
Two Shuffles Make a RAM: Improved Constant Overhead Zero Knowledge RAM

Yibin Yang
Georgia Institute of Technology

David Heath
University of Illinois Urbana-Champaign

Abstract
We optimize Zero Knowledge (ZK) proofs of statements
expressed as RAM programs over arithmetic values. Our
arithmetic-circuit-based read/write memory uses only 4 input
gates and 6 multiplication gates per memory access. This is
an almost 3× total gate improvement over prior state of the
art (Delpech de Saint Guilhem et al., SCN’22).

We implemented our memory in the context of ZK proofs
based on vector oblivious linear evaluation (VOLE), and we
further optimized based on techniques available in the VOLE
setting. Our experiments show that (1) our total runtime im-
proves over that of the prior best VOLE-ZK RAM (Franzese
et al., CCS’21) by 2-20× and (2) on a typical hardware setup,
we can achieve ≈ 600K RAM accesses per second.

We also develop improved read-only memory and set ZK
data structures. These are used internally in our read/write
memory and improve over prior work.

1 Introduction

Zero Knowledge (ZK) proofs [28] allow a prover P to demon-
strate to a verifier V the truth of some statement while reveal-
ing nothing additional. ZK is a powerful technology with a va-
riety of applications, e.g., private blockchain [39], private bug-
bounty [32], private software analysis [25, 35], ZKML [45],
private network auditability [29], and many more.

General-purpose ZK systems often express proof state-
ments as circuits or constraint systems over Boolean or arith-
metic values. However, the past decade has shown increased
interest in expressing statements as random access machine
(RAM) programs [6, 8, 10, 11, 13, 14, 20, 26, 30, 31, 33, 37, 41].
The RAM-ZK paradigm is exciting both because some state-
ments are made more efficient by the random access capabil-
ity and because RAM-ZK opens the door to handling state-
ments written in commodity programming languages (see
e.g. [6, 32]). Thus, RAM-ZK promises to allow a broad audi-
ence to use widely available tools to build efficient proofs of
arbitrary statements. If we hope to deliver on this promise, it
is crucial to develop RAM-ZK that is as efficient as possible.

The cost of ZK proofs. General purpose ZK systems incur
three primary costs: proof size (communication), P computa-
tion, and V computation. The literature has generated many
approaches to ZK, and these approaches achieve varying lev-
els of efficiency with respect to these metrics.

Seeking RAM improvement for a variety of circuit-based
ZK systems, we instead focus on the total circuit size metric,
the improvement of which implies improvement to all basic
costs. Specifically, we reduce the size of circuit needed to im-
plement ZK RAM, and our results accordingly imply general
improvement to ZK RAM.

Constant overhead ZK RAM. Recently, [20] demon-
strated a reduction from ZK RAM to arithmetic circuits where
the size of the arithmetic circuit scales linearly with the num-
ber of memory accesses. I.e., the number of gates needed for
each RAM access is only a constant.

While this asymptotic scaling is ideal, the underlying con-
stants remain relatively high. In most arithmetic ZK systems,
we are most interested in reducing the number of non-linear
gates, which include multiplication gates and input gates (lin-
ear gates are typically far cheaper). The [20] construction uses
27 non-linear gates per access.

The full version of this paper is publicly available [48].

1.1 Our Contribution
We construct constant overhead ZK RAM with state-of-the-art
circuit size. Given standard arithmetic circuits, our construc-
tion uses only 4 input gates and 6 multiplication gates per
RAM access (and a constant number of linear gates).

The gates in our RAM are highly structured: viewing the
circuit globally, five of six multiplication gates are each part
of a large product computation (i.e., a high fan-in gate). This
structure is important because in some ZK systems, it is possi-
ble to exploit such structure to further improve performance.

We implemented our RAM in the context of ZK based on
vector oblivious linear evaluation (VOLE) [3–5, 22, 23, 44–

47], a ZK paradigm noted for its fast end-to-end proofs (see
discussion of VOLE-based ZK in Section 2.3). We use an idea
suggested by [26] to leverage QuickSilver’s [47] support for
polynomial evaluation to take advantage of circuit structure
and significantly decrease total cost. Our implementation is
publicly available (see the full version).

Prior work [26] developed a ZK RAM specialized for
VOLE-based techniques. We compare to their publicly avail-
able implementation [43]; our experiments (see Section 6)
show that our end-to-end proof runtime performance outper-
forms that of [26] by 2-20×, depending on the network band-
width and the RAM size.

We also present related ZK data structures: a read-only
memory (ROM) and a set membership structure whose per-
formance substantially improves the state of the art. Our ZK
ROM outperforms that of [26] by 3-34×, depending on the
network bandwidth and the ROM size. On a standard setup,
it can execute each access in under 1µs.

While our constructions leverage novel insights, their de-
signs are conceptually simple and easy to implement. The
results are also highly generic, and are suited to any ZK sys-
tem (even those that use, e.g., R1CS instead of circuits) with
support for (1) arithmetic gates over a large field and (2)
public-coin random challenges. Indeed, our results are ap-
plicable to arithmetic ZK systems in the commit-and-prove
paradigm [17] (see Appendix A), including VOLE-based sys-
tems, proof systems based on MPC-in-the-head, e.g. [1,19,34],
and zkSNARKs, e.g. [2, 15, 18, 36].

1.2 Intuition
A key insight behind ZK RAM is that the ZK prover P can act
as an oracle, providing as input the correct data corresponding
to each memory access. However, P might try to cheat, on
each access providing arbitrary values that lead to an erro-
neous “proof”. The challenge is thus to check that malicious
P inputs memory values correctly.

Prior state-of-the-art ZK RAM [20, 26] build such checks
from permutation proofs (see Section 2.2), which allow P
to convince the verifier V that one vector of wire values is
a permutation of another. Based on this, [20, 26] allow P to
introduce two vectors. One vector is a list of memory access
metadata arranged in the order accesses occur in the program;
the second vector is the same metadata arranged in order
of memory address. The first vector is used to satisfy each
memory access; the second is used to prove P did not cheat.
P proves that the two vectors are related by a permutation,
then uses a circuit to scan the second vector, proving global
consistency properties of the vector.

While conceptually simple, this global check introduces
inefficiency in the form of large numbers of inputs from P
and relatively costly comparisons (see Section 3 for details).

Our construction also leverages permutation proofs, but
its permuted vectors are (1) the list of elements written to

RAM (with metadata) and (2) the list of elements read from
RAM (with metadata). We discard [20, 26]’s global consis-
tency check in favor of a local check performed each time an
element is accessed:

Check 1. The memory element read from RAM at time t was
also written to RAM at some time t ′, and in particular t ′ < t.

Our key insight is that – with careful design – locally per-
forming Check 1 enforces a global consistency property suffi-
cient to achieve a sound protocol.

Our approach requires fewer gates than prior work because
(1) we can assemble our two vectors with fewer inputs from
P and (2) our local checks can exploit static information avail-
able at the time of each access. For instance, [20, 26]’s con-
sistency check must explictly check whether two compared
addresses are equal to each other or not; for us, this check is
irrelevant, as from our permutation check we implictly know
that the read value is equal to some past write value to the
same address.

In total our entire proof uses:

• A permutation proof (reads are a permutation of writes).

• A per-access set membership proof (the corresponding
write was made in the past).

• A per-access multiplication (used to multiplex the effect
of load versus store).

We give a set data structure that implements our membership
proofs and that can be achieved from a single permutation
proof. Thus, the entire RAM essentially reduces to two permu-
tation proofs (and one auxiliary multiplication). This yields a
small circuit that is fast to execute and easy to implement.

2 Preliminaries and Notation

2.1 Universal Composability
We formalize security in the universal composability (UC)
framework [16]. Our protocol is proven secure in the presence
of a malicious, static adversary. See the full version for a
review of the UC framework.

2.2 Checking Permutations via Polynomials
Our approach relies on efficient permutation proofs. Namely,
given two vectors x and y stored on arithmetic circuit wires,
we wish for P to prove to V that there exists some permuta-
tion π such that x = π(y). When x and y are indeed related by
a permutation, we write x∼ y:

x∼ y ⇐⇒ ∃π,x = π(y)

One approach to proving x∼ y uses circuit structures called
permutation networks [9, 42]. Such networks can permute n

wire values using O(n · logn) gates. Several works use such
networks in the context of ZK RAM [6,8,30,31]. The inherent
logn overhead is relatively expensive in practice.

A more efficient approach observes that to prove x∼ y it
is not necessary to compute a permutation π. Instead, P can
prove non-constructively that such a permutation exists with
high probability. To achieve this, prior work [38] suggested
interpreting the two vectors x and y as polynomials, and then
testing those polynomials for equality. Namely, we can view
x (resp. y) as a polynomial p (resp. q) with formal parameter
X where each element x[i] (resp. y[i]) is a polynomial root:

p(X) = ∏
i
(X−x[i]) q(X) = ∏

i
(X−y[i])

If the two vectors x and y are indeed related, then they contain
the same roots, and hence they encode the same polynomial.
Thus, to prove that x and y are related, it suffices to prove that
p and q are the same polynomial:

x∼ y ⇐⇒ p = q

Checking equality of two polynomials can be achieved with
high probability using the well known polynomial identity
test. In this test, we uniformly sample a value r ∈ F, and then
check if p(r)−q(r) = 0. The well known fact is that if this
check passes, then p and q are indeed the same polynomial
with very high probability. Specifically, if p ̸= q, then the
check will succeed with probability only d

F , where d is the
degree of the polynomial [21, 40, 51].

In the ZK setting, V can send r as a random challenge, then
P and V can evaluate p(r) and q(r) via an arithmetic circuit
that grows linearly with low constants in the length of x and
y. Indeed, if x and y are length n, then the check requires only
2n−2 multiplications (and 2n+1 subtractions).

The above definitions of p,q work when x and y are vectors
of individual field elements. However, we will need to con-
sider vectors of tuples of field elements. [20] points out that
the above polynomial checks can be extended to vectors of
tuples by taking a random linear combination of the content
of each tuple. Suppose x and y are vectors of ℓ-tuples, and
let ⟨ · ⟩ denote the vector inner product operation; we can
redefine p and q as follows:

p(X ,Y) = ∏
i
(X−⟨Y ·x[i]⟩) q(X ,Y) = ∏

i
(X−⟨Y ·y[i]⟩)

Y is a length-ℓ vector. Thus, p and q now denote multivariate
polynomials over ℓ+1 arguments, but otherwise [20] proves
that the reasoning is the same.

In the ZK setting, we can check p = q by (1) allowing
V to choose two random challenges r ∈ F and s ∈ Fℓ, (2)
computing p(r,s)−q(r,s) inside ZK, and (3) checking that the
result is indeed zero. Note, the challenge vector s is a public
value known to both P and V , so evaluating p(r,s)−q(r,s)
still requires only 2n−2 private-input multiplication gates.

2.3 VOLE-based Zero Knowledge

The literature has generated many powerful ZK proof systems
suited to various settings. Our ZK data structures are highly
generic, relying only on typical features of ZK systems for
arithmetic circuits. Still, we find it instructive to implement
our approach in the context of a particular ZK system, and to
demonstrate clear concrete improvement.

We implement our approach in the ZK paradigm based on
vector oblivious linear evaluation (VOLE) [3–5,22,23,44–47].
VOLE-based ZK is an interactive ZK technique notable for
its linear scaling (with low constants) in all cost metrics. This
scaling makes VOLE-based ZK useful when the goal is to
complete a ZK proof as fast as possible; prior work has shown
that VOLE-based ZK can handle ≈ 5 million arithmetic mul-
tiplications per second [47].

VOLE-based ZK is particularly interesting for large, com-
plex statements, for instance those that demonstrate the exis-
tence or non-existence of software vulnerabilities in a com-
plex code-base (see e.g. [32, 35]). In the context of large,
general-purpose statements, RAM becomes a crucial ingre-
dient, as it supports programs with large data and complex
branching/looping control flow.

We choose to implement in the VOLE-based ZK paradigm
because VOLE-based ZK is well suited to the complex proofs
supported by RAM. As an additional convenience, prior
work [26] is also based on VOLE, allowing a clean compari-
son. Our VOLE-based implementation builds on the publicly
available EMP Toolkit [43]. See the full version for a standard
VOLE functionality.

2.4 Miscellaneous Notation

We consider read-only and read/write memories. We use n to
denote the number of memory elements stored and T to denote
the number of accesses. In our analysis, we often assume there
are a large number of accesses, i.e. that T =ω(n). We consider
memories that store tuples of ℓ field elements. All operations
are over a prime field F = Zp for prime p; we require that
|F| ≥ 2T , sufficient to embed memory-specific values in the
field without overflow.

We index a vector x at index i using bracket notation: x[i].
Indexing starts at zero.

We use ∼ to denote an operation that checks its two vector
arguments are related by a permutation.

We denote logical memory operations by load and store,
and disambiguate these from physical operations read and
write. Each of our logical operations requires one read and one
write. Our circuits use constants load= 0 and store= 1.

We refer to the ZK prover P by she/her/hers and to the ZK
verifier V by he/him/his.

We refer to ZK operations that multiply two private val-
ues or require P to provide input as non-linear. Operations
that add two private values, subtract two private values, or

inputℓ : 1→ Fℓ

∼ : (Fℓ)n× (Fℓ)n→ 1

0,1,2, ... : F

+ : F×F→ F
− : F×F→ F
· : F×F→ F

Figure 1: Syntax on which we build our RAM. We consider
circuits over a field F with support for permutation checks.
We include gates that accept ℓ inputs from P , gates that check
two vectors of ℓ-tuples are related by a permutation, gates
that add/subtract/multiply wires, and wires that hold constants.
Section 2.2 discusses how ∼ can be implemented.

inputℓ : 1→ Fℓ

0,1,2, ... : F
make-mem : (Fℓ)n→ mem-id

+ : F×F→ F
− : F×F→ F
· : F×F→ F

access : mem-id×F×F×Fℓ→ Fℓ

Figure 2: Our target syntax supports arithmetic gates and
gates that manipulate random access memories. make-mem
generates a fresh memory and access loads/stores to a mem-
ory. Figure 4 specifies semantics.

scale a private value by a public value are linear. Typically,
non-linear operations are far more expensive than linear oper-
ations. Accordingly, our cost accounting precisely enumerates
only the number of non-linear operations.

2.5 Models
Our goal is to UC-realize the functionality F ram

ZK (Figure 4).
This functionality allows arbitrary arithmetic circuits aug-
mented with random access memory. We achieve this func-
tionality given access to circuits with arithmetic gates and
support for permutation proofs (Figures 1 and 3). As discussed
in Section 2.2, such permutation proofs can be achieved from
standard arithmetic circuits with support for public coin ran-
dom challenges, so our approach can be implemented on top
of standard arithmetic ZK techniques.

Our functionality F ram
ZK can serve as the basis for arbitrary

ZK CPU architectures, as have been explored by prior work,
e.g. [6, 26, 32, 49].

Boolean vs. arithmetic circuits. We develop ZK RAM
compatible with arithmetic gates. It is well known that
Boolean and arithmetic circuits trade off in efficiency. For in-
stance, arithmetic circuits are better at multiplication; Boolean
circuits are better at comparisons.

We believe that in the ZK setting and for large proofs, it is
becoming clear that arithmetic circuits are a superior model
of computation. Indeed, the introduction of fast arithmetic-

Functionality F perm
ZK

Let C be an arithmetic circuit with permutation check gates
(i.e., C is written in the syntax of Figure 1). F perm

ZK in-
teracts with P , V , and the adversary S . Upon receiving
(prove,C,w) from P and (verify,C) from V :

• If when running C(w) it holds that (1) the circuit out-
puts 0 and (2) for each internal call to x ∼ y, x and
y are indeed related by a permutation, then output
(C,true) to S and V ; else output (C,false) to S
and V .

Figure 3: The functionality for Zero Knowledge proofs over
arithmetic circuits with access to a permutation check gate.
Figure 1 defines syntax of such circuits.

circuit-based read-only memory (ROM) – such as the state-
of-the-art ROM introduced in this work – can significantly
mitigate the downside of arithmetic circuits.

As an example, consider the problem of comparing two,
say, 16-bit values. This problem can be solved by subtracting
the one value from the other and then looking up the differ-
ence in a ROM with 217 entries. For negative indices, the
ROM stores a 0; for positive indices it stores a 1. To compare
larger numbers, we can first break the numbers into chunks,
element-wise compare chunks, and combine the results. As
long as enough comparisons are performed across the proof,
this approach yields comparison operations for only a small
constant number of arithmetic gates.

3 Related Work

Approach of Franzese et al. [26]. [26] constructed the first
concretely efficient ZK RAM with constant overhead. Their
approach works in the VOLE-based ZK setting for mixed
circuits containing both arithmetic and Boolean gates1. [26]
leverages permutation proofs (Section 2.2). We compare our
performance to that of [26] in Section 6.

The [26] approach is as follows. On each memory access
to address addr, P provides the loaded value val as part of her
input. Then, the system records a 4-tuple of (1) the address
addr, (2) the time t of the access (according to a monotonically
increasing clock), (3) a bit op indicating if this access is a
load or a store, and (4) the value val that is loaded or stored.

Of course, on any particular load, P might cheat and pro-
vide an incorrect value. Hence, after all T accesses are com-
pleted, [26] performs a global consistency check. Note that
after T accesses, the system holds a vector of T 4-tuples.

In the first step of the consistency check, P inputs a new
version of this length-T vector, where this second version

1 [26] targets Boolean computation, but they must pack Boolean values
into a larger field to achieve efficient permutation proofs.

Functionality F ram
ZK

Let C be an arithmetic circuit with RAMs (i.e., C is written
in the syntax of Figure 2). F ram

ZK interacts with P , V , and
the adversary S . Upon receiving (prove,C,w) from P and
(verify,C) from V , execute C(w):

• For each arithmetic gate, run the gate normally.

• For each make-mem gate with input vector x, store x as
a memory, initialize a fresh memory identifier, asso-
ciate the identifier with the stored memory, and place
the identifier on the gate output wire.

• For each access gate with (id,op,addr,w), look up
the memory associated with id, read address addr, and
save the result on the gate output wire. If op = store,
then write w to memory address addr.

If the circuit output wire holds 0, then output (C,true) to
S and V ; else output (C,false) to S and V .

Figure 4: Our target functionality F ram
ZK supports arithmetic

circuits with random access memories. We achieve this func-
tionality in the F perm

ZK (Figure 3) hybrid model.

is sorted first by memory address, then by time. Thus, the
accesses are grouped into memory addresses such that one
can locally scan from left to right, checking consistency. P
proves that this second vector is indeed a permutation of the
first via techniques discussed in Section 2.2.

The consistency check scans the second vector from left to
right, ensuring that (1) the vector is indeed sorted correctly
and (2) each load operation reads a value consistent with the
most recent store to the same memory address. In particular,
for each index i, [26] checks:

((addri < addri+1)∨ ((addri = addri+1)∧ (ti < ti+1)))

∧ ((addri ̸= addri+1)∨ (vali = vali+1)∨ (opi+1 = store))

∧ ((addri = addri+1)∨ (opi+1 = store))

With this done, V is confident that values provided by P are
correct, so the approach achieves ZK RAM.

There are several efficiency problems in this approach.
First, the above consistency check requires circuits that com-
pare addresses/values. A comparator on length-ℓ values re-
quires Θ(ℓ) gates, and RAM addresses/values have size
Θ(logT). Hence, the number of gates is super-constant.

While [26] are still able to claim constant ZK commu-
nication overhead2, the super-constant number of gates is
problematic. In particular, the technique is a poor fit for arith-
metic circuits, because we must simulate each Boolean gate

2The [26] notion of ‘overhead’ is the total communication cost divided by
the number of bits read from RAM. Since the number of gates grows linearly
in the size of RAM words, [26] can claim constant overhead.

with arithmetic gates, incurring unacceptable cost. Many ZK
systems are best suited to arithmetic circuits, so RAM over
arithmetic values is arguably preferable.

Moreover, even [26]’s own performance suffers from the
large number of gates, not in communication, but in computa-
tion. Specifically, each of [26]’s AND gate operations requires
only ≈ 1 bit of communication, but it also requires that both
V and P perform operations over the field F2κ where κ is a
computational security parameter (e.g. 128). Together, these
operations are expensive.

In our approach, we construct arithmetic ZK RAM where
the total number of gates is a small constant. This allows
us to build VOLE-based ZK where all costs have constant
overhead, allowing us to significantly improve over [26] in
terms of total wall-clock time performance. Indeed, while we
achieve only a small communication improvement over [26],
we improve in wall-clock time by up to 20×.

Approach of Delpech de Saint Guilhem et al. [20]. [20]
were the first to achieve ZK RAM whose arithmetic circuit
size is linear in the number of RAM accesses T . Hence, unlike
[26], [20] achieves constant overhead in all costs.

In short, [20] leverages the same approach as [26], except
that they carefully optimize the comparison/equality opera-
tions. [20]’s key ingredient is an elegant bounds check, and
this check is used to implement comparison.

The [20]’s bounds check proceeds as follows. Suppose
the arithmetic circuit holds a length-T vector x ∈ FT , and P
would like prove in batch that each element of x is in 1, ...,T .
To achieve this, [20] first constructs the following vector:

y = x[0],x[1], ...,x[T −2],x[T −1],1,2,3, ...,T −1,T

[20] then requires that P inputs a new vector z and proves
that z is a permutation of y: y∼ z. If P is honest, then she will
input z in sorted order. With this done, P can prove that all
elements x[i] are in the range 1, ...,T by proving that (1) the
last element of z is T and (2) the difference between any two
consecutive elements z[i+1]− z[i] is either 0 or 1. It is easy
to perform this check with a linear-size arithmetic circuit.

[20] uses this linear-sized circuit to handle all comparisons
of the [26] consistency check in batch. Equality computations
can similarly be handled by a constant overhead circuit. Thus,
[20] removes the logarithmically-sized circuit components
from [26], achieving true constant overhead in circuit size.

While [20] indeed improves over [26], it retains inefficien-
cies of [26]’s consistency check, so the approach still requires
27 non-linear gates per access.

[20] specialized their approach for the ZK paradigm based
on ‘MPC-in-the-head’ [19,34], but since it is an arithmetic cir-
cuit, it can be used in other paradigms as well. Indeed, we im-
plemented [20]’s approach in the VOLE-based ZK paradigm
so that we can compare to it (see Section 6).

Our ZK RAM leverages a fundamentally different approach
to consistency, allowing us to achieve RAM from fewer gates.

Other related work. A number of other works [7, 8, 30–
32, 41] achieved proof system RAM. These works are based
on permutation networks [9, 42], requiring polylogarithmic
overhead for each access.

[13] was the first to achieve only super-constant prover
cost based on shuffle proofs, e.g. [38]. Their approach is not
practical, as explicitly stated by the authors.

[14] developed proofs for programs in the Map-Reduce
model; they do not achieve general RAM.

We note that our ZK ROM shares some similarities with
Plonk’s lookup table literature (starting from [27]). Similar in-
tuition to our ZK RAM has been applied in the memory check-
ing literature (e.g., [12,24,50]), which focuses on providing a
correct outsourced memory (without ZK). Our work ensures
memory-checker-like techniques are efficiently handled in the
ZK setting, where we are strictly limited in that all operations
must be handled by black-box field arithmetic. Achieving this
efficiently requires careful handling of ROM/RAM.

4 Technical Overview

4.1 Read-Only Memory
To begin, let us elide writes, and suppose that we wish to
implement read-only memory (ROM). Namely, P and V
agree on a length-n vector of wires x, and we encode x as a
ROM data structure. Now, given an address wire i, the circuit
can query lookup(i), which returns a wire holding x[i]. We
present an efficient instantiation of lookup.

As a first insight, observe that each call to lookup can
leverage honest P as an oracle; honest P knows the cleartext
value of x and i, and hence she can simply provide x[i] as
input. Of course, P might be cheating, so we must check that
each such input is indeed correct.

Our ROM data structure handles all such checks in batch by
maintaining two vectors of tuples, reads and writes. On each
call to lookup, we append one element to reads and one to
writes. Our key insight is that with minimal added metadata,
we can ensure that each call to lookup is correct if and only
if reads is a permutation of writes.

Each element of reads (resp. writes) is a three-tuple of (1)
the element’s address, (2) the element’s value, and (3) a meta-
data value called the version. Versions act as address-specific
counters, and each call to lookup increments a version.

To set up our ROM data structure, for each address i ∈ [n]
we append to writes the following tuple:

(i,x[i],0)

I.e., we initialize each element with version 0. Then, on each
call to lookup(i), P provides two inputs: (1) the value x[i]
and (2) the latest version v associated with address i. We then
update both reads and writes by appending the old version
(i,x[i],v) to reads and a fresh version (i,x[i],v+1) to writes.

a
d
d
re
ss

time

0

1

2

3

0 1 2 3 4 5

v0

v0

v0

v0

te
a
rd
ow

n

v1

v1

v1

v2

Figure 5: Access pattern for a size-4 ROM with lookup pat-
tern 2,1,2,3. On each lookup, we read an element and write
back a fresh version of that same element. Nodes represent
writes; edges represent reads. Because (1) versions monotoni-
cally increase and (2) reads must be a permutation of writes,
even malicious P cannot read an element that was not written
at setup time. It is possible for malicious P to read elements
written “in the future” (e.g., P can construct the graph for
address 2), but it is not possible for P to form a cycle.

When we are finished with ROM, we perform a simple
cleanup step that we call a teardown. For each address i ∈ [n],
honest P inputs the latest version v, and we append (i,x[i],v)
to reads. Finally, P demonstrates that the reads and writes are
related by a permutation: reads∼writes. Perhaps surprisingly,
this simple approach is already correct and sound.

Correctness. Correctness of our ROM follows from the
following key invariant:

Invariant 1 (ROM Invariant). On each call to lookup and
for each address i, the vector writes contains (at least) one
tuple of the form (i,val,v) that does not appear in reads.

The setup phase establishes Invariant 1, because it writes
version 0 of each element. Then, on each call to lookup, hon-
est P propagates Invariant 1 by reading the latest version v of
x[i], and writing back a fresh version v+1. Finally, the tear-
down phase reads the last version of each element, ensuring
that every written version is also read. Hence, if P is honest,
reads is indeed a permutation of writes.

Soundness. The key insight behind the soundness of our
ROM is that even a malicious P must read each version of an
element that is written, or else reads will not be a permutation
of writes. Moreover, on each call to lookup, the circuit struc-
ture ensures that for whatever version v P chooses to read, a
fresh version v+1 is written.

The above two facts bind P into building per-element
chains of reads and writes (see Figure 5), where (1) each

read is made to a version written at some different point in
time, (2) the initial link of the chain is written at setup, and (3)
the final link is read at teardown. Because each element x[i]
written at setup is stored on circuit wires (i.e., is not a prover
input), and because on each lookup we write back the same
element that was read, it must be the case that all reads made
to the same address i match the initial value x[i].

Interestingly, our ROM does allow malicious P to “read
from the future”. Namely, on a particular call to lookup(i),
malicious P can read a version of x[i] that is only written at
a later call to lookup(i). This remains sound because the
value x[i] does not change over the lifetime of the ROM. The
crucial point is that it is not possible for P to form cycles,
where two calls to lookup each read a version written by the
other call. It is impossible to convincingly construct such a
cycle because versions monotonically increases on each call
to lookup, so P cannot arrange two versions such that each
version is greater than the other.

The ability for malicious P to read from the future is the
key distinction between ROM and full-fledged read/write
RAM: in full RAM we must ensure that each of P ’s read
values comes from the past.

Remark 1 (Looking up an illegal address). If a circuit calls
lookup(i) where i is not written at setup, then the proof will
fail. This is because P cannot construct a chain, as there is
no first link written at setup. This fact will be useful later.

Generalizing to tuples. So far, the ROM stores individual
wire values. It is easy to generalize the ROM such that each
address stores an ℓ-tuple of wires for arbitrary ℓ. This simply
requires changing the number of inputs provided by P .

Generalizing to read-only key-value stores. So far, our
ROM stores elements at addresses 0,1, ...,n− 1. It is easy
to generalize to a key-value store where the key space is an
arbitrary set. In particular, at setup we initialize the key-value
store from a list of pairs (i,x[i]). So long as each address i is
unique, this generalization incurs no extra cost. This is useful
when using key-value stores to encode sets (Section 4.2)

Gate cost. Consider a ROM of size n where lookup is
called T times. For a ROM storing ℓ-tuples, where ℓ is an
arbitrary constant, each call to lookup requires ℓ+1 inputs
from P (the ℓ entries of the tuple and the version), for a total of
T · (ℓ+1) input gates. The teardown phase similarly requires
that P reads each of the n slots, requiring n · (ℓ+1) additional
input gates. Finally, the permutation proof reads ∼ writes
inspects vectors of length n+ T ; this can be implemented
using two fan-in n+T multiplication gates (see Section 2.2).

In sum, the full construction requires:

• (n+T)(ℓ+1) input gates.

• Two fan-in n+T multiplication gates.

• O(n+T) linear gates.

4.2 Sets with Membership Queries
As mentioned in Section 4.1, the key difference between ROM
and full-fledged RAM is that in RAM we must check that
each read value was written at some time in the past. As we
will see, we achieve this by checking that on each access a
particular timing value is in a public set {1, ...,T}, where T
is the total number of RAM accesses.

We observe that our read-only key-value store (RO-KVS,
Section 4.1) is well suited to this set membership proof. In
particular, consider an RO-KVS where we set the size of
tuples to ℓ = 0. We initialize an RO-KVS with addresses
1, ...,T . Then, to check that a particular value t is a member
of a set, we call lookup(t). This call does not return any data,
but if t is not in the set {1, ...,T}, then the proof will fail, as
was observed in Remark 1. Thus this call to lookup serves
as a proof that t is in the set.

Gate cost. The cost of our set structure is inherited from
the cost of ROM. For a set with T values and T membership
queries (these parameters are used in our RAM), total cost is:

• 2T input gates.

• Two fan-in 2T multiplication gates.

• O(T) linear gates.

4.3 Read/Write Memory
Consider a random access memory (RAM) equipped with a
single access instruction. Each call to access accepts as
input three arguments:

• op ∈ {0,1} is 0 on a load and 1 on a store.

• i ∈ F is an address.

• w is the value to store, if this operation is indeed a store.

Each RAM access both reads and writes data, whether the
operation is a load or a store. On a store, we read the old data
and write the new data; on a load, we read the old data and
write back a fresh copy of the same data. Just like our ROM,
our RAM maintains two vectors reads and writes, and on each
access we update each vector. Also like our ROM, our RAM
checks that reads are a permutation of writes: reads∼ writes.

As mentioned in Section 4.1, the main challenge in RAM as
compared to ROM is that we must prevent malicious P from
reading a value written in the future. Our approach here is to
maintain a monotonically increasing public value clock which
is set to 0 at setup and then incremented on each access.

When we write a value val to address i, we append the
following tuple to writes:

(i,val,clock)

ad
d
re
ss

time

0

1

2

3

0

13

1 2 3 4 5

0

0

0

0

42

13

27

8

6

te
ar
d
ow

n

Figure 6: Zero-initialized RAM with history (store,2,13),
(store,1,42), (load,2,), (store,3,27), (store,2,8).
Each node represents a write; each edge represents a read.
Our construction forces P to prove that (1) each node has one
incoming edge and (2) each edge points to the left. Point (1)
is achieved by checking that reads and writes are related by a
permutation; point (2) is achieved by a set membership proof.
This forces P to organize each address’s history as a linked
list. E.g., on operation (store,2,8), P must read from the
immediately preceding address 2 write.

I.e., we mark each write with the time it occurred. To read
a value and ensure reads ∼ writes, we must also mark each
read value with the time at which that value was written.
Accordingly, each call to access at address i requests that P
inputs two values: (1) the value val that was last written to
address i and (2) the time t when the write occurred.

Of course, P might be malicious, so we must check that
the input (val, t) is consistent with the semantics of read/write
RAM. The permutation proof reads ∼ writes ensures that
each such triple (i,val, t) is indeed written at some point in
time. The remaining challenge is to ensure that this point in
time is in the past, which can be achieved by checking that
clock− t is a strictly positive value. Said another way, we can
check that clock− t is in the set {1, ...,T}, where T is the
total number of RAM accesses. Each such check is achieved
by our set data structure (Section 4.2).

This simple set membership proof is sufficient, and we do
not need to explicitly prove that each read corresponds to the
most recent write. Indeed, this stronger property (each read
comes from the latest write) is implied by the local checks
combined with the permutation proof reads∼ writes.

To see that this is true, observe that our RAM maintains
the following key invariant:

Invariant 2 (RAM Invariant). Before each call to access

and for each address i, writes contains exactly one tuple of
the form (i,val, t) that does not appear in reads. Moreover,
the value t is highest amongst all such tuples in writes; i.e.,
this tuple records the most recent write to address i.

When we set up RAM with initial content x, we append the

following write for each address i: (i,x[i],0). Since we write
each address once, our setup trivially establishes Invariant 2.

On each call to access, P is forced to input values (val, t)
such that clock− t is positive. By Invariant 2 there is only
one such choice that will pass the permutation proof, and
this choice must be the most recent version of address i, so
this access is sound. Moreover, this access propagates the
invariant because we increment the clock and write a fresh
copy of address i; see also Figure 6.

Once all T accesses are complete, note that we have written
n+T values, but we have only read T values. We allow P to
complete the read history in a teardown step, where we read
(without writing back) each RAM address. In particular, for
each address i, P again inputs a pair (val, t), and we append
(i,val, t) to reads. Note that on this step and by Invariant 2,
we do not need to check that clock− t is positive; it must be,
or else the permutation proof will fail.

Generalizing to tuples. As in our ROM, it is straightfor-
ward to generalize the RAM such that each address stores an
ℓ-tuple of wires for arbitrary constant ℓ. This simply requires
changing the number of inputs provided by P .

Gate cost. Our RAM has four relevant costs:

• We maintain the set {1, ...,T} (Section 4.2) and perform
one membership proof per access.

• We use a permutation proof (Section 2.2) on two length-
(T +n) vectors: reads∼ writes.

• P inputs two values (val, t) on each of the T accesses,
and for each of n addresses at teardown.

• We include a single multiplexer that disambiguates load
operations from store operations. In particular, after read-
ing old from RAM, we compute:

new← old+op · (w−old)

If the operation type is public, this is not needed. For
completeness, we assume operation types are private.

In total, the RAM incurs the following gate cost:

• 4T +2n input gates.

• Two fan-in 2T multiplications (from the set) and two fan-
in T + n multiplications (from the permutation proof).
We optimize one of the fan-in 2T multiplications to be
only fan-in T ; see Section 5.2.

• T fan-in two multiplications (from multiplexers).

• O(n+T) miscellaneous linear operations.

When we assume that the number of accesses T is signifi-
cantly greater than the RAM size n, we obtain the per-access
costs listed in our contribution.

5 Approach

5.1 Formal Protocol and Security
We formalize our ZK RAM as a protocol in the F perm

ZK -hybrid
model. This protocol formalizes ideas explained in Section 4.
Our protocol is defined with respect to Figures 7 to 9.

Protocol 1. P and V agree on an arithmetic circuit with RAM
access C; i.e., C is written in the syntax of Figure 2. P holds
as input a witness w. P and V compile C to an arithmetic
circuit with permutations (Figure 1) in the following manner:

• For each input gate, addition gate, subtraction gate,
multiplication gate, and constant wire, they trivially com-
pile the circuit element.

• For each make-mem gate, the parties invoke setup (Fig-
ure 9) which produces a circuit-based RAM data struc-
ture. P locally maintains a cleartext copy of this RAM
(and its internal set structure), allowing P to track which
value is stored at each address.

• For each access gate, the parties invoke the access

procedure of Figure 9. P extends her witness w by using
her local copy of the RAM to recall the last time t when
the queried address was accessed and what value val
was stored there (and to find the set version of clock− t)
so that these values can be passed to input gates. P
updates her local copy of RAM.

• Once all gates are compiled, the parties invoke
teardown on each RAM data structure created by a
call to setup. P uses her local copy of RAM (and its
internal set) to appropriately extend her witness w.

P and V thus agree on a circuit C′ with arithmetic gates
and permutation proofs. Next, (1) P sends (prove,C′,w) to
F perm

ZK , (2) V sends (verify,C′) to F perm
ZK , (3) P outputs ⊥,

and (4) V outputs whatever he receives from F perm
ZK .

Our key security property is that Protocol 1 achieves the
Figure 4 functionality, allowing us to securely implement ZK
proofs with RAM.

Theorem 1. Protocol 1 UC-realizes F ram
ZK (Figures 2 and 4)

in the F perm
ZK -hybrid model (Figures 1 and 3) with no sound-

ness error.

The full version includes a detailed proof of Theorem 1.
For now, we sketch the argument, focusing on soundness.

Proof Sketch. By construction of a simulator S .
Our protocol can be viewed as a circuit compiler that maps

arithmetic circuits with RAM (Figures 2 and 4) to arithmetic
circuits with permutations (Figures 1 and 3). Accordingly,
S ’s only task is to tediously convert between RAM circuits

and permutation circuits, and to collect P ’s witness w before
sending it to the F ram

ZK functionality.
However, we still must demonstrate that S is a valid sim-

ulator, and that the UC environment cannot distinguish the
simulation from the real world protocol. The challenge in
showing this is that our compilation generates non-trivial
input gates, allowing P extra degrees of freedom in choos-
ing a convincing witness. Therefore, we must argue that our
construction is sound. All compiled gates in Figure 2 are
trivially sound, save for make-mem and access gates.

In short, these gates are sound because our RAM construc-
tion includes a permutation proof on its reads and writes, and
because on each access we check that P ’s chosen time t is less
than clock (this latter property is checked by a set membership
proof). As per discussion near Invariant 2, these local checks
enforce a global ordering of reads/writes on each address, on
each access forcing P to input the most recent value written
to the same address.

It remains to show that the underlying set data structure
is sound. As discussed in Section 4.1, our set (as inherited
from our ROM) on each access forces P to input a version.
Because we monotonically increase versions and because we
use a permutation proof on set reads/writes, we force P to
construct a linked list of read/write pairs, connecting each
read value to the setup-time write on the same address.

Together, this means that P ’s extra inputs must respect the
semantics of access gates, so the protocol is sound.

Prior work on VOLE-based ZK gave powerful constant
round protocols for proving arithmetic statements. Such prior
works, together with the permutation proof method discussed
in Section 2.2 and an optimization discussed in Section 5.2,
imply the following (see Appendix B.2 for more details):

Lemma 1. There exists a 5-round protocol in the VOLE-
hybrid model that UC-realizes F perm

ZK . For each use of input
and of · , P and V use 1 VOLE correlation; for each use of
∼ on two length-n vectors, P and V each evaluate a lin-

ear number of field operations and consume 2n
ε−1 +o(1) VOLE

correlations, for any constant ε ≥ 2. The protocol achieves
soundness error O(n+m

|F|), where n is the size of the largest
vector passed to ∼ and m is the number of multiplications.

Together, Theorem 1 and Lemma 1 allow us to instantiate
ZK RAM from VOLE-based ZK:

Corollary 1 (RAM from VOLE). There exists a 5-round
protocol in the VOLE-hybrid model that UC-realizes F ram

ZK .
For each call to access on a size-n memory that is accessed
T = ω(n) times, P and V each evaluate a constant number of
field operations and consume 5+ 5

ε−1 +o(1) VOLE correla-
tions, for any constant ε≥ 2. The protocol achieves soundness
error O(T+m

|F|), where T is the largest number of accesses used
by any memory and m is the number of multiplications.

1 type ro-kvsℓ {
2 content : (F,Fℓ)∗

3 reads : ro-kvs-record∗ℓ
4 writes : ro-kvs-record∗ℓ
5 }

1 type ro-kvs-recordℓ {
2 key : F
3 value : Fℓ

4 version : F
5 }

1 lookup(m : ro-kvsℓ,key : F)→ Fℓ {
2 val← inputℓ()

3 version← input1()

4 m.reads.append({ key,val,version })
5 m.writes.append({ key,val,version+1 })
6 return val

7 }

1 setup-ro-kvsℓ(content : (F,Fℓ)∗)→ ro-kvsℓ {
2 m← ro-kvsℓ { content,{ },{ } }
3 for (key,val) ∈ content {
4 m.writes.append({ key,val,0 })
5 }
6 return m

7 }

1 teardown-ro-kvs(m : ro-kvsℓ) {
2 for (key,val) ∈ content {
3 version← input1()

4 m.reads.append({ key,val,version })
5 }
6 m.reads∼ m.writes

7 }

Figure 7: Our ZK read-only key-value store holds ℓ-word values at each key. We highlight uses of non-linear gates.

1 type set ::= ro-kvs0

1 setup-set(content : F∗)→ set {
2 return setup-ro-kvs0(content)

3 }

1 teardown-set(s : set) {
2 teardown-ro-kvs(s)
3 }

1 prove-member(s : set,val : F) {
2 lookup(s,val)

3 }

Figure 8: Our ZK set data structure is a specialization of our read-only key-value store (Figure 7) where each key holds 0 words.
An element is considered a member of the set if it is a key in the key-value store. We highlight uses of non-linear gates.

Formalizing ROM (including our set data structure). For
simplicity and because RAM is more interesting than ROM,
we chose to not formalize ROM as part of our top level func-
tionality (Figure 4). Such a formalism can be derived from our
RAM formalism by substituting RAM-related gates to initial-
ize ROM and access ROM, and correspondingly modifying
Protocol 1 according to Figure 7. Soundness of ROM gates fol-
lows from our proof of Theorem 1. We include security games
crucial for the soundness proof of ROM in Appendix B.1.

5.2 Optimizations

Accelerating permutation proofs. The main cost of our
protocol comes from permutation proofs, and permutation
proofs can be achieved by high fan-in multiplications (Sec-
tion 2.2). We note two important available optimizations.

The first optimization is generally applicable for any ZK

system and saves T multiplications. Consider the permuta-
tion proof performed on the publicly known set {1, . . . ,T}
(Section 4.2). Here, the first T writes are publicly known to be
(1,0),(2,0), . . . ,(T −1,0),(T,0). Hence, in the permutation
proof, once V chooses a random challenge, P and V can lo-
cally compute the product of the first T components of writes.
Again, this saves T ZK multiplications.

The second optimization leverages a VOLE-specific trick
to reduce cost of high fan-in multiplications. QuickSilver [47]
supports polynomial proofs. Namely, [47] can efficiently
prove a batch sub-statements of the following form:

p(x0) = 0, . . . , p(xn−1) = 0

Here, p is a degree-d polynomial over arithmetic wires. The
batch of n sub-statements requires only d VOLE correlations
(VOLE correlations are the primary cost in VOLE-based ZK).
This trick reduces VOLE correlations, but can increase com-

1 type RAMℓ {
2 reads : record∗ℓ
3 writes : record∗ℓ
4 valid-diffs : set
5 clock : F
6 size : N
7 }

1 type recordℓ {
2 address : F

3 value : Fℓ

4 time : F
5 }

1 setupℓ(T : N,content : (Fℓ)∗)→ RAMℓ {
2 n← |content|
3 valid-diffs← setup-set(1, . . . ,T)
4 m← RAMℓ { { },{ },valid-diffs,1,n }
5 for i ∈ [n] {
6 m.writes.append({ addr,content[i],0})
7 }
8 return m

9 }

1 access(m : RAMℓ,op : F,addr : F,w : Fℓ)→ Fℓ {
2 old← inputℓ()

3 t← input1()

4 prove-member(m.valid-diffs,m.clock− t)

5 new← old+op · (w−old)

6 m.reads.append({ addr,old, t })
7 m.writes.append({ addr,new,m.clock })
8 m.clock← m.clock+1
9 return old

10 }

1 teardown(m : RAMℓ)→ (Fℓ)∗ {
2 content←{ }
3 for addr ∈ [m.size] {
4 val← inputℓ()

5 t← input1()

6 m.reads.append({ addr,val, t })
7 content.append(val)

8 }
9 m.reads∼ m.writes

10 teardown-set(m.valid-diffs)

11 return content

12 }

Figure 9: Our ZK read/write memory. Each memory slot holds an ℓ-tuple of field elements. The memory is defined in terms of
our set data structure (Figure 8). We define three procedures: setup, access, and teardown. Valid usage consists of one call
to setup, an arbitrary (polynomial) number of calls to access, and one call to teardown. We highlight uses of non-linear gates.

putation, as P ’s compute scales with O(d2).
Polynomial proofs can optimize fan-in-n multiplications as

follows. Consider a fan-in-ε multiplication for any constant
ε≥ 2. We can implement such a multiplication by allowing P
to input a value prod, and then defining a degree-ε polynomial
that multiplies the ε values and subtracts prod. This is a degree
ε polynomial, and we can use [47] to prove it equals zero
(if it does, P input prod correctly). It is straightforward to
use ⌈ n

ε−1⌉ fan-in-ε multiplications to implement a fan-in-n
multiplication, so we can use ⌈ n

ε−1⌉ polynomial proofs to
implement a fan-in-n multiplication.

Prior work [26] also used this trick, but their corresponding
improvement was limited, as their cost is dominated by com-
parisons, not by permutation proofs. In our approach, almost
all multiplication cost comes from high fan-in multiplications,
so we enjoy substantial improvement.

By choosing arbitrary constant ε≥ 2, we reduce the number
of VOLE correlations from ≈ 10T to ≈ (5+ 5

ε−1)T . This
reduces the communication used by P and V , and it also

reduces the amount of computation needed to construct the
correlations. However, as stated above, P ’s proof computation
increases as we increase ε, so we limit ε to constant values to
avoid asymptotic problems. In Section 6 we find it is best to
set ε between 8 and 32, depending on the network.

To our knowledge, this polynomial proof optimization is
currently specific to VOLE-based ZK. It is possible similar
optimizations will emerge in other ZK paradigms, particularly
because ZK RAM provides compelling motivation.

Other optimizations. We discuss some additional (unim-
plemented) optimizations in the full version.

6 Evaluation

Our implementation. We implemented our ROM, our set,
and our RAM ZK data structures from VOLE in C++. We use
the learning-parity-with-noise-based VOLE protocol of [44]

which is implemented as part of the EMP Toolkit [43]. While
our VOLE-based approach will extend to any large field, we
use the field F261−1 because this is the only arithmetic field
currently implemented by EMP.

[26] and [20] implementation. We compare our RAM to
that of [26] and of [20]. We also compare our ROM to that of
[26]. [26]’s RAM/ROM implementation is publicly available
as part of the EMP Toolkit [43]. [20]’s RAM implementation
is not publicly available. We implemented a VOLE-based
version of their RAM3 in C++. Other ZK RAMs do not have
constant overhead per access.4

As discussed in Section 3, [20]’s RAM leverages permu-
tation proofs. Recall, VOLE-based ZK offer optimizations
for permutation proofs (see Section 5.2). We also note that
several gates in [20]’s protocol can be further optimized in
VOLE-based ZK. In particular, these gates require checking
that the product of two wires is some constant; such checks
can be done in VOLE-based ZK without communication. For
fair comparison, we incorporate all such VOLE-based opti-
mizations in our implementation of [20].

Experimental setup. We ran all three RAMs on a bench-
mark where we instantiate a RAM of sizes n ranging from 211

to 220 and perform T = 223 accesses. We run our ROM, [26]’s
ROM, and our set data structure with the same n and T .

In all cases, P and V run single threaded on a separate
Amazon EC2 m5.2xlarge machine5. We measure total (and
per-access) communication in bytes and per-access runtime
in microseconds. For the latter, we experiment with different
network bandwidth settings, varying between a WAN-like
25Mbps connection and a LAN-like 1Gbps connection.

Parameter ε for accelerating permutation proofs. Our
RAM, ROM, and set data structures (and our imple-
mented [20]’s RAM) all benefit from VOLE-based polyno-
mial proofs used to optimize to high-fan-in multiplications
(see Section 5.2). In particular, recall that parameter ε trades
off between number of required VOLE correlations and P
computation. Figure 10 tabulates the impact of ε on perfor-
mance (we set n = 220 and T = 223).

For simplicity of implementation, we organize our high fan-
in-n multiplications as trees of multiplications, and we only
use fan-in-ε gates at the widest tree level. The remaining mul-
tiplications are achieved with fan-in-two gates. This means
our high fan-in gates use ≈ 2n

ε
VOLES, rather than ⌈ n

ε−1⌉s.
In practice, the change in performance is not noticeable.

3 [20]’s RAM was designed for the MPC-in-the-head paradigm, but, like
our RAM, it is a pure arithmetic circuit with random challenges, so it can
also be implemented for VOLE-ZK.

4 [26] reported clear concrete improvements over earlier ZK RAMs.
5Intel Xeon Platinum 8175 CPU @ 3.10GHz, 8 vCPUs, 32GiB Memory,

10Gbps Network

n = 220 Bandwidth ε

2 4 8 16 32 64 128

Set

25 Mbps 8.88 6.14 4.78 4.10 3.62 3.62 3.87
100 Mbps 2.39 1.72 1.41 1.21 1.14 1.29 1.54
500 Mbps 0.80 0.69 0.63 0.65 0.64 0.77 1.04

1 Gbps 0.66 0.60 0.59 0.61 0.61 0.73 1.01
Comm. (byte) 27.1 18.6 14.4 12.2 10.9 10.3 10.1

ROM

25 Mbps 12.56 9.66 8.21 7.49 7.17 7.18 7.46
100 Mbps 3.37 2.64 2.28 2.09 2.14 2.24 2.58
500 Mbps 1.10 0.96 0.93 0.95 1.02 1.17 1.47

1 Gbps 0.92 0.85 0.83 0.85 0.94 1.06 1.38
Comm. (byte) 38.4 29.4 24.9 22.7 21.6 21.0 20.7

RAM

25 Mbps 28.92 21.73 18.38 16.55 15.58 15.59 16.26
100 Mbps 7.80 5.94 5.15 4.53 4.58 4.91 5.60
500 Mbps 2.60 2.01 1.96 1.93 1.99 2.33 3.03

1 Gbps 2.14 1.74 1.72 1.67 1.78 2.11 2.87
Comm. (byte) 88.3 66.4 55.9 50.3 47.4 46.1 45.4

Figure 10: Per-access runtime (µs) and communication
(bytes) of our data structures as a function of ε, the degree of
polynomials used in our handling of high fan-in multiplica-
tions; see Section 5.2. As ε increases, we use fewer VOLE
correlations, but P computes more field operations.

0

5

10

15

20

11 12 13 14 15 16 17 18 19 20

Ti
m

e

logn

25 Mbps
100 Mbps
500 Mbps

1 Gbps

Figure 11: Per-access runtime of our RAM (µs).

In subsequent experiments, we set ε = 16. Increasing ε

beyond this point yields greatly diminished communication
improvement, as input gates dominate cost and are not im-
proved by increasing ε.

Our RAM performance. Figure 11 plots per-access run-
time of our RAM in microseconds. On a slow 25Mbps WAN-
like connection, our RAM requires ∼ 15µs per access; On
a faster 100Mbps WAN-like connection, our RAM requires
< 5µs per access; On a 1Gbps LAN-like connection, our
RAM requires only ∼ 1.5µs per access, achieving access at
≈ 600 KHz. As n ranges from 211 to 220, the per-access
communication increases only from 47 to 50 bytes; runtime
remains essentially unchanged (caching begins to impact per-
formance at high n). The full version includes detailed data.

Our ROM and set performance. On a 25Mbps WAN-like
connection, our ROM (resp. set) requires < 8µs (resp. < 4µs)
per access; on a 1Gbps LAN-like connection, our ROM (resp.
set) requires ∼ 1µs (resp. < 1µs) per access. As n ranges

0

5

10

15

20

25

11 12 13 14 15 16 17 18 19 20

Sp
ee

du
p

ov
er

[2
6]

logn

25 Mbps
100 Mbps
500 Mbps

1 Gbps

Figure 12: Speedup of our RAM over [26]’s RAM.

0

5

10

15

20

25

30

35

40

45

11 12 13 14 15 16 17 18 19 20

Sp
ee

du
p

ov
er

[2
6]

logn

25 Mbps
100 Mbps
500 Mbps

1 Gbps

Figure 13: Our ROM’s speedup over [26]’s ROM.

from 211 to 220, the per-access communication is 19-22 (resp.
10-12) bytes; runtime remains essentially unchanged (caching
effects begin to impact performance at high n). We defer plots
and detailed data to the full version.

Our RAM/ROM vs. [26]’s RAM/ROM. Figures 12 and 13
plot our RAM/ROM’s speedup over [26]’s RAM/ROM.
Speedup is defined by per-access tbaseline/tours. [26]’s imple-
mentation is over Boolean circuits with Z232 ring algebraic
structure. Our ROM improves over [26]’s ROM by 3-34×,
depending on bandwidth. Our RAM improves over [26]’s
RAM by 2-20×. Figure 14 tabulates communication required
by our RAM/ROM as compared to [26].

Our speedup comes primarily from improved computation,
resulting from a greatly reduced number of gates. Note the
significant communication reduction from V to P , reflecting
our reduction in the number of required VOLE correlations.

Our RAM vs. [20]’s RAM. Figure 15 plots our RAM
speedup over our optimized implementation of [20]’s RAM.

Even though we heavily optimize [20]’s RAM, our RAM
still improves per-access runtime by 2.2-2.9×. As n ranges
from 211 to 220, [20]’s per-access communication goes from
129 to 145 bytes, which is ≈ 3× more than our RAM.

Direction Benchmark logn
12 14 16 18 20

ROM

P → V [26] 28.4 29.2 30.1 31.5 34.7
Ours 18.4 18.5 18.6 19.2 21.8

V → P [26] 12.6 12.9 13.4 14.0 15.3
Ours 0.7 0.7 0.7 0.7 0.9

Total [26] 41.0 42.1 43.5 45.6 50.1
Ours 19.1 19.2 19.3 19.9 22.7

RAM

P → V [26] 32.3 33.1 34.1 35.5 39.2
Ours 45.7 45.8 45.9 46.5 49.0

V → P [26] 14.5 14.8 15.2 15.9 17.5
Ours 1.3 1.3 1.3 1.3 1.3

Total [26] 46.9 48.0 49.3 51.4 56.8
Ours 47.1 47.1 47.3 47.9 50.3

Figure 14: Per-access communication (bytes) used by our
ROM (resp. RAM) versus [26]’s ROM (resp. RAM).

0

0.5

1

1.5

2

2.5

3

3.5

4

11 12 13 14 15 16 17 18 19 20

Sp
ee

du
p

ov
er

[2
0]

logn

25 Mbps
100 Mbps
500 Mbps

1 Gbps

Figure 15: Our RAM’s speedup over [20]’s RAM (we opti-
mize [20]’s RAM).

As one additional data-point, we disabled all VOLE-based
optimizations for both our RAM and our implementation of
[20], then ran with n = 220. Here, our RAM requires 88 bytes
per access while [20] requires 242 bytes. These numbers
reflect our raw advantage in total number of non-linear gates.

n = 220 ROM RAM
Bandwidth (Mbps) 25 100 500 25 100 500

Setup 0.66 0.26 0.19 0.76 0.38 0.32
Access 5.30 1.38 0.47 10.56 2.73 0.87

Teardown 1.53 0.45 0.29 5.23 1.42 0.74
Total 7.49 2.09 0.95 16.55 4.53 1.93

Figure 16: Runtime cost breakdown of our ROM/RAM (µs).

Microbenchmarks. Figure 16 breaks down the per-access
runtime of our RAM and ROM. The main components include
setup, access, and teardown (see Figures 7 and 9). Access
clearly dominates cost, and setup is by far the cheapest step.

Acknowledgements
This research was developed with the support of funding under
NSF grants CNS-2246353 and CNS-2246354.

References

[1] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthura-
makrishnan Venkitasubramaniam. Ligero: Lightweight
sublinear arguments without a trusted setup. In Proceed-
ings of the 2017 acm sigsac conference on computer
and communications security, pages 2087–2104, 2017.

[2] Diego F Aranha, Emil Madsen Bennedsen, Matteo Cam-
panelli, Chaya Ganesh, Claudio Orlandi, and Akira
Takahashi. Eclipse: enhanced compiling method for
pedersen-committed zksnark engines. In Public-Key
Cryptography–PKC 2022: 25th IACR International Con-
ference on Practice and Theory of Public-Key Cryptog-
raphy, Virtual Event, March 8–11, 2022, Proceedings,
Part I, pages 584–614. Springer, 2022.

[3] Carsten Baum, Lennart Braun, Alexander Munch-
Hansen, Benoit Razet, and Peter Scholl. Appenzeller to
brie: efficient zero-knowledge proofs for mixed-mode
arithmetic and Z2k . In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications
Security, pages 192–211, 2021.

[4] Carsten Baum, Lennart Braun, Alexander Munch-
Hansen, and Peter Scholl. MozZ2k arella: efficient vector-
ole and zero-knowledge proofs over Z2k . In Advances in
Cryptology–CRYPTO 2022: 42nd Annual International
Cryptology Conference, CRYPTO 2022, Santa Barbara,
CA, USA, August 15–18, 2022, Proceedings, Part IV,
pages 329–358. Springer, 2022.

[5] Carsten Baum, Alex J Malozemoff, Marc B Rosen, and
Peter Scholl. Mac’n’cheese: Zero-knowledge proofs for
boolean and arithmetic circuits with nested disjunctions.
In Advances in Cryptology–CRYPTO 2021: 41st Annual
International Cryptology Conference, CRYPTO 2021,
Virtual Event, August 16–20, 2021, Proceedings, Part
IV 41, pages 92–122. Springer, 2021.

[6] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin,
Eran Tromer, and Madars Virza. SNARKs for C: Veri-
fying program executions succinctly and in zero knowl-
edge. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages
90–108. Springer, Heidelberg, August 2013.

[7] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin,
Eran Tromer, and Madars Virza. Snarks for c: Verifying
program executions succinctly and in zero knowledge.
In Advances in Cryptology–CRYPTO 2013: 33rd An-
nual Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2013. Proceedings, Part II, pages 90–108.
Springer, 2013.

[8] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and
Madars Virza. Succinct non-interactive zero knowledge

for a von neumann architecture. In 23rd USENIX Secu-
rity Symposium (USENIX Security 14), pages 781–796,
2014.

[9] Václav E Beneš. Permutation groups, complexes, and re-
arrangeable connecting networks. Bell System Technical
Journal, 43(4):1619–1640, 1964.

[10] Alexander R Block, Justin Holmgren, Alon Rosen,
Ron D Rothblum, and Pratik Soni. Public-coin zero-
knowledge arguments with (almost) minimal time and
space overheads. In Theory of Cryptography: 18th In-
ternational Conference, TCC 2020, Durham, NC, USA,
November 16–19, 2020, Proceedings, Part II, pages 168–
197. Springer, 2020.

[11] Alexander R Block, Justin Holmgren, Alon Rosen,
Ron D Rothblum, and Pratik Soni. Time-and space-
efficient arguments from groups of unknown order. In
Advances in Cryptology–CRYPTO 2021: 41st Annual
International Cryptology Conference, CRYPTO 2021,
Virtual Event, August 16–20, 2021, Proceedings, Part
IV 41, pages 123–152. Springer, 2021.

[12] Manuel Blum, Will Evans, Peter Gemmell, Sampath
Kannan, and Moni Naor. Checking the correctness of
memories. Algorithmica, 12:225–244, 1994.

[13] Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune
Jakobsen, and Mary Maller. Arya: Nearly linear-time
zero-knowledge proofs for correct program execution.
In Advances in Cryptology–ASIACRYPT 2018: 24th
International Conference on the Theory and Applica-
tion of Cryptology and Information Security, Brisbane,
QLD, Australia, December 2–6, 2018, Proceedings, Part
I, pages 595–626. Springer, 2018.

[14] Benjamin Braun, Ariel J Feldman, Zuocheng Ren, Sri-
nath Setty, Andrew J Blumberg, and Michael Walfish.
Verifying computations with state. In Proceedings of the
twenty-fourth ACM Symposium on Operating Systems
Principles, pages 341–357, 2013.

[15] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew
Poelstra, Pieter Wuille, and Greg Maxwell. Bulletproofs:
Short proofs for confidential transactions and more. In
2018 IEEE Symposium on Security and Privacy, pages
315–334. IEEE Computer Society Press, May 2018.

[16] Ran Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In Proceedings
42nd IEEE Symposium on Foundations of Computer
Science, pages 136–145. IEEE, 2001.

[17] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit
Sahai. Universally composable two-party and multi-
party secure computation. In Proceedings of the Thiry-

Fourth Annual ACM Symposium on Theory of Comput-
ing, STOC ’02, page 494–503, New York, NY, USA,
2002. Association for Computing Machinery.

[18] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush
Mishra, Noah Vesely, and Nicholas P. Ward. Marlin:
Preprocessing zkSNARKs with universal and updatable
SRS. In Anne Canteaut and Yuval Ishai, editors, EU-
ROCRYPT 2020, Part I, volume 12105 of LNCS, pages
738–768. Springer, Heidelberg, May 2020.

[19] Cyprien de Saint Guilhem, Emmanuela Orsini, and
Titouan Tanguy. Limbo: Efficient zero-knowledge
MPCitH-based arguments. In Giovanni Vigna and
Elaine Shi, editors, ACM CCS 2021, pages 3022–3036.
ACM Press, November 2021.

[20] Cyprien Delpech de Saint Guilhem, Emmanuela Orsini,
Titouan Tanguy, and Michiel Verbauwhede. Efficient
proof of ram programs from any public-coin zero-
knowledge system. In Clemente Galdi and Stanis-
law Jarecki, editors, Security and Cryptography for Net-
works, pages 615–638, Cham, 2022. Springer Interna-
tional Publishing.

[21] Richard A. DeMillo and Richard J. Lipton. A probabilis-
tic remark on algebraic program testing. Information
Processing Letters, 7(4):193–195, 1978.

[22] Samuel Dittmer, Yuval Ishai, Steve Lu, and Rafail Os-
trovsky. Improving line-point zero knowledge: Two
multiplications for the price of one. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and
Communications Security, pages 829–841, 2022.

[23] Samuel Dittmer, Yuval Ishai, and Rafail Ostrovsky. Line-
Point Zero Knowledge and Its Applications. In Ste-
fano Tessaro, editor, 2nd Conference on Information-
Theoretic Cryptography (ITC 2021), volume 199 of Leib-
niz International Proceedings in Informatics (LIPIcs),
pages 5:1–5:24, Dagstuhl, Germany, 2021. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik.

[24] Cynthia Dwork, Moni Naor, Guy N. Rothblum, and
Vinod Vaikuntanathan. How efficient can memory
checking be? In Omer Reingold, editor, TCC 2009,
volume 5444 of LNCS, pages 503–520. Springer, Hei-
delberg, March 2009.

[25] Zhiyong Fang, David Darais, Joseph P. Near, and Yu-
peng Zhang. Zero knowledge static program analysis.
In Giovanni Vigna and Elaine Shi, editors, ACM CCS
2021, pages 2951–2967. ACM Press, November 2021.

[26] Nicholas Franzese, Jonathan Katz, Steve Lu, Rafail Os-
trovsky, Xiao Wang, and Chenkai Weng. Constant-
overhead zero-knowledge for RAM programs. In Gio-

vanni Vigna and Elaine Shi, editors, ACM CCS 2021,
pages 178–191. ACM Press, November 2021.

[27] Ariel Gabizon and Zachary J. Williamson. plookup: A
simplified polynomial protocol for lookup tables. Cryp-
tology ePrint Archive, Report 2020/315, 2020. https:
//eprint.iacr.org/2020/315.

[28] S Goldwasser, S Micali, and C Rackoff. The knowledge
complexity of interactive proof-systems. In Proceedings
of the Seventeenth Annual ACM Symposium on Theory
of Computing, STOC ’85, page 291–304, New York, NY,
USA, 1985. Association for Computing Machinery.

[29] Paul Grubbs, Arasu Arun, Ye Zhang, Joseph Bonneau,
and Michael Walfish. {Zero-Knowledge} middleboxes.
In 31st USENIX Security Symposium (USENIX Security
22), pages 4255–4272, 2022.

[30] David Heath and Vladimir Kolesnikov. A 2.1 KHz zero-
knowledge processor with BubbleRAM. In Jay Ligatti,
Xinming Ou, Jonathan Katz, and Giovanni Vigna, ed-
itors, ACM CCS 2020, pages 2055–2074. ACM Press,
November 2020.

[31] David Heath and Vladimir Kolesnikov. PrORAM -
fast O(logn) authenticated shares ZK ORAM. In
Mehdi Tibouchi and Huaxiong Wang, editors, ASI-
ACRYPT 2021, Part IV, volume 13093 of LNCS, pages
495–525. Springer, Heidelberg, December 2021.

[32] David Heath, Yibin Yang, David Devecsery, and
Vladimir Kolesnikov. Zero knowledge for everything
and everyone: Fast zk processor with cached oram for
ansi c programs. In 2021 IEEE Symposium on Security
and Privacy (SP), pages 1538–1556. IEEE, 2021.

[33] Zhangxiang Hu, Payman Mohassel, and Mike Rosulek.
Efficient zero-knowledge proofs of non-algebraic state-
ments with sublinear amortized cost. In Advances in
Cryptology–CRYPTO 2015: 35th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 16-20,
2015, Proceedings, Part II 35, pages 150–169. Springer,
2015.

[34] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and
Amit Sahai. Zero-knowledge from secure multiparty
computation. In Proceedings of the Thirty-Ninth Annual
ACM Symposium on Theory of Computing, STOC ’07,
page 21–30, New York, NY, USA, 2007. Association
for Computing Machinery.

[35] Ning Luo, Timos Antonopoulos, William R. Harris, Ruz-
ica Piskac, Eran Tromer, and Xiao Wang. Proving UN-
SAT in zero knowledge. In Heng Yin, Angelos Stavrou,
Cas Cremers, and Elaine Shi, editors, ACM CCS 2022,
pages 2203–2217. ACM Press, November 2022.

https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2020/315

[36] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah
Meiklejohn. Sonic: Zero-knowledge SNARKs from
linear-size universal and updatable structured reference
strings. In Lorenzo Cavallaro, Johannes Kinder, Xi-
aoFeng Wang, and Jonathan Katz, editors, ACM CCS
2019, pages 2111–2128. ACM Press, November 2019.

[37] Payman Mohassel, Mike Rosulek, and Alessandra Sca-
furo. Sublinear zero-knowledge arguments for ram
programs. In Advances in Cryptology–EUROCRYPT
2017: 36th Annual International Conference on the
Theory and Applications of Cryptographic Techniques,
Paris, France, April 30–May 4, 2017, Proceedings, Part
I, pages 501–531. Springer, 2017.

[38] C. Andrew Neff. A verifiable secret shuffle and its
application to e-voting. In Michael K. Reiter and
Pierangela Samarati, editors, ACM CCS 2001, pages
116–125. ACM Press, November 2001.

[39] Eli Ben Sasson, Alessandro Chiesa, Christina Garman,
Matthew Green, Ian Miers, Eran Tromer, and Madars
Virza. Zerocash: Decentralized anonymous payments
from bitcoin. In 2014 IEEE symposium on security and
privacy, pages 459–474. IEEE, 2014.

[40] J. T. Schwartz. Fast probabilistic algorithms for verifi-
cation of polynomial identities. J. ACM, 27(4):701–717,
oct 1980.

[41] Riad S. Wahby, Srinath Setty, Zuocheng (Andy) Ren,
Andrew J. Blumberg, and Michael Walfish. Efficient
RAM and control flow in verifiable outsourced compu-
tation. In NDSS, 2015.

[42] Abraham Waksman. A permutation network. J. ACM,
15(1):159–163, January 1968.

[43] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz.
EMP-toolkit: Efficient MultiParty computation toolkit.
https://github.com/emp-toolkit, 2016.

[44] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao
Wang. Wolverine: fast, scalable, and communication-
efficient zero-knowledge proofs for boolean and arith-
metic circuits. In 2021 IEEE Symposium on Security
and Privacy (SP), pages 1074–1091. IEEE, 2021.

[45] Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz,
and Xiao Wang. Mystique: Efficient conversions for
zero-knowledge proofs with applications to machine
learning. In USENIX Security Symposium, pages 501–
518, 2021.

[46] Chenkai Weng, Kang Yang, Zhaomin Yang, Xiang Xie,
and Xiao Wang. Antman: Interactive zero-knowledge
proofs with sublinear communication. In Proceedings
of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, pages 2901–2914, 2022.

[47] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao
Wang. Quicksilver: Efficient and affordable zero-
knowledge proofs for circuits and polynomials over any
field. In Proceedings of the 2021 ACM SIGSAC Confer-
ence on Computer and Communications Security, pages
2986–3001, 2021.

[48] Yibin Yang and David Heath. Two shuffles make a
ram: Improved constant overhead zero knowledge ram.
Cryptology ePrint Archive, 2023. https://eprint.
iacr.org/2023/1115.

[49] Yibin Yang, David Heath, Vladimir Kolesnikov, and
David Devecsery. Ezee: Epoch parallel zero knowl-
edge for ansi c. In 2022 IEEE 7th European Symposium
on Security and Privacy (EuroS&P), pages 109–123.
IEEE, 2022.

[50] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios
Papadopoulos, and Charalampos Papamanthou. vRAM:
Faster verifiable RAM with program-independent pre-
processing. In 2018 IEEE Symposium on Security and
Privacy, pages 908–925. IEEE Computer Society Press,
May 2018.

[51] Richard Zippel. An explicit separation of relativised ran-
dom polynomial time and relativised deterministic poly-
nomial time. Information Processing Letters, 33(4):207–
212, 1989.

Appendix A Commit-and-Prove ZK

For completeness, Figure 17 lists the standard commit-and-
prove ZK functionality, as formalized by [17].

Functionality F cp
ZK

F cp
ZK considers a prover P , a verifier V , and an adversary

S , and it is parameterized by a field F:

Commits: Upon receiving (commit,cid,x) from P where
(a) there is no recorded tuple (cid, ·), and (b) x ∈ F: Record
the tuple (cid,x) and send (commit,cid) to S and V .

Proof: Upon receiving (prove,C,cid1, . . . ,cidn) from P
where (1) C is a circuit C : F(n) 7→ F, and (b) each cidi∈[n]
was recorded:

• Fetch recorded (cid1,x1), . . . ,(cidn,xn), compute y :=
C(x1, . . . ,xn). If y = 0, send (prove,C,cid,true) to S
and V ; else send (prove,C,cid,false) to S and V .

Figure 17: The commit-and-prove ZK functionality.

https://github.com/emp-toolkit
https://eprint.iacr.org/2023/1115
https://eprint.iacr.org/2023/1115

Appendix B Proof of Security

B.1 Soundness Lemmas
Protocol 1 requires that P input extra field elements. The
soundness of our protocol is based on the fact that even a ma-
licious P cannot input values that disagree with the semantics
of ROM/RAM. This section formalizes P ’s inability to cheat
as security games and lemmas. Our main proof of security
relies on these lemmas.

Lemma 2. Let F be a prime field, and let m a positive integer
s.t. m < |F|. Let P ≜ {t1, . . . , tm} be an ordered set of any m
field elements. Let Q ≜ {t1 +1, . . . , tm +1} be an ordered set.
P and Q cannot form a permutation: P ̸∼ Q.

Proof. By induction on the entries of P and Q. Consider t1
in P. By construction, we ensure t1 + 1 is in Q. If P ∼ Q,
then t1 +1 is also in P. By repeating this argument, P must
have t1, t1+1, t1+2, . . . , t1+m−1. Accordingly, Q must have
t1+1, t1+2, t1+3, . . . , t1+m. However, since m< |F|, t1 /∈Q,
contradicting P∼ Q.

Game 1 (Single Element ROM). Let F be a prime field, and
let T ∈N s.t. T < |F|. Consider lists R and W, both initialized
as empty. Let cbegin, tbegin ∈ F be arbitrary values. The T -
round game with A proceeds as follows:

1. Append (cbegin, tbegin) to W.

2. In each round i∈ [T]: A chooses ci, ti ∈F. Append (ci, ti)
to R; append (ci, ti +1) to W.

3. After T rounds: A chooses cend, tend ∈ F. Append
(cend, tend) to R.

We say that A wins i.f.f. W ∼ R at the end of the game.

Lemma 3. If A wins Game 1, then the following must hold:

cbegin = c1 = · · ·= cT = cend

Namely, each ci∈[T] and cend provided by A are equal to cbegin.

Proof. By induction on T .
Base case: When T = 0, W (resp. R) only has a sin-

gle element (cbegin, tbegin) (resp. (cend, tend)). If W ∼ R, then
the single element in R must be (cbegin, tbegin). This implies
cbegin = cend, so the lemma holds.

Induction: By the inductive hypothesis, the lemma holds
when T = n. Consider T = n+1. Suppose A wins the game
when T = n+1, and thus R∼W. Consider (cbegin, tbegin) in
W. The value (cbegin, tbegin) must be in R, and there are two
possible placements of this value:

1. (cbegin, tbegin) is the last element of R:

(cend, tend) = (cbegin, tbegin)

If we ignore (cend, tend) in R and (cbegin, tbegin) in W, then
the remaining n+1 elements in R and W must still form
a permutation:

{(c1, t1), . . . ,(cT , tT)} ∼ {(c1, t1 +1), . . . ,(cT , tT +1)}

But this is impossible by Lemma 2.

2. (cbegin, tbegin) is not the last element of R. I.e., there exists
some j ∈ [n+1] such that:

(c j, t j) = (cbegin, tbegin)

In this case, the corresponding tuple appended to W
in round j (c j, t j + 1) can be understood as a tuple
(c′begin, t

′
begin) in a new game with T ′ = T − 1 = n. By

the inductive hypothesis, we know all ci ̸= j and cend are
equal to c j, and c j is equal to cbegin. Thus, the lemma
holds for T = n+1.

Note, the inductive argument only holds when T < |F|.

Game 2 (ROM). Let F be a prime field, and let n,T ∈ N s.t.
n,T < |F|. Consider lists R and W, both initialized as empty.
Consider a size-n set of field elements {ℓ1, . . . , ℓn} called the
address set. For each ℓk∈[n], let ck,begin, tk,begin ∈ F be arbitrary
values. The T -round game with A proceeds as follows:

1. For each k ∈ [n], append (ℓk,ck,begin, tk,begin) to W.

2. In each round i ∈ [T]: A chooses ci, ti ∈ F and ri ∈ [n].
Append (ℓri ,ci, ti) to R; append (ℓri ,ci, ti +1) to W.

3. After T rounds: for each ℓk∈[n], A chooses ck,end, tk,end ∈
F. Append (ℓk,ck,end, tk,end) to R.

We say that A wins i.f.f. W ∼ R at the end of the game.

Lemma 4. If A wins Game 2, then the following must hold:

∀k ∈ [n],∀(ℓk,c, t) ∈ R,c = ck,begin

Namely, once A selects ri in each round, ci must be equal to
cri,begin. Also, ck,end = ck,begin for each k ∈ [n].

Proof. By partitioning W and R into address-specific permu-
tations, then applying Lemma 3.

In more detail, recall that in each round i ∈ [T], A selects
ri ∈ [n]. We denote by Tk the number of rounds where A
selects ri = k. For each k ∈ [n], we define address-specific
reads and writes:

Wk ≜ {(c, t) | (ℓk,c, t) ∈W}
Rk ≜ {(c, t) | (ℓk,c, t) ∈ R}

Note, |Wk| = |Rk| = Tk + 1. Since W ∼ R, and since each
tuple is explicitly tagged with its address ℓk, it must be that
Wk ∼ Rk. For each k, we can now apply a Tk-round Game 1
to Wk and Rk, where (cbegin, tbegin) is set to (ck,begin, tk,begin).
Since Tk ≤ T < |F|, applying Lemma 3 n times completes the
proof.

Game 3 (Single Element RAM). Let F be a prime field, and
let T ∈ N s.t. T > 1 and |F| ≥ 2T . Consider lists R and W,
both initialized as empty. Let cbegin ∈ F be an arbitrary value.
Consider a non-empty size-m set S ≜ {s1, . . . ,sm} called the
timestamp set where:

1≤ s1 < s2 < · · ·< sm ≤ T

The m-round game with A proceeds as follows:

1. Append (cbegin,0) to W.

2. For each round i ∈ [m]: A chooses di, ti,ci ∈ F. Ap-
pend (di, ti) to R; append (ci,embed(si)) to W where
embed(·) denotes the trivial embedding from [T] to F
(henceforth, we omit calls to embed).

3. After m rounds: A chooses dend, tend ∈ F. Append
(dend, tend) to R.

We say that A wins i.f.f. at the end of the game:

W ∼ R and ∀i ∈ [m],(si− ti) ∈ {1,2, . . . ,T}

Lemma 5. If A wins Game 3, it must be that W = R.

Proof. In short, we argue that at each round A has exactly
one value it can “read” (similar to Invariant 2).

In more detail, note:

W = {(cbegin,0),(c1,s1), . . . ,(cm,sm)}

If W ∼ R, then it must be that the following holds:

{t1, . . . , tm, tend} ∼ {0,s1, . . . ,sm} (1)

Consider t1. By Equation (1), we know t1 ∈ {0,s1, . . . ,sm},
and because A won the game, we know (s1− t1)∈ {1, . . . ,T}.
Now, we argue it must be that t1 = 0. Indeed, any other choice
t1 ∈ {s1, . . . ,sm} will yield a difference s1− t1 that outside the
allowed range {1, . . . ,T}. This is because s1− s1 is 0, and all
other choices sm are even greater than s1:

s1− sm + |F| ≥ 1−T + |F|> T

Similarly, consider t2. By Equation (1), we know t2 ∈
{0,s1, . . . ,sm}, and because A won the game, we know
(s2− t2) ∈ {1, . . . ,T}. It must be that t2 = s1. Indeed:

s2− sm + |F| ≥ 1−T + |F|> T

Thus, t2 must be in the set {0,s1}. Moreover, t1 = 0, so to
satisfy the permutation requirement, t2 can only be s1.

We can inductively repeat the above analysis for each t∗.
I.e., ti = si−1 (assume s0 = 0) for all i ∈ [m] and tend = sm.

To sum up, {t1, . . . , tm, tend}= {0,s1, . . . ,sm}, where we in-
terpret these as ordered sets. Note that each s is distinct and
non-zero. Since W ∼ R, it must be that W = R.

Game 4 (RAM). Let F be a prime field, and let T ∈N s.t. T >
1 and |F|> 2T −1. Consider lists R and W, both initialized
as empty. Consider a set of field elements {ℓ1, . . . , ℓn} called
the address set. For each ℓk∈[n], let ck,begin ∈ F be an arbitrary
field element. The T -round game with A proceeds as follows:

1. For each k ∈ [n], append (ℓk,ck,begin,0) to W.

2. For each round i ∈ [T]: A chooses di, ti,ci ∈ F and ri ∈
[n]. Append (ℓri ,di, ti) to R; append (ℓri ,ci, i) to W.

3. After T rounds: for each ℓk∈[n], A chooses dk,end, tk,end ∈
F. Append (ℓk,dk,end, tk,end) to R.

We say that A wins i.f.f. at the end of the game:

W ∼ R and ∀i ∈ [T],(i− ti) ∈ {1,2, . . . ,T}

Lemma 6. If A wins Game 4, then the following must hold:
For each k ∈ [n], define lists Wk and Rk as follows:

Wk ≜ {(c, t) | (ℓk,c, t) ∈W}
Rk ≜ {(d, t) | (ℓk,d, t) ∈ R}

I.e., fetch (in order) the tuples in W and R with ℓk as the
address. For each k, it holds that Wk = Rk.6

Proof. Immediate, by partitioning W and R into address-
specific permutations, then applying Lemma 5 n times.

B.2 Proof of Lemma 1
We instantiate our protocols as a VOLE-based ZK system.
Lemma 1 shows that F perm

ZK can be UC-realized in the VOLE-
hybrid model. This is achieved by prior work, e.g., [26, 47].
For completeness, we state facts supported by prior work.

Lemma 7. There exists a 3-round protocol in the VOLE-
hybrid model that UC-realizes F perm

ZK without permutation
gates. For each use of input and of · , P and V use 1
VOLE correlation. The protocol achieves soundness error
O(m
|F|), where m is the number of multiplications.

Proof. See [47].

Lemma 8. There exists a 3-round protocol in the VOLE-
hybrid model that UC-realizes F perm

ZK with only permutation
and input gates. For each use of input, P and V use 1 VOLE
correlation; for each use of ∼ on two length-n vectors,
P and V each evaluate O(n) field operations and consume

2n
ε−1 +o(1) VOLE correlations, for any constant ε ≥ 2. The
protocol achieves soundness error O(n

|F|), where n is the size
of the largest vector passed to ∼ .

Proof. See [26].

The proof of Theorem 1 is included in the full version.
6This does not imply that W and R will be identical.

	Introduction
	Our Contribution
	Intuition

	Preliminaries and Notation
	Universal Composability
	Checking Permutations via Polynomials
	VOLE-based Zero Knowledge
	Miscellaneous Notation
	Models

	Related Work
	Technical Overview
	Read-Only Memory
	Sets with Membership Queries
	Read/Write Memory

	Approach
	Formal Protocol and Security
	Optimizations

	Evaluation
	Commit-and-Prove ZK
	Proof of Security
	Soundness Lemmas
	Proof of lem:vole-zk-perm

