorithm stays identical.
Failure Probability and Compression Rate. The algo-
rithm’s failure probability and compression rate will be pa-

rameterized by ε and t. Let m = (1+ ε)t be the number of
rows. Even when ε is very small, the generated m× t matrix
Mc(I) has a unique solution except with negligible probability.
For example, setting m = t +λ with very small ε = λ/t, the
system has full rank with probability 1− 2−λ−1 (see [33]).
The compression rate is almost optimal as the encoding con-
tains t +λ ciphertexts that is only λ more than the optimal
minimum.

Running Time. Let m = (1 + ε)t. We start by analyzing
the compression time. Generating a random column vector
∈ {0,1}m takes O(m) time, so the entire matrix generation
takes O(mn) time during compression. Computing the matrix-
vector product takes m ·n homomorphic ciphertext additions.
The compression algorithm performs O(m · t) ciphertext-
ciphertext additions. For decompression, we note that solving
the linear system associated to Mc(I) requires O(m · t2) time
using Gaussian elimination.

Comparison to the First Attempt. While the new algorithm
can give us very high compression rate, it is computationally
very inefficient. Compression requires O(mt) time and decom-
pression requires O(mt2) time using Gaussian elimination. In
practice, this may not be so problematic when t << n, but
as t grows, the scheme is computationally expensive. Ideally,
we would like compression to be close to linear in the num-
ber of ciphertexts, n, and decompression to be close to linear
in t. In contrast, the first attempt has horrible compression
rate of m = O(t2), but is computationally more efficient. The
compression algorithm requires only O(n) time. Furthermore,
decompression only used O(t2) time.

This raises the following question: is it possible to get
the best of both worlds - an algorithm that achieves high
compression rate but is also practically efficient? We show
that this is possible in the next subsection.

3.3 LSObvCompress: Random Band Matrices

In prior attempts, we generated random matrices uniformly at
random from {0,1}m×n. This allowed the associated random
linear systems to be uniquely solvable with high probability
even when m = (1+ ε)t was very small. However, solving
this linear system is very inefficient, which made the previous
scheme impractical for larger t. This is not too surprising,
because the generated matrix is very dense. The expected
number of non-zero matrix entries is mn/2. This suggests that
the algorithm for solving the linear system must also have at
least O(mn) running time as well.

Looking closely, we again realize that we never needed the
generated matrices to be sampled uniformly at random from
{0,1}m×n. That is, as long as the associated linear system is
uniquely solvable with high probability, the distribution itself
is irrelevant to the security of the scheme. Therefore, we only
require a matrix generation algorithm that generates a “small”
linear system that is uniquely and efficiently solvable. For

LSObvCompress, we consider random matrices that satisfy
these two properties.
Random Band Matrices. There has been extensive research
on the core algorithmic problem of generating sparse random
matrices that are efficiently solvable. For LSObvCompress,
we utilize the random band matrices of Dietzfelbinger and
Walzer [28] that is the most efficient to our knowledge.

Random band matrices are constructed such that each row
consists of a random band with width w, and all entries outside
of the band are zero. Formally, let m be the length of each
row of the matrix. For each row, a band start index s is chosen
randomly from [m−w+1], and each entry within the band,
i.e. in range [s,s+w), is a uniformly random bit from {0,1}.
All other entries outside the range [s,s+w) remain 0.

Intuitively, random band matrices are solvable in O(nw)
time because the generated random matrix is “almost diag-
onal" after the rows are sorted by the band start positions.
Furthermore, each row reduction operation maintains an in-
variant where the number of non-zero entries per rows is O(w)
making Gaussian elimination very efficient.
Adaptation for LSObvCompress. Unfortunately, we are
unable to directly apply random band matrices for
LSObvCompress. Going back to the linear system framework
presented in Section 3.1, the client will solve the linear system
associated with the matrix Mc(I). Recall that I is the subset
of non-zero plaintexts, M is the chosen random matrix and
Mc(I) is the sub-matrix of M consisting of all the column
vectors whose indices appear in I. Suppose we chose M to be
a random band matrix. Unfortunately, Mc(I) is not guaranteed
to be a random band matrix. In particular, it is possible that I
(and, thus, the columns) are chosen such that each matrix row
will have a band much smaller than length w or be all zero.
In this case, it is unclear if the matrix Mc(I) still has a unique
solution.

Instead, we will choose our matrix M using an adaptation
of random band matrices to ensure that Mc(I) is still efficiently
solvable for any choice of non-zero plaintext indices I. To do
this, we will instead choose M to be the tranpose of random
band matrices. In other words, we will generate each column
vector of M to consist of a random band of width w. To
do this, we imagine both parties share two hash functions
H1 : [n]→ [m−w+ 1] and H2 : [n]→ {0,1}w. For the i-th
column of the shared matrix M, H1(i) denotes the start of the
band and H2(i) chooses the random w-bit band.

Next, we can consider any subset of non-zero plaintexts I
and the associated sub-matrix Mc(I). As each column vector
consists of a random w-length band, Mc(I) remains a trans-
pose of a random band matrix. As the column and row rank of
any matrix is identical, we can rely on the analysis of Dietzfel-
binger and Walzer [28] to see that Mc(I) will have a unique
solution with high probability for any choice of I.

The only caveat is that we cannot apply the running time
analysis of the random band row matrix construction, as
the bands are constructed column-wise instead of row-wise.

Algorithm 1 LSObvCompress.ObvCompress algorithm
Input: pkE , c̃, t,R: public additively homomorphic encryp-

tion key, vector of n ciphertexts, number of non-zero plain-
text entries, and randomness.

Output: ĉ: compressed encoding of c̃.
m← (1+ ε)t
M← 0m×n

for i = 1, . . . ,n do
vi← GenRandVec(i,m;R)
M[:][i]← vi ▷ Set the ith column to vi

ĉ←M · c̃ ▷ HE add using E .Eval and pkE
return ĉ

Algorithm 2 GenRandVec algorithm
Input: i,m,R: column index, column vector length, and ran-

domness
Output: vi: generated random column vector

w← band width
s← H1(R || i) ▷ Random value from [m−w+1]
u← H1(R || i) ▷ Random w-bit band.
vi← 0m

for j = 0, . . . ,w−1 do
vi[s+ j]← u[j]

return vi

Nonetheless, we show that solving the system remains practi-
cally efficient with this modification in our experiments (see
Section 7.1). Intuitively, this is because a transpose of a ran-
dom band row matrix remains similar to a random band row
matrix after the columns are sorted by the band start positions.
The maximum band width across the entire rows is not much
larger than the column band width w, which allows the linear
system to be solved efficiently just as in the random band
row matrix construction. See Figure 3 for an illustration. We
prove the following theorem (see Appendix A for the proof):

Theorem 1. Consider a m× t matrix with m = (1+ε)t where
each column consists of a single random w-bit band. For con-
stant ε > 0 and band length w = O(λ+ log t), the random
band matrix has column rank n and executing Gaussian elim-
ination after sorting the columns by the starting location of
the band runs in time O(tw) except with probability 2−λ.

We now formally present LSObvCompress using random
band matrices. See Algorithms 1 and 3 for the description of
the oblivious compression and decompression algorithms.

Next, we analyze the properties of LSObvCompress show-
ing that it combines the good compression rates and efficient
encoding/decoding times of our prior two attempts.
Failure Probability and Compression Rate. For the failure
probability, we note that LSObvCompress fails only when
Mc(I) does not have a unique solution or that unique solution
cannot be found. By Theorem 1, we know this occurs with

Algorithm 3 LSObvCompress.Decompress algorithm
Input: skE , ĉ, I,R: secret additively homomorphic encryp-

tion key, compressed encoding of ciphertexts, set of non-
zero plaintext indices, and randomness.

Output: {i, pi}i∈I : original non-zero plaintext values.
m← (1+ ε)t
Mc(I)← 0m×t ▷ Initialize all zero matrix.
for i j ∈ I = {i1, . . . , it} do

vi j ← GenRandVec(i j,m;R)
Mc(I)[:][j]← vi j ▷ Set the jth column to vi j

p̂← decryption of ĉ using E .Dec and skE
pI ← SolveLinearSystem(Mc(I), p̂)
if pI = ⊥ then

return ⊥
p← /0

for i j ∈ I = {i1, . . . , it} do
p← p∪{(i j,(pI) j)}

return p

Algorithm 4 SolveLinearSystem algorithm
Input: M, p̂: LHS matrix, RHS values to solve for
Output: p: solution to the linear system M ·p = p̂
(Mπ,π) ← column sorting of the matrix M in ascend-
ing band start positions, along with the corresponding
permutation that produces the column sorted matrix (e.g.
Mπ[:][i] = M[:][π(i)])
pπ← execute Gaussian elimination on Mπ and p̂, ⊥ if no
unique solution
if pπ =⊥ then

return ⊥
p← 0t

for i = 1 . . . t do
p[π(i)]← pπ[i]

return p

probability at most 2−λ assuming that w = O(λ/ε+ logn).
In our experiments, we will use concrete parameters for w

and ε for various values of t to obtain 2−40 error probability.
We point readers to Section 7.1 for more details. For the
compression rate, our experiments show that ε may be as small
as 0.05. As a result, LSObvCompress obtains compression
rates that are only 5% larger than optimal.

Running Time. We start by analyzing the compression al-
gorithm that computes the matrix multiplication of M and
the input ciphertext vector c̃ = [c̃1, . . . , c̃n]

T . As M is a bi-
nary matrix with at most nw non-zero entries, this can be
performed using at most nw ciphertext-ciphertext additions.
For decompression, we note that the main cost is solving the
linear system Mc(I) that requires O(tw) time by Theorem 1
that is corroborated by our experiments (see Section 7.1).

Noise Growth for SHE. Recall that for the applications to

Figure 3: Example of a random band column matrix construction with band width w = 4. Second diagram shows the matrix
after sorting the columns by the band start positions. Third diagram shows the random band row matrix view of the constructed
matrix. In this example, the maximum band row width is 3.

batch PIR and labeled PSI, we will initialize LSObvCompress,
using lattice-based SHE schemes. Therefore, noise growth
is an important factor to consider. Suppose that the input
ciphertexts c̃ = [c̃1, . . . , c̃n]

T each have error at most Err(c̃i)≤
e. We note that the compression algorithm requires computing
the sum of at most w ciphertexts. Therefore, each ciphertext in
the compressed output has error at most O(w ·e) as ciphertext-
ciphertext additions only incur linear noise growth (see the
full version for more details). As decompression is done after
decryption, we do not need to worry about noise growth for
decompression.

3.4 Comparison with Sparse Random Linear
Codes [45, 48]

Liu and Tromer [48] implicitly study oblivious ciphertext
compression. They observe that Sparse Random Linear Codes
(SRLCs) [45], which use matrices M ∈ Fm×n where each col-
umn has a small number of non-zero entries drawn randomly
from F can be used. However, each entry is sampled indepen-
dently, in an unstructured way, which results in larger encod-
ings than with LSObvCompress. Indeed, they show that such
matrices can be sampled with full rank with high probability
only if m = O(t log2 t logλ), which is larger than m = 1.05t
of LSObvCompress. Moreover, because SRLCs are unstruc-
tured, Gaussian elimination takes O(t3) time, resulting in
slower O(t3) decoding time, compared to the O(t ·λ) decoding
time of LSObvCompress. Finally, since SRLCs use elements
drawn randomly from F, when used with FHE, large param-
eters must be used to handle the noise when multiplying ci-
phertexts by these large elements. However, LSObvCompress
only uses elements from {0,1}, which means that ciphertexts
are only added together, resulting in minimal noise growth.

4 Oblivious Ciphertext Decompression

We show that similar ideas that we used to solve the oblivious
ciphertext compression problem may also be used to solve the
oblivious ciphertext decompression problem. As a reminder,
in this problem, the compressor is given a plaintext vector,
p = [p1, . . . , pn]

T , and t relevant indices I ⊂ [n]. The goal is
for the decompressor to decode ciphertexts c̃ = [c̃1, . . . , c̃n]

T

such that c̃i is an encryption of pi for all relevant indices i ∈ I.
There are no requirements for any i /∈ I.

Description of LSObvDecompress. Essentially, we will ap-
ply the ideas of LSObvCompress, but in reverse. That is, we
will start with a matrix M of dimension n×m (that both the
compressor and decompressor can generate based on shared
randomness), where m = (1+ ε)t is the encoding length for
some constant ε > 0. Then, based on relevant row indices
I = {i1, . . . , it} ⊂ [n], the compressor will solve the linear sys-
tem formed by a (t×m)-dimensional sub-matrix Mr(I) of M
and vector pI = [pi1 , pi2 , . . . , pit], to obtain compressed plain-
text vector p̂ of dimension m. Specifically, the compressor
will solve the linear system for p̂ satisfying Mr(I) · p̂ = pI

using sub-matrix Mr(I) = [MT
i1 , . . . ,M

T
it].

Afterwards, the vector p̂ is encrypted entry-wise. The en-
crypted version of p̂ is the final encoding that we denote ĉ. If
the linear system according to Mr(I) is not solvable, then the
encoding fails and the compressor outputs any m encryptions.
In applications, this is the point where we can utilize packing
techniques where multiple plaintext values may be encrypted
into a single ciphertext (as done in [14]).

For oblivious decompression, the decompressor computes
M · ĉ homomorphically. Intuitively, this gives the decompres-
sor ciphertext vector c̃ = [c̃1, . . . , c̃n]

T such that for each i j ∈ I,
the underlying plaintext of c̃i j is vi j · p̂, which is exactly pi j ,
as desired. For every c̃i j where i j /∈ I, the underlying plaintext
will be some arbitrary linear combination of the entries of p̂,
but recall that these values need not be correct.

For the choice of matrix M, we can in fact generate it
similarly as in LSObvCompress as a random band matrix of
dimension n×m, where each row consists of a single random
band of length w. Note, this is the original random band matrix
construction [28] without modification.

We present the pseudocode for LSObvDecompress in Al-
gorithms 5 and 6.

Failure Probability. From above, we saw that the encod-
ing is correct as long as the compressor can solve the linear
system associated with Mr(I). For the failure probability, we
can simply calculate the probability that Mr(I) does have a
unique solution (or it cannot be found). As M is a random
band matrix, we know that Mr(I) is also a random band matrix.
Therefore, if we set the band length w = O(λ/ε+ log t) and

Algorithm 5 LSObvDecompress.Compress algorithm
Input: skE ,p = [p1, . . . , pn]

T ,R: secret additively homomor-
phic encryption key, plaintext values and randomness.

Output: ĉ: compressed ciphertexts.
Compute I = {i | pi ̸= 0} ⊆ [n].
If |I|> t, abort.
If |I|< t, arbitrarily add indices to I until |I|= t.
m← (1+ ε)t
Mr(I)← 0t×m ▷ Initialize all zero matrix.
for i ∈ I do

Mi← GenRandVec(i,m,R)T

p̂← SolveLinearSystem(Mr(I),pI)
ĉ← encryption of p̂ using E .Dec and skE
return ĉ

Algorithm 6 LSObvDecompress.ObvDecompress algorithm
Input: ĉ,R: compressed ciphertexts and randomness.
Output: c̃: decompressed ciphertexts.

m← (1+ ε)t
for i ∈ [n] do

c̃i← GenRandVec(i,m,R) · ĉ
c̃← [c̃1, . . . , c̃n]
return c̃

Mr(I) to be a t× (1+ ε)t, then Mr(I) has a unique solution.

Compression Rate. We show that ε may be as small as 0.05
using experimental evaluation (see Section 7.1). Note, this
is only 5% larger than the minimum of t ciphertexts since t
plaintext values must be correctly encoded.

Running Time. The compression algorithm requires solving
the linear system associated to Mr(I) that is a t × (1+ ε)t
random band matrix. This can be done in O(tw) time using
only plaintext operations. Additionally, the resulting vector
must be encrypted using O(m) = O(t) time.

Decompression simply requires computing the matrix-
vector multiplication M · ĉ. As each row has at most w one
entries, this requires O(nw) homomorphic additions.

Obliviousness. Note that ĉ is always a length-m ciphertext
vector. Reducing to the security of the underlying encryption
scheme E , we can replace each of these ciphertexts with
encryptions of 0 meaning ĉ is independent of input plaintexts.

Noise Growth for SHE. Recall that for the applications to
batch PIR and labeled PSI, we will initialize LSObvCompress,
using lattice-based SHE schemes. Therefore, noise growth is
an important factor to consider. We note that the compression
algorithm is performed in plaintext without any homomorphic
operations. Therefore, we only consider noise growth for
decompression. The compressed input consists of m fresh
SHE ciphertexts. Decompression adds at most w ciphertexts.
If the input ciphertexts c̃= [c̃1, . . . , c̃m]

T have error Err(c̃i)≤ e
for all i ∈ [m], then each output ciphertext has error at most

O(w · e). See the full version for further details.

5 Batch PIR

We will present three single-server PIR schemes using our
compression techniques. We refer readers to Section 7.2 for
our experimental evaluation to choose the best option for
various settings of database size, entry size and batch size.
We also present an improved two-server scheme.

5.1 Single-Server: Compressed Responses
In this section, we present our improved single-server batch
PIR with compressed responses that apply for large entries
that cannot leverage vectorization techniques [52].

Cuckoo Hashing Batch PIR Framework. In this section, we
review the Cuckoo Hashing Batch PIR Framework by Angel
et al. [14]. In a naive batch PIR scheme, the server would
process each of the ℓ queries on the entire n database entries,
resulting in a total of O(nℓ) server operations. To reduce
server computation, Angel et al. [14] presented a batch PIR
framework that cleverly utilizes cuckoo hashing to encode
both the batch query and the database entries. To date, this is
the most practically efficient approach to constructing a batch
PIR scheme. Our batch PIR will be built directly from this
framework.

In this framework, the server setup works by creating
B ≥ ℓ independent single-query PIR servers and replicat-
ing each of the n database entries appropriately to a sub-
set of α ≥ 1 servers. Consider a sparse database D =
{(k1,v1), . . . ,(kn,vn)} ∈ (K ×V)n. Concretely, the choice
of the α-subset is determined by the individual database entry
(ki,vi) and α independent hash functions H1, . . . ,Hα : K →
[B] mapping keys to one of the B servers. In particular, (ki,vi)
will be replicated to the servers indexed by H1(ki), . . . ,Hα(ki).
The total number of entries across all B servers will be nα.

The hash functions that will be shared between the client
and the server so that the client may also perform batch
queries. Given a batch query {q1, . . . ,qℓ}, the client performs
cuckoo hashing to map the ℓ query keys into the B buckets. In
particular, each bucket will contain at most one query key af-
ter cuckoo hashing. Then, the client constructs a single-query
PIR request for each of the B PIR servers. For empty buckets,
the client will construct dummy “zero" requests such that the
response to a dummy request will be a ciphertext that encrypts
zero. Concretely, B− ℓ dummy requests. Finally, the server
will process the B independent single-query PIR requests and
send B responses back to the client.

Concrete Instantiation. Angel et al. [14] empirically deter-
mined that setting B= 1.5ℓ and α= 3 results in an appropriate
balance between the failure probability of the client alloca-
tion procedure, and efficiency. We notice that the request and
response size in the cuckoo hashing framework is larger than

the naive approach. In the naive approach, the request and
response size are merely ℓ ciphertexts whereas the framework
requires 1.5ℓ ciphertexts. This is 50% larger than the number
of responses in the naive approach.

Client Mapping or Keyword PIR. One subtlety of this
framework is that each of the B independent single-query PIR
servers consists of a sparse database. We note that this is true
regardless of whether the original batch PIR problem consists
of a dense database where K = [n] or a sparse database where
K could be much larger. In earlier works (such as [14,52]), it
was suggested to use O(n) client mappings to convert from
database indices to bucket indices. Recent work [57] instead
directly uses state-of-the-art keyword PIR schemes to avoid
linear client storage. Throughout the rest of our work, we
will follow this approach and use single-query keyword PIR
protocols for each of the B buckets.

Keyword PIR Framework [57]. We provide a brief overview
of the keyword PIR framework of [57] (used for each of the
B buckets), paying special attention to those details relevant
to our final batch PIR scheme.

• As in recent standard PIR schemes [13, 14, 51, 53], the
framework represents the n-entry database as a d1×d2×
·· ·×dz hypercube, where d1 · · ·dz ≥ n.

• The query algorithm for some key k creates z vectors of
length d1, . . . ,dz, homomorphically encrypts them, then
uploads them to the server.

• The server takes in an encoding E of the database, a
two-dimensional matrix of size d1×⌈n/d1⌉, and homo-
morphic encryptions of vectors v1, . . . ,vz. It first applies
v1 to E to obtain a ⌈n/d1⌉ vector, arranges this vector
into a d2×⌈n/(d1d2)⌉ matrix and applies v2 to obtain
a vector of size ⌈n/(d1d2)⌉, and repeats this for all z di-
mensions (where for the last dimension, the vector from
the previous step will not be arranged into a matrix and
instead, an inner product with vz will be performed). At
the end of this process, the server obtains a ciphertext
encrypting the queried entry of the client.

• The server then sends this ciphertext to the client, who
can decrypt it to obtain their queried entry.

Our Construction. To reduce communication in batch PIR,
we will apply LSObvCompress to reduce the server response
communication in the cuckoo hashing framework.

Namely, recall that for the B− ℓ buckets which do not have
an associated key, the client will construct dummy “zero” re-
quests such that the corresponding response ciphertext will
encrypt zero. This can be done by setting, e.g., vz to the zero-
vector, since in the last step of the response algorithm, the
server computes the inner product of vz with some vector to
obtain the final response ciphertext. Therefore, after the server
processes the B = 1.5ℓ requests, it obtains B = 1.5ℓ responses

of which ℓ consist of encrypted entries, and the rest are en-
crypted zeros. Thus, the server can apply the compression of
LSObvCompress with n = B and t = ℓ to obtain compressed
ciphertexts. Of course, the client knows the indices of the ℓ
real requests. As a result, the client can execute the decom-
pression of LSObvCompress to obtain the requested entries.

Our construction therefore results in response size with
overhead as small as 1.05× the optimal, with minimal added
computation, instead of the 1.5× overhead in response size
of [14].

Noise Growth. For noise growth, we will assume that the
keyword PIR framework [57] is applied using recent PIR
schemes from SHE composition [51, 53]. We perform the
same noise analysis for prior PIR schemes in the full version
and see that our new PIR scheme increases the noise growth
by a O(w) multiplicative factor.

5.2 Single-Server: Compressed Requests
Next, we apply LSObvDecompress to compress requests for
single-server batch PIR schemes.

Our Construction. In our framework using the keyword PIR
from [57], the client generates B = 1.5ℓ requests, each con-
taining z vectors. However, we only need correct answers
from ℓ requests. Thus, the client can combine all B · z request
vectors into one long vector, and for relevant indices I con-
sisting only of entries corresponding to the z vectors for each
of the ℓ important requests, apply LSObvDecompress. This
will result in a compressed request with size overhead only
1.05× compared to the naive batch PIR, which the client can
then encrypt and send to the server. This is in contrast to the
1.5× overhead in request size of [14]. We also utilize in our
construction the request packing techniques from [14] to fit
multiple requests into a single ciphertext.

The server will first apply the request ciphertext packing de-
coding and, then run decompression from LSObvDecompress
to obtain the B encrypted requests. Note, only the ℓ important
requests will be correct. This is sufficient as the remaining
0.5ℓ dummy requests are ignored by the client anyways. The
remainder of the server processing and client decrypting re-
mains identical.

Noise Growth. We show that applying LSObvDecompress
increases noise by an O(w) multiplicative factor (see the full
version for further details).

Why not both request and response compression? Theo-
retically, one can apply compression for both requests and re-
sponses simultaneously. In practice, the noise growth is O(w2)
multiplicative factor (see the full version for the analysis) that
is large. We were unable to find parameters where request
and response compression beat either of the PIR schemes
above. We leave it as an open problem to find better SHE/PIR
schemes enabling both request and response compression.
The full details of using both may be found in the full version.

5.3 Single-Server: Vectorized Responses
We present a method to compress responses in conjunction
with the recent vectorization techniques of Mughees and
Ren [52]. The vectorization techniques [52] utilize Single-
Instruction-Multiple-Data (SIMD) techniques. SIMD en-
codes multiple database entries into a single ciphertexts (lever-
aging additional structure of the SHE scheme) and operates
on all of them simultaneously.

Our Construction. The core idea of utilizing
LSObvCompress to compress responses remains the
same, but we wish to leverage that multiple entries fit into a
single ciphertext. To do this, we present a vectorized version
of LSObvCompress that optimally packs multiple entries
into a single ciphertext. If d entries fit into a single ciphertext,
our vectorized LSObvCompress sends only ⌈1.05ℓ/d⌉ to the
client. In contrast, ⌈1.5ℓ/d⌉ ciphertexts are encoded in [52].

At a high level, vectorized LSObvCompress works nearly
identically as the variant of LSObvCompress described in
Section 3.3. The only difference is that we apply techniques
from [52] to rotate ciphertexts and pack multiple entries into
a ciphertext before performing compression. Due to lack of
space, we defer the full description to the full version.

5.4 Two-Server: Compressed Responses
Next, we use LSObvCompress to compress responses for two-
server batch PIR. In this setting, the client sends requests
to both servers. Each server holds a copy of the database
and cannot communicate with each other. They then send
individual responses back to the client, who uses both to
reconstruct the requested entry. The same correctness and
privacy conditions are required. Privacy is considered with
respect to each individual server assuming non-collusion.

Two-Server PIR. To date, the most concretely efficient two-
server PIR schemes are built using distributed point functions
(DPF) [19, 37, 40]. A point function fi : K →{0,1} satisfies
fi(x) = 1 if and only if x = i. DPFs enable secret sharing
fi amongst the two servers using two functions, f 0

i and f 1
i ,

satisfying fi(x) = f 0
i (x)+ f 1

i (x) for all x ∈ K . Both f 0
i and

f 1
i must not individually reveal anything about fi.

To perform a two-server keyword PIR query for key k, the
client uses DPFs to create secret shares of fk, f 0

k and f 1
k , that

are sent to each of the two servers. Suppose the database
consists of n key-value pairs, D = {(k1,v1), . . . ,(kn,vn)}. For
each server j ∈ {0,1}, the j-th server computes

z j = f j
k (k1) · v1 + . . .+ f j

k (kn) · vn.

Finally, the client receives z0 and z1 and computes the final
answer z0 + z1. If k = ki, then z0 + z1 = vi. Otherwise, z0 +
z1 = 0 when k /∈ {k1, . . . ,kn}.

There is a small issue that the client cannot distinguish
between vi = 0 and k /∈ {k1, . . . ,kn}. To fix this, we can ensure

that zero is not a valid entry. For example, one can simply
append a 1-bit to the end of each entry, v1, . . . ,vn.

Two-Server Batch PIR. To our knowledge, the most efficient
two-server batch PIR remains the cuckoo hashing framework
of Angel et al [14]. In the concrete instantiation, we use a two-
server, single-query, keyword PIR for each of the B = 1.5ℓ
buckets when performing a batch query for ℓ entries.

Our Construction. Our goal is to utilize LSObvCompress to
reduce the number of responses from B = 1.5ℓ that are sent by
both servers. We will use the two-server keyword PIR based
on the DPF of [19]. Note that this PIR does not use encryption
and, instead, relies on the non-collusion of the two servers for
security. The encryption scheme E for LSObvCompress in
this setting is additive secret sharing. Homomorphic additions
will simply be addition operations by each server.

First, recall that in order to use LSObvCompress, the 0.5ℓ
dummy requests must results in additive sharings (encryp-
tions) of 0. We will add (k0,0) is added to each of the B
buckets for special key k0. The client will issue a keyword
PIR query for k0 for each of the 0.5ℓ dummy buckets. The
servers upon receipt of these requests for all B buckets will
then compute the corresponding responses. Consider the i-th
response z0

i and z1
i for both servers. Let I′ ⊂ [B] be the indices

of the real, non-dummy requests. For all i ∈ [B], zi = z0
i + z1

i
is the i-th requested entry. If i /∈ I′, then zi = z0

i + z1
i = 0.

We can thus apply LSObvCompress as follows. Both
servers will use LSObvCompress to compress their responses
z0 = [z0

1, . . . ,z
0
B] and z1 = [z1

1, . . . ,z
1
B]. Recall that this is done

by computing the matrix-vector multiplications ẑ0 = M · z0

and ẑ1 = M · z1 where M is the transpose of a random band
matrix. The client will compute ẑ = ẑ0 + ẑ1 = M · (z0 + z1)
that is a compression of the requested entries, z0 +z1. Finally,
the client runs the decompression portion of LSObvCompress
on ẑ to obtain the non-dummy queried entries, zi for all i ∈ I.

6 Labeled PSI

In this section, we show our techniques may be used to build
protocols for labeled PSI in the unbalanced setting. Recall
that the receiver has a set X and the sender has a labeled set
{(y,Ly) | y ∈ Y}. Note, that one may interpret this as batch
keyword PIR with the receiver as the client and the sender
as the server. The only difference is that PSI requires privacy
for both party’s input. Therefore, we need to also enable pri-
vacy for the sender (server) input. We present two improved
constructions using our compression techniques.

Batch Keyword PIR and Oblivious PRF. We can use the
generic transformation from [32] combining our single-server
batch keyword PIR with any oblivious pseudorandom func-
tion (OPRF) to build our labeled PSI protocol. An OPRF
allows the receiver to input set X and learn the set of pseudo-
random outputs {Fk(x) | x ∈ X}, where F is a PRF, and k is
known to the sender. For security, both the sender and receiver

should learn nothing else (beyond the size of |X |). Our scheme
provides full security against a malicious receiver and privacy
against a malicious sender, as in prior works [21, 25].

At a high level, the protocol goes as follows. First, the
sender generates a private key k and evaluates the OPRF on
its input set Y . The labels {Ly | y ∈ Y} are encrypted using
keys derived from the OPRF evaluation. The sender and re-
ceiver execute the OPRF protocol on the receiver’s input and
a sender’s private key. Finally, the sender and receiver execute
a batch PIR using the receiver’s output of the OPRF protocol
to retrieve the encrypted labels. Afterwards, the receiver may
decrypts labels in the intersection. We point readers to the full
version for more details and analysis.

As a side note, we point out that we must modify the key-
word PIR construction from [57] slightly. In particular, the
database encoding algorithm must have negligible failure to
ensure database privacy. To do this, we can increase the band
length parameter to ensure negligible encoding failures (using
the analysis from [18]). See the full version for more details.

Improving Oblivious Polynomial Evaluation. Prior
works [21, 22, 25] built labeled PSI using oblivious polyno-
mial evaluation (OPE). We can apply LSObvDecompress to
OPE protocols for reducing request sizes by 30%. Although,
we note prior work [52] showed that batch PIR approaches
result in more efficient labeled PSI protocols compared to
OPE. Nevertheless, OPE is an interesting application of our
compression algorithms. See the full version for more details.

7 Experimental Evaluation

We perform experimental evaluation for our new compression
algorithms, LSObvDecompress and LSObvCompress, as well
as their improvements to batch PIR and labeled PSI. Finally,
we also benchmark our protocols for the real world application
of anonymous messaging.

Experimental Setup. We implemented our experimental eval-
uations with around 3000 lines of C++ code. All our exper-
iments are performed using Ubuntu PCs with 96 cores, 3.7
GHz Intel Xeon W-2135 and 128 GB of RAM with only
single-threaded execution. The AVX2 and AVX-512 instruc-
tion sets with SIMD instructions are enabled. The results are
the average of at least 10 experimental trials with standard
deviation less than 10% of the averages. Our implementations
will target error probability 2−40 and 128 bits of computa-
tional security. Server monetary costs are computed using
Amazon EC2 savings plan pricing of t2.2xlarge instances [4]
of $0.09 per GB of traffic and $0.021 per CPU hour at the
time. We will utilize SHA256 as the hash function and AES-
GCM-256 as the encryption scheme with 32 byte keys. Unless
otherwise specified, we will use the compression parameter
ε = 0.05 for our experiments.

Interpreting the Experimental Results. As our compres-
sion schemes are general schemes that can be instantiated on

various protocols, they incur additional computational over-
head compared to the ones that don’t use our compression
schemes. To assess concrete tradeoffs between the computa-
tional overhead and the communication reduction, we will
use the Amazon EC2 server monetary cost model which mea-
sures the communication and computational efficiency as a
dollar cost. We note that this model has been used in prior
works [18, 57] for this exact purpose.

7.1 Oblivious Ciphertext Compression

We first evaluate the performance of LSObvCompress and
LSObvDecompress in isolation and report results in Figure 4.

Setup. In our experiments, we will use Regev encryption [58]
as the underlying scheme using the implementation from
Spiral [9]. We fix the plaintext size to 8 KB and the ciphertext
size to 20 KB. In the figure, t corresponds to the number
of non-zero entries and n corresponds to the total number
of entries including the zero entries. We fix the fraction of
zero entries to 0.5t (thus n = 1.5t). Note that this corresponds
to the fraction of dummy requests/responses in the cuckoo
hashing framework from [14]. In our evaluations, we will
target two compression sizes of 1.05t and 1.07t. Note that
this results in 30% and 29% request/response size reduction
respectively.

Results. We see that computation time increases with bet-
ter compression rate as well as larger t and n. However, we
claim that our LSObvCompress and LSObvDecompress re-
main practically efficient for many applications; as we will
show in the next sections, the additional computational cost is
a relatively small fraction of the entire protocol’s computation
time, and the significant reduction in the communication cost
will justify these small additional computational overhead.

7.2 Single-Server Batch PIR

We evaluate the single-server batch PIR schemes from Sec-
tion 5 using our compression techniques to reduce communi-
cation. We report our results in Figure 5.

Setup. We implement our compression algorithms on top
of the open-source Spiral implementation [9]. We use n = 1
million database entries for all of our results. Baseline cor-
responds to Angel et al [14]’s batch PIR framework im-
plemented on top of Spiral [51] without our compression
techniques. The parameters for the baseline were chosen
using the script provided by their open-source implemen-
tation. In our evaluations, we consider three batch sizes
ℓ ∈ {512,1024,2048} (in the context of ciphertext compres-
sion/decompression, the batch size ℓ corresponds to the num-
ber of non-zero entries). We follow the batch PIR setup
from [14] and fix the fraction of dummy requests/responses
(i.e. zero entries) to 0.5ℓ. We target compression size of 1.05ℓ.

Compression Size Sizes & Schemes Compression Time Decompression Time Total Time

1.05t

t = 512,n = 768
LSObvCompress 2.38 s 0.66 s 3.04 s
LSObvDecompress 0.60 s 1.65 s 2.25 s
t = 1024,n = 1536
LSObvCompress 5.15 s 1.34 s 6.49 s
LSObvDecompress 1.25 s 3.94 s 5.19 s
t = 2048,n = 3072
LSObvCompress 10.54 s 2.67 s 13.21 s
LSObvDecompress 2.48 s 6.88 s 9.38 s
t = 4096,n = 6144
LSObvCompress 21.45 s 5.27 s 26.72 s
LSObvDecompress 5.05 s 14.50 s 19.55 s

1.07t

t = 512,n = 768
LSObvCompress 1.82 s 0.53 s 2.35 s
LSObvDecompress 0.49 s 1.34 s 1.83 s
t = 1024,n = 1536
LSObvCompress 4.12 s 1.07 s 5.19 s
LSObvDecompress 0.96 s 3.19 s 4.15 s
t = 2048,n = 3072
LSObvCompress 8.41 s 2.12 s 10.53 s
LSObvDecompress 1.72 s 5.80 s 7.52 s
t = 4096,n = 6144
LSObvCompress 17.06 s 4.43 s 21.49 s
LSObvDecompress 2.76 s 11.19 s 13.95 s

Figure 4: Evaluations of LSObvCompress and LSObvDecompress for different values of t (non-zero/relevant entries) and n
(uncompressed input size). We fix the plaintext size to 8 KB and ciphertext size to 20 KB for all our results.

Results. Using our LSObvCompress, we see 30% response
size reduction in exchange for a reasonable additional compu-
tational cost compared to state-of-the-art PIR for large entries
without compression. We see that this small additional compu-
tation cost is justified by the reduction in the server monetary
cost. In particular, LSObvCompress reduces the server mone-
tary cost by up to 10% compared to the baseline.

Using our LSObvDecompress algorithm, we see 20-24%
reduction in the request size with slight increase in computa-
tion and server monetary cost.

We were unable to integrate our vectorized version
of LSObvCompress into the vectorized batch PIR proto-
col [52] as we are unaware of an open-source implemen-
tation. Nevertheless, we still implemented our vectorized ver-
sion LSObvCompress from Section 5.3 using the SEAL li-
brary [59]. The results are presented in the full version.

Choosing the Right Protocol. In general, LSObvCompress
provides the best communication and server monetary cost
reduction. Thus, LSObvCompress will typically be the best
option for most settings.

In certain settings, we note that LSObvDecompress may
be useful where we wish to minimize upload communication
from the client to the server. There are many natural settings
where the upload costs/speed are more expensive/slower than
the download costs/speed. For applications in these scenarios,
it may be critical to save as much upload communication as

possible that is achieved by LSObvDecompress.

Application: Anonymous Messaging. Angel and Setty [15]
introduced Pung that built an anonymous messaging protocol
using any single-server batch PIR (see the full version). In
Figure 6, we report our results for retrieving 288-byte mes-
sages. We fix the number of database entries to n = 1 million
and batch size to b = 512.

By using our improved batch PIR constructions, we obtain
more communication-efficient versions of Pung. In particular,
we see that LSObvCompress reduces the server monetary cost
by 7% compared to the baseline.

7.3 Two-Server Batch PIR
We implement our response-compressed two-server batch PIR
from Section 5.4 on top of the two-server single-query PIR
implementation in [2]. We report our results in Figure 7.

Setup. We fix the number of database entries to n = 1 million
where each database entry is 288 bytes large. As in the single-
server batch PIR experiment (Section 7.2), we fix the fraction
of dummy responses to 0.5ℓ and target compression size of
1.05ℓ. We omit evaluating request sizes as they are the same
for both schemes.

Results. We observe that using LSObvCompress can reduce
response size by 30% in exchange for a small additional com-
putational cost. However, the small additional computational

DB
Entry
Size

Batch Size
& Schemes

Public Param
Size

Request
Size

Response
Size

Total Server
Time

Amortized
Server
Time

Total Client
Time

Server
Monetary

Cost

8 KB

ℓ= 512
Baseline 20.87 MB 1.81 MB 15.59 MB 840 s 1.64 s 6.1 s $0.00646
LSObvCompress 22.62 MB 1.81 MB 10.92 MB 890 s 1.74 s 6.7 s $0.00633
LSObvDecompress 20.87 MB 1.40 MB 15.59 MB 863 s 1.69 s 6.4 s $0.00656
ℓ= 1024
Baseline 20.87 MB 3.35 MB 31.18 MB 1,256 s 1.23 s 6.8 s $0.01043
LSObvCompress 23.11 MB 3.35 MB 21.84 MB 1,369 s 1.34 s 8.2 s $0.01025
LSObvDecompress 20.87 MB 2.55 MB 31.18 MB 1,323 s 1.29 s 8.0 s $0.01075
ℓ= 2048
Baseline 20.87 MB 3.96 MB 62.37 MB 1,750 s 0.85 s 7.0s $0.01617
LSObvCompress 23.43 MB 3.96 MB 43.67 MB 1,871 s 0.91 s 9.7 s $0.01520
LSObvDecompress 20.87 MB 3.15 MB 62.37 MB 1,812 s 0.89 s 9.4 s $0.01646

16 KB

ℓ= 512
Baseline 20.87 MB 1.81 MB 31.18 MB 1,286 s 2.51 s 6.3 s $0.01047
LSObvCompress 22.62 MB 1.81 MB 21.84 MB 1,348 s 2.63 s 8.4 s $0.00999
LSObvDecompress 20.87 MB 1.40 MB 31.18 MB 1,308 s 2.55 s 8.3 s $0.01056
ℓ= 1024
Baseline 20.87 MB 3.35 MB 62.37 MB 1,775 s 1.73 s 7.9 s $0.01626
LSObvCompress 23.11 MB 3.35 MB 43.69 MB 1,929 s 1.88 s 9.6 s $0.01548
LSObvDecompress 20.87 MB 2.55 MB 62.37 MB 1,881 s 1.83 s 9.4 s $0.01681
ℓ= 2048
Baseline 20.87 MB 3.96 MB 124.74 MB 2,634 s 1.29 s 8.5 s $0.02694
LSObvCompress 23.43 MB 3.96 MB 87.34 MB 2,773 s 1.35 s 12.4 s $0.02439
LSObvDecompress 20.87 MB 3.15 MB 124.74 MB 2,746 s 1.34 s 12.4 s $0.02752

Figure 5: Evaluations of Spiral Batch PIR [14, 51] with and without our compression techniques, LSObvCompress and
LSObvDecompress with ε = 0.05. We fix the number of entries to n = 1 million for all our results.

Schemes Public Param
Size

Request
Size

Response
Size

Total Server
Time

Total Client
Time

Server
Monetary Cost

Baseline 20.5 MB 0.86 MB 8.90 MB 328 s 1.4 s $0.00279
LSObvCompress 23.1 MB 0.86 MB 6.23 MB 338 s 1.6 s $0.00260
LSObvDecompress 20.5 MB 0.66 MB 8.90 MB 347 s 1.7 s $0.00288

Figure 6: Instantiation of the Pung messaging system [15] using batch Spiral PIR with and without our compression techniques
(ε = 0.05). We fix the number of database entries to n = 1 million and batch size to ℓ= 512. Each entry is of size 288 B.

Batch Size
& Schemes

Response
Size

Server
Time

Client
Time

Server
Monetary

Cost
ℓ= 512
Baseline 221 KB 9.63 s 0.01 s $0.000076
LSObvCompress 155 KB 9.69 s 0.08 s $0.000070
ℓ= 1024
Baseline 442 KB 9.76 s 0.01 s $0.000096
LSObvCompress 310 KB 9.92 s 0.16 s $0.000085
ℓ= 2048
Baseline 885 KB 9.79 s 0.01 s $0.000136
LSObvCompress 619 KB 10.09 s 0.33 s $0.000114
ℓ= 4096
Baseline 1,769 KB 9.81 s 0.01 s $0.000216
LSObvCompress 1,238 KB 10.53 s 0.78 s $0.000172
ℓ= 8192
Baseline 3,539 KB 9.82 s 0.01 s $0.000375
LSObvCompress 2,477 KB 11.13 s 1.80 s $0.000287

Figure 7: Comparison of DPF based two server batch PIR
protocol [2] with and without LSObvCompress (ε = 0.05).
We fix the number of database entries to n = 1 million and
each entry size to 288 B for all our results.

cost is justified by the savings in the server monetary cost.
Compared to the baseline, LSObvCompress can reduce the
server monetary cost by up to 24%.

7.4 Labeled PSI

Next, we evaluate our labeled PSI built from our batch PIR
in Section 5.1 and an OPRF protocol (see the full version for
details). We report our results in Figure 8.

Setup. Our implementation uses the single-server batch PIR
implementation from Section 5.1 with the OPRF implementa-
tion from [1]. We fix the size of the sender’s set to 1 million
and receiver’s set to 512 (note, in the context of batch PIR
these corresponds to the number of database elements and
the batch size respectively). We have used one of the default
parameter sets available in their open-source implementations
for Cong et al [25]’s scheme.

Results. Our scheme has 65-88% reduced communication
over prior state-of-the-art works [25]. For smaller label size,
our construction with Spiral [51] is slower, but we start to
catch up and eventually outperform Cong et al [25] for larger
label sizes. Note that even with these additional computation
cost, we reduce the server monetary cost by 30-70%.

Due to the limitation of their open source implementa-
tion [1], we could not compare our construction on larger label
sizes, but we expect our scheme to outperform significantly
as the label sizes increase. In any case, our communication
cost and server monetary cost is significantly smaller.

Label Size
& Schemes

Total
Online
Comm.

Total
Online
Time

Server
Monetary

Cost
512 B
Cong et al. [25] 33.2 MB 169 s $0.00397
LSObvCompress 11.4 MB 304 s $0.00279
1024 B
Cong et al. [25] 66.1 MB 331 s $0.00787
LSObvCompress 11.6 MB 355 s $0.00311
1536 B
Cong et al. [25] 103.6 MB 535 s $0.01244
LSObvCompress 11.9 MB 446 s $0.00367

Figure 8: Comparisons of Cong et al. [25]’s labeled PSI and
our LSObvCompress-based PSI with ε= 0.05. We fix the size
of the sender’s set to 1 million and the receiver’s set to 512.

8 Related Works

Ciphertext Compression. Variants of ciphertext compression
have been studied in the past. Liu and Tromer [48] implicitly
studied oblivious ciphertext compression without explicitly
defining the primitive. In their scheme, they use sparse linear
random codes that result in larger encodings and slower de-
coding time (see Figure 1), and, if instantiated with a FHE
scheme, larger parameters for that scheme. Angel et al. [14]
used packing and vectorization techniques to reduce request
communication in PIR. Mughees and Ren [52] also showed
vectorization techniques may be used to reduce response com-
munication in batch PIR. Fleischhacker et al. [31] studied
a more challenging variant of our setting where neither the
decompressor (client) nor the compressor (server) know the
identity of the the non-zero ciphertexts. As a result, their
schemes have worse compression rate and more expensive
compression and decompression algorithms. The same prob-
lem was implicitly studied in [23].

PIR. Single-server PIR was first studied by Kushilevitz and
Ostrovsky [46]. Follow-up works constructed PIR from vari-
ous other assumptions [20, 26, 35, 47, 55]. More recent works
have studied concretely efficient protocols from lattice-based
homomorphic encryption [11–15, 34, 50, 51, 53, 56, 57].

PIR has also been studied in the setting of multiple, non-
colluding servers. A line of work has studied the com-
munication efficiency with information-theoretic security
(see [24, 29, 30] and references therein). Recent works have
studied concretely efficient two-server PIR with computa-
tional security using distributed point functions [19, 37, 40].

Batch PIR. Batch PIR has been studied heavily in the past.
Beimel et al. [17] presented a method to reduce server com-
putation using matrix multiplication. Groth et al. [39] pre-
sented a communication-optimal scheme adapting the scheme
in [35]. Another line of work (see [41, 43, 49, 60] and ref-
erences therein) presented batch codes that transforms any
single-query PIR into a batch PIR. More recent work [14, 15]
introduced probabilistic batch codes that result in the most

concretely-efficient batch PIR schemes to date. Mughees and
Ren [52] introduced vectorization techniques to reduce server
responses for small database entries. Patel et al. [57] presented
keyword PIR schemes that can remove the client mapping.

Labeled PSI. Labeled PSI is a variant where each identifier
has an associated data label that should be retrieved. Labeled
PSI is most often studied in the unbalanced setting where
the receiver’s set is much smaller than the sender’s set. Many
recent works [21, 22, 25, 27, 44] studied labeled PSI with
sub-linear communication in the larger set. The same setting
where the receiver only queries for a single item has been
studied as symmetric PIR [13, 36].

9 Conclusions

In this work, we present state-of-the-art constructions for
both batch PIR and labeled PSI with reduced communication
costs compared to prior solutions. To do this, we identify
a common task in both primitives that we denote as oblivi-
ous ciphertext compression where a compressor (server) is
given n ciphertexts with only t < n non-zero ciphertexts. The
decompressor (client) knows the location of the t non-zero
ciphertexts, but the compressor is unaware of this knowledge.
We present LSObvCompress that enables compressions con-
sisting of 1.05t ciphertexts that is only 5% larger than the min-
imum while requiring only additive homomorphism. Using
LSObvCompress, we present batch PIR schemes with 30%
smaller responses and labeled PSI protocols with 65-88%
reduced communication and comparable computation.

References

[1] APSI: C++ library for Asymmetric PSI. https://github.
com/microsoft/APSI.

[2] C++ DPF-PIR library. https://github.com/dkales/
dpf-cpp.

[3] Certificate transparency. https://certificate.
transparency.dev/.

[4] EC2 On-Demand Pricing. https://aws.amazon.com/ec2/
pricing/on-demand/.

[5] Password monitor: Safeguarding passwords in microsoft edge.
https://www.microsoft.com/en-us/research/blog/
password-monitor-safeguarding-passwords-in-microsoft-edge/.

[6] Protect your accounts from data breaches with password
checkup. https://security.googleblog.com/2019/02/
protect-your-accounts-from-data.html.

[7] Protecting your device information with private set mem-
bership. https://security.googleblog.com/2021/10/
protecting-your-device-information-with.html.

[8] Safe Browsing APIs (v4). https://developers.google.
com/safe-browsing/v4.

[9] Spiral. https://github.com/menonsamir/spiral.

[10] Technology preview: Private contact discov-
ery for Signal. https://signal.org/blog/
private-contact-discovery/.

[11] Carlos Aguilar Melchor, Joris Barrier, Laurent Fousse, and
Marc-Olivier Killijian. XPIR: Private information retrieval for
everyone. PoPETs, 2016(2):155–174, April 2016.

[12] Ishtiyaque Ahmad, Yuntian Yang, Divyakant Agrawal, Amr
El Abbadi, and Trinabh Gupta. Addra: Metadata-private voice
communication over fully untrusted infrastructure. In OSDI
21, 2021.

[13] Asra Ali, Tancrède Lepoint, Sarvar Patel, Mariana
Raykova, Phillipp Schoppmann, Karn Seth, and Kevin
Yeo. Communication-computation trade-offs in PIR. In
Michael Bailey and Rachel Greenstadt, editors, USENIX
Security 2021, pages 1811–1828. USENIX Association,
August 2021.

[14] Sebastian Angel, Hao Chen, Kim Laine, and Srinath T. V. Setty.
PIR with compressed queries and amortized query processing.
In 2018 IEEE Symposium on Security and Privacy, pages 962–
979. IEEE Computer Society Press, May 2018.

[15] Sebastian Angel and Srinath Setty. Unobservable communi-
cation over fully untrusted infrastructure. In OSDI 16, pages
551–569, 2016.

[16] Gilad Asharov, Moni Naor, Gil Segev, and Ido Shahaf. Search-
able symmetric encryption: optimal locality in linear space via
two-dimensional balanced allocations. In Daniel Wichs and
Yishay Mansour, editors, 48th ACM STOC, pages 1101–1114.
ACM Press, June 2016.

[17] Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing the
servers computation in private information retrieval: PIR with
preprocessing. In Mihir Bellare, editor, CRYPTO 2000, volume
1880 of LNCS, pages 55–73. Springer, Heidelberg, August
2000.

[18] Alexander Bienstock, Sarvar Patel, Joon Young Seo, and Kevin
Yeo. Near-optimal oblivious key-value stores for efficient PSI,
PSU and volume-hiding multi-maps. In USENIX Security
2023, 2023.

[19] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret
sharing: Improvements and extensions. In Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers,
and Shai Halevi, editors, ACM CCS 2016, pages 1292–1303.
ACM Press, October 2016.

[20] Christian Cachin, Silvio Micali, and Markus Stadler. Compu-
tationally private information retrieval with polylogarithmic
communication. In Jacques Stern, editor, EUROCRYPT’99,
volume 1592 of LNCS, pages 402–414. Springer, Heidelberg,
May 1999.

[21] Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. La-
beled PSI from fully homomorphic encryption with malicious
security. In David Lie, Mohammad Mannan, Michael Backes,
and XiaoFeng Wang, editors, ACM CCS 2018, pages 1223–
1237. ACM Press, October 2018.

[22] Hao Chen, Kim Laine, and Peter Rindal. Fast private set
intersection from homomorphic encryption. In Bhavani M.
Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu,

https://github.com/microsoft/APSI
https://github.com/microsoft/APSI
https://github.com/dkales/dpf-cpp
https://github.com/dkales/dpf-cpp
https://certificate.transparency.dev/
https://certificate.transparency.dev/
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://security.googleblog.com/2019/02/protect-your-accounts-from-data.html
https://security.googleblog.com/2019/02/protect-your-accounts-from-data.html
https://security.googleblog.com/2021/10/protecting-your-device-information-with.html
https://security.googleblog.com/2021/10/protecting-your-device-information-with.html
https://developers.google.com/safe-browsing/v4
https://developers.google.com/safe-browsing/v4
https://github.com/menonsamir/spiral
https://signal.org/blog/private-contact-discovery/
https://signal.org/blog/private-contact-discovery/

editors, ACM CCS 2017, pages 1243–1255. ACM Press, Octo-
ber / November 2017.

[23] Seung Geol Choi, Dana Dachman-Soled, S. Dov Gordon, Lin-
sheng Liu, and Arkady Yerukhimovich. Compressed oblivious
encoding for homomorphically encrypted search. In Giovanni
Vigna and Elaine Shi, editors, ACM CCS 2021, pages 2277–
2291. ACM Press, November 2021.

[24] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu
Sudan. Private information retrieval. Journal of the ACM
(JACM), 45(6):965–981, 1998.

[25] Kelong Cong, Radames Cruz Moreno, Mariana Botelho
da Gama, Wei Dai, Ilia Iliashenko, Kim Laine, and Michael
Rosenberg. Labeled PSI from homomorphic encryption with
reduced computation and communication. In Giovanni Vigna
and Elaine Shi, editors, ACM CCS 2021, pages 1135–1150.
ACM Press, November 2021.

[26] Ivan Damgård and Mats Jurik. A generalisation, a simplifica-
tion and some applications of Paillier’s probabilistic public-key
system. In Kwangjo Kim, editor, PKC 2001, volume 1992 of
LNCS, pages 119–136. Springer, Heidelberg, February 2001.

[27] Daniel Demmler, Peter Rindal, Mike Rosulek, and Ni Trieu.
Pir-psi: Scaling private contact discovery. Proceedings on
Privacy Enhancing Technologies, 2018(4):159–178, 2018.

[28] Martin Dietzfelbinger and Stefan Walzer. Efficient gauss elimi-
nation for near-quadratic matrices with one short random block
per row, with applications. In 27th Annual European Sympo-
sium on Algorithms (ESA 2019). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2019.

[29] Zeev Dvir and Sivakanth Gopi. 2-server PIR with sub-
polynomial communication. In Rocco A. Servedio and Ronitt
Rubinfeld, editors, 47th ACM STOC, pages 577–584. ACM
Press, June 2015.

[30] Klim Efremenko. 3-query locally decodable codes of subex-
ponential length. In Michael Mitzenmacher, editor, 41st ACM
STOC, pages 39–44. ACM Press, May / June 2009.

[31] Nils Fleischhacker, Kasper Green Larsen, and Mark Simkin.
How to compress encrypted data. In EUROCRYPT 2023, Part
I, pages 551–577. Springer, 2023.

[32] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer
Reingold. Keyword search and oblivious pseudorandom func-
tions. In Joe Kilian, editor, TCC 2005, volume 3378 of LNCS,
pages 303–324. Springer, Heidelberg, February 2005.

[33] Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu,
and Avishay Yanai. Oblivious key-value stores and amplifica-
tion for private set intersection. In Tal Malkin and Chris Peikert,
editors, CRYPTO 2021, Part II, volume 12826 of LNCS, pages
395–425, Virtual Event, August 2021. Springer, Heidelberg.

[34] Craig Gentry and Shai Halevi. Compressible FHE with appli-
cations to PIR. In Dennis Hofheinz and Alon Rosen, editors,
TCC 2019, Part II, volume 11892 of LNCS, pages 438–464.
Springer, Heidelberg, December 2019.

[35] Craig Gentry and Zulfikar Ramzan. Single-database private
information retrieval with constant communication rate. In
Luís Caires, Giuseppe F. Italiano, Luís Monteiro, Catuscia
Palamidessi, and Moti Yung, editors, ICALP 2005, volume

3580 of LNCS, pages 803–815. Springer, Heidelberg, July
2005.

[36] Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin.
Protecting data privacy in private information retrieval schemes.
In 30th ACM STOC, pages 151–160. ACM Press, May 1998.

[37] Niv Gilboa and Yuval Ishai. Distributed point functions and
their applications. In Phong Q. Nguyen and Elisabeth Oswald,
editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 640–
658. Springer, Heidelberg, May 2014.

[38] Matthew Green, Watson Ladd, and Ian Miers. A protocol for
privately reporting ad impressions at scale. In Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers,
and Shai Halevi, editors, ACM CCS 2016, pages 1591–1601.
ACM Press, October 2016.

[39] Jens Groth, Aggelos Kiayias, and Helger Lipmaa. Multi-
query computationally-private information retrieval with con-
stant communication rate. In Phong Q. Nguyen and David
Pointcheval, editors, PKC 2010, volume 6056 of LNCS, pages
107–123. Springer, Heidelberg, May 2010.

[40] Syed Mahbub Hafiz and Ryan Henry. A bit more than a bit is
more than a bit better: Faster (essentially) optimal-rate many-
server PIR. PoPETs, 2019(4):112–131, October 2019.

[41] Ryan Henry. Polynomial batch codes for efficient IT-PIR.
PoPETs, 2016(4):202–218, October 2016.

[42] Alexandra Henzinger, Matthew M. Hong, Henry Corrigan-
Gibbs, Sarah Meiklejohn, and Vinod Vaikuntanathan. One
server for the price of two: Simple and fast single-server private
information retrieval. In USENIX Security 2023, 2023.

[43] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai.
Batch codes and their applications. In László Babai, editor,
36th ACM STOC, pages 262–271. ACM Press, June 2004.

[44] Daniel Kales, Christian Rechberger, Thomas Schneider,
Matthias Senker, and Christian Weinert. Mobile private con-
tact discovery at scale. In Nadia Heninger and Patrick Traynor,
editors, USENIX Security 2019, pages 1447–1464. USENIX
Association, August 2019.

[45] Tali Kaufman and Madhu Sudan. Sparse random linear codes
are locally decodable and testable. In 48th FOCS, pages 590–
600. IEEE Computer Society Press, October 2007.

[46] Eyal Kushilevitz and Rafail Ostrovsky. Replication is NOT
needed: SINGLE database, computationally-private informa-
tion retrieval. In 38th FOCS, pages 364–373. IEEE Computer
Society Press, October 1997.

[47] Helger Lipmaa. An oblivious transfer protocol with log-
squared communication. In International Conference on Infor-
mation Security, pages 314–328. Springer, 2005.

[48] Zeyu Liu and Eran Tromer. Oblivious message re-
trieval. In Yevgeniy Dodis and Thomas Shrimpton, editors,
CRYPTO 2022, Part I, volume 13507 of LNCS, pages 753–783.
Springer, Heidelberg, August 2022.

[49] Wouter Lueks and Ian Goldberg. Sublinear scaling for multi-
client private information retrieval. In Rainer Böhme and
Tatsuaki Okamoto, editors, FC 2015, volume 8975 of LNCS,
pages 168–186. Springer, Heidelberg, January 2015.

[50] Rasoul Akhavan Mahdavi and Florian Kerschbaum. Constant-
weight PIR: Single-round keyword PIR via constant-weight
equality operators. In USENIX Security 22, pages 1723–1740,
Boston, MA, 2022.

[51] Samir Jordan Menon and David J Wu. Spiral: Fast, high-
rate single-server PIR via FHE composition. In 2022 IEEE
Symposium on Security and Privacy, 2022.

[52] M. Mughees and L. Ren. Vectorized batch private information
retrieval. In 2023 IEEE Symposium on Security and Privacy
(SP), pages 437–452, 2023.

[53] Muhammad Haris Mughees, Hao Chen, and Ling Ren. Onion-
PIR: Response efficient single-server PIR. In Giovanni Vigna
and Elaine Shi, editors, ACM CCS 2021, pages 2292–2306.
ACM Press, November 2021.

[54] Muhammad Haris Mughees, Gonçalo Pestana, Alex Davidson,
and Benjamin Livshits. PrivateFetch: Scalable catalog delivery
in privacy-preserving advertising, 2021.

[55] Pascal Paillier. Public-key cryptosystems based on composite
degree residuosity classes. In Jacques Stern, editor, EURO-
CRYPT’99, volume 1592 of LNCS, pages 223–238. Springer,
Heidelberg, May 1999.

[56] Jeongeun Park and Mehdi Tibouchi. SHECS-PIR: Somewhat
homomorphic encryption-based compact and scalable private
information retrieval. In Liqun Chen, Ninghui Li, Kaitai Liang,
and Steve A. Schneider, editors, ESORICS 2020, Part II, vol-
ume 12309 of LNCS, pages 86–106. Springer, Heidelberg,
September 2020.

[57] Sarvar Patel, Joon Young Seo, and Kevin Yeo. Don’t be dense:
Efficient keyword PIR for sparse databases. In USENIX Secu-
rity 2023, 2023.

[58] Oded Regev. On lattices, learning with errors, random linear
codes, and cryptography. In Harold N. Gabow and Ronald
Fagin, editors, 37th ACM STOC, pages 84–93. ACM Press,
May 2005.

[59] Microsoft SEAL (release 4.1). https://github.com/
Microsoft/SEAL, January 2023. Microsoft Research, Red-
mond, WA.

[60] Kevin Yeo. Cuckoo hashing in cryptography: Optimal parame-
ters, robustness and applications. In CRYPTO 2023, 2023.

A Random Band Matrix Analysis

In this section, we analyze the variant of random band matri-
ces from Section 3.3 where each column is generated with a
random w-bit band. As these are transposes of random band
matrices, we know these variants will have unique solutions.
It remains to show that the running time of these random band
matrices runs in time O(nw) similar to the original random
band matrices from [28].

To do this, we show that each row will consist of exactly
one continguous section of non-zero entries of length O(w).
We couple the process of generating random band matrices
with random column vectors as two-dimensional balls-into-
bins allocation (see [16] for more details). In particular, we

model each of the t columns as t lists of w items. There
exists m = (1+ ε)t entries corresponding to each of the m
rows. Each of the t lists are assigned to a random entry from
[m−w+1]. If the i-th list is assigned to entry j ∈ [m−w+1],
then one of the w items in the list are placed into each of the
entries { j, j+1, . . . , j+w−1}. Note, the maximum load of
any of m entries is equivalent to the largest consecutive section
of non-zero entries in any of the m rows of the generated
random band matrix after sorting by column starting location.

Prior work [16] studied the setting where each of the t lists
picked one of the m entries uniformly at random. We adapt the
analysis for the slightly skewed distribution used for random
band matrices in our work where only one of the first m−w
entries are chosen uniformly at random.

Proof of Theorem 1. We use the coupling described above.
Therefore, it suffices for us to analyze only two-dimensional
balls-into-bins allocations. We denote binary random vari-
ables Xi, j to be whether the random band of the i-th col-
umn will overlap with the j-th row. Therefore, Xi, j = 1 if
this event is true and Xi, j = 0 otherwise. Note, Xi, j = 1 if
and only if the i-th column’s random band starts in the set
of row indices { j−w+1, j−w+2, . . . , j}. In other words,
E[Xi, j = 1] ≤ w/(m−w+ 1). Let B j be the total number of
columns whose random bands overlap with the j-th row. By
linearity of expectation, we get that

B j = ∑
i∈[t]

E[Xi, j]≤
tw

m−w+1
.

Note that each Xi, j is an independent random variable. There-
fore, we can apply Chernoff bounds to get that

Pr
[

B j > 3 · tw
m−w+1

]
≤ 2−tw/(m−w+1).

Next, we apply a Union bound over all m rows to get that
B j for all j ∈ [m] is upper bounded by the same value with
probability at most m ·2−tw/(m−w+1). Finally, by noting that
m = (1+ ε)t for some constant ε > 0 and picking w = O(λ+
log t), we get that each row has a band length of at most O(w)
except with probability 2−λ.

https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL

	Introduction
	Our Contributions

	Preliminaries
	Oblivious Ciphertext Compression
	Oblivious Ciphertext Decompression
	Batch PIR and Labeled PSI

	Oblivious Ciphertext Compression
	First Attempt: Balls-into-Bins
	Second Attempt: Random Matrices
	LSObvCompress: Random Band Matrices
	Comparison with Sparse Random Linear Codes FOCS:KauSud07,C:LiuTro22

	Oblivious Ciphertext Decompression
	Batch PIR
	Single-Server: Compressed Responses
	Single-Server: Compressed Requests
	Single-Server: Vectorized Responses
	Two-Server: Compressed Responses

	Labeled PSI
	Experimental Evaluation
	Oblivious Ciphertext Compression
	Single-Server Batch PIR
	Two-Server Batch PIR
	Labeled PSI

	Related Works
	Conclusions
	Random Band Matrix Analysis

