
MODELGUARD: Information-Theoretic Defense Against Model Extraction Attacks

Minxue Tang1, Anna Dai1, Louis DiValentin2, Aolin Ding2, Amin Hass2,
Neil Zhenqiang Gong1, Yiran Chen1, Hai "Helen" Li1

1Department of Electrical and Computer Engineering, Duke University
2Cyber Security Lab, Accenture

1{minxue.tang, anna.dai, neil.gong, yiran.chen, hai.li}@duke.edu
2{louis.divalentin, a.ding, amin.hassanzadeh}@accenture.com

Abstract
Malicious utilization of a query interface can compromise
the confidentiality of ML-as-a-Service (MLaaS) systems via
model extraction attacks. Previous studies have proposed to
perturb the predictions of the MLaaS system as a defense
against model extraction attacks. However, existing predic-
tion perturbation methods suffer from a poor privacy-utility
balance and cannot effectively defend against the latest adap-
tive model extraction attacks. In this paper, we propose a
novel prediction perturbation defense named MODELGUARD,
which aims at defending against adaptive model extraction at-
tacks while maintaining a high utility of the protected system.
We develop a general optimization problem that considers dif-
ferent kinds of model extraction attacks, and MODELGUARD
provides an information-theoretic defense to efficiently solve
the optimization problem and achieve resistance against adap-
tive attacks. Experiments show that MODELGUARD attains
significantly better defensive performance against adaptive at-
tacks with less loss of utility compared to previous defenses.

1 Introduction

With the rapid development of machine learning, more and
more organizations have begun deploying well-trained ma-
chine learning models as black-box capabilities that provide
services for customers, i.e. Machine-Learning-as-a-Service
(MLaaS) systems. While easy access to well-trained models
brings convenience to users and creates wealth for the model
owner, it also leads to potential threats to the ownership and
security of the confidential models deployed in MLaaS sys-
tems. Recent studies show that MLaaS systems are vulnerable
to model extraction attacks, where the attacker can replicate
the parameters or functionality from the deployed confidential
(target) model to an extracted substitute model by querying
the system and learning from the query result [21, 35, 43].
Model extraction attacks allow attackers to retain access to
the service through the extracted substitute model while avoid-
ing any subscription or access costs imposed by the model

provider. Furthermore, the extracted substitute model can ex-
pose the weakness of the target model and makes it vulnerable
to downstream attacks, such as evasion attacks and member-
ship inference attacks [23, 38, 40, 41].

There have been many works discussing the defense against
model extraction attacks, and the proposed defense methods
mainly fall into four types: (a) Model extraction detection tries
to distinguish the attacker from other benign users accord-
ing to the distribution of the query data [23, 25]. (b) Model
information monitoring tries to evaluate how much informa-
tion of the target model has been exposed to a specific user,
and adjust the response strategy according to the information
gained by the user [13, 25]. (c) Model watermarking forces
the target model to learn a non-removable “watermark” (a
specific input-output pair) so that the owner can claim owner-
ship with it [1, 22]. (d) Prediction perturbation perturbs the
output (prediction) of the target model so that the attacker
cannot extract the model correctly [28, 36].

On one hand, none of model extraction detection, model
information monitoring, and model watermarking are general
to all kinds of model extraction attacks. Model extraction
detection is effective only when the query data of an attacker
distributes differently from the query data of a benign user,
which is a strong assumption in practice [35]. Model infor-
mation monitoring is not able to defend against collaborative
attackers who divide the query data among multiple users to
avoid querying with a single user. And model watermarking
cannot prevent attackers from stealing the model for private
use or for subsequent attacks. On the other hand, although
prediction perturbation makes the minimum assumption and
is universal to all kinds of attacks, previous prediction per-
turbation methods usually suffer from a bad privacy-utility
balance because of heuristic perturbation mechanisms. Ad-
ditionally, recent studies have shown that there exist strong
adaptive attacks that can significantly weaken the defensive
performance of previous prediction perturbation methods [8].

In this paper, we propose a novel prediction perturbation
method, MODELGUARD, which aims at attaining a better
privacy-utility balance under the presence of adaptive model

extraction attacks. MODELGUARD investigates a general op-
timization formulation that considers both parameter-stealing
and functionality-stealing attacks. The optimization formu-
lation aims at attaining the optimal defensive performance
while maximally preserving the utility of the target model
with the utility constraints. Since the adaptive attack method
is arbitrary and unknown to the defender, we explore two
different ways to deal with the adaptive attack when solving
the optimization problem, resulting in two variants of MOD-
ELGUARD: MODELGUARD-W and MODELGUARD-S. Our
contributions are:

1. We propose the first general formulation for the defense
against adaptive model extraction attacks. We unify the
parameter-stealing attack and the functionality-stealing
attack in our formulation such that we can defend against
both kinds of attacks in one objective.

2. We develop a constrained optimization problem that aims
at defending against adaptive model extraction attacks
while maintaining the utility of the target model. We
propose MODELGUARD to solve the optimization prob-
lem with two variants: MODELGUARD-W and MOD-
ELGUARD-S. Especially, MODELGUARD-S attains an
information-theoretic defense against strong adaptive
attacks and outperforms the other defenses.

3. We evaluate MODELGUARD against a wide range of
attacks, including a strong adaptive attack we propose
based on the Bayesian estimator. We empirically show
that compared with previous defenses, MODELGUARD
attains a significantly better privacy-utility balance when
defending against adaptive model extraction attacks1.

This paper is organized as follows: We define the threat
model in Section 2 and we present our defense MODEL-
GUARD in Section 3. The experimental results are given
in Section 4. We leave the discussion on related works to
Section 5 and we conclude this paper in Section 6.

2 Threat Model

Attacker’s goal Query-based model extraction attacks aim
at learning a substitute model with the predictions returned
by a black-box target model, as shown in Figure 1. We denote
ft(·;wwwt) as the target model with parameters wwwt trained on
a confidential dataset (Xt ,Yt). When performing the model
extraction attack, the attacker uses the unlabeled query dataset
Xq = [xxxq,1,xxxq,2, · · · ,xxxq,N]∈RN×d (with N samples in d dimen-
sions) to query the target model and get its predictions. If there
is no prediction perturbation defense, the clean prediction set
Yq = [yyyq,1,yyyq,2, · · · ,yyyq,N] = ft(Xq;wwwt) will be returned to the
attacker from the target model, where yyyq,i ∈ RC is the predic-
tion result (i.e., the confidence score vector over C classes) of

1Get our codes at https://github.com/Yoruko-Tang/ModelGuard.

𝑿𝑿𝒒𝒒

𝒀𝒀𝒒𝒒

𝑓𝑓𝑡𝑡 𝑝𝑝

𝑓𝑓𝑠𝑠 𝑟𝑟

�𝒀𝒀𝒒𝒒

�𝒀𝒀𝒒𝒒

Figure 1: A general framework of a model extraction attack
against a prediction perturbation defense. The clean predic-
tions Yq of the query data Xq outputted by the target model
ft are perturbed to Ŷq = p(Yq) by a mechanism p, and the
perturbed predictions are returned to the user. The adaptive
attacker first tries to recover the clean predictions from the
perturbed predictions with Ỹq = r(Ŷq). Then the attacker trains
the substitute model fs with the recovered predictions.

the i-th query xxxq,i. Otherwise, the attacker will receive the per-
turbed prediction set Ŷq = [ŷyyq,1, ŷyyq,2, · · · , ŷyyq,N] = p(Yq) where
p is a perturbation mechanism. With the query data and the
prediction returned from the target model, the model extrac-
tion attacker can train a substitute model wwws to attain two
different goals: parameter-stealing and functionality-stealing.

For the parameter-stealing attack, the goal is to learn a sub-
stitute model with the same architecture and the same param-
eters as the target model, i.e., www∗s = wwwt . For the functionality-
stealing attack, the goal is to learn the substitute model that
can attain the maximum similarity with the target model in
the clean predictions, namely,

min
wwws

L(Xq,Yq;wwws) = L(fs(Xq;wwws),Yq), (1)

where fs(·;wwws) is the prediction of the substitute model wwws,
and L(Ypred,Ytarg) is a supervised loss that can measure how
similar the predictions Ypred and the target labels Ytarg are, e.g.,
cross-entropy (CE) loss or mean squared error (MSE) loss.

Attacker’s background knowledge We assume that the
attacker is not able to access the exact training dataset (Xt ,Yt)
of the target model. However, the attacker knows the domain
of Xt and can use any query data Xq from a similar domain.
Moreover, we consider a strong attacker who knows the model
architecture of the target model so that the attacker is able to
use the same model architecture in the substitute model when
conducting the model extraction attack [8, 35].

In this paper, we assume that the attacker is adaptive,
namely, the attacker knows about the prediction perturba-
tion defense. In this case, the attacker first tries to recover the

https://github.com/Yoruko-Tang/ModelGuard

clean predictions Ỹq = r(Ŷq) from the perturbed predictions
Ŷq with a prediction recovery mechanism r. And then they use
Ỹq to train the substitute model. We allow the adaptive attack-
ers to know the details of the perturbation such that they can
reproduce the same perturbation given a clean prediction [8].

Remark 1. Our adaptive attack model can cover the non-
adaptive attack by simply setting r to be an identity function.
Additionally, an adaptive model extraction attack without an
explicit prediction recovery can also be covered by our threat
model. An arbitrary model extraction attack algorithm that
results in a substitute model w̃ww∗s satisfying fs(Xq; w̃ww∗s) = Ỹq is
equivalent to recovering the predictions to Ỹq = r(Ŷq) first and
then training the substitute model with (Xq,Ỹq).

Attacker’s capability We assume that the attacker can only
interact with the target model by query, namely, there are no
side channels providing extra information about the target
model. The attacker can use any query data as long as it is
a valid input of the target model, i.e., the attacker can use
natural data or generate synthetic data for queries. And the
attacker has unlimited query budgets, namely, the attacker can
repeat querying with the same data arbitrarily many times.
The attacker has sufficient computing power to implement any
training and prediction recovery algorithms, and to implement
the same perturbation mechanism as the defender.

3 MODELGUARD Design

In this section, we introduce our defense framework, MOD-
ELGUARD. We will first give a brief overview of MODEL-
GUARD in Section 3.1. We formulate our defense goal as a
constrained optimization problem in Section 3.2, and then
we introduce two variants of MODELGUARD to solve the
optimization problem from Section 3.3 to Section 3.5.

3.1 Overview
MODELGUARD aims at defending both parameters and func-
tionality of the target model against adaptive attacks while
maintaining a high utility of the protected system. Our method
is derived from a constrained optimization problem that tries
to find the perturbed prediction set Ŷq to maximize the loss
L(Ỹq,Yq) under some utility constraints. However, since we
are not aware of how the attacker recovers the prediction, it is
intractable to directly solve the optimization problem. Instead,
we explore two different ways to deal with the unknown re-
covery mechanism r when solving the optimization problem,
leading to two variant defense methods, MODELGUARD-W
and MODELGUARD-S: MODELGUARD-W assumes a weak
adaptive attack and solves the optimization problem with the
approximation Ỹq = r(Ŷq)≈ Ŷq; MODELGUARD-S considers
the optimal recovery mechanism r∗ (i.e., the Bayes estimator)
that leads to the lowest recovery loss, and we try to maximize

an information-theoretic lower bound of the objective func-
tion against the attack with the optimal recovery mechanism.

3.2 Objective and Constraints
The goal of prediction perturbation is using the perturbed
prediction set Ŷq to prevent the attacker from replicating the
target model parameters wwwt or learning the functionality. To
defend against parameter-stealing and functionality-stealing
attacks discussed in Section 2, we can formulate two different
optimization objectives respectively:

max
Ŷq

∥w̃ww∗s −wwwt∥2
2, (2)

max
Ŷq

L(Xq,Yq; w̃ww∗s) = L(Ỹq,Yq). (3)

A unified objective for defending against both attacks
Directly defending against parameter-stealing attacks is in-
tractable since the defender does not know about the training
details of the substitute model, such as the training hyperpa-
rameters and the training algorithms. The following lemma
shows that maximizing L(Xq,Yq; w̃ww∗s) can also maximize the
lower bound of ∥w̃ww∗s −wwwt∥2

2 under a smoothness assumption
commonly used by optimization literature [5]. Therefore, we
can use Equation (3) as a unified objective for defending
against both kinds of attacks.

Lemma 1. Assuming that L(Xq,Yq;www) = L(ft(Xq;www);Yq) is
M-smooth in www. Given two models wwwt and w̃ww∗s with the same
architecture such that ft(Xq;wwwt) =Yq and fs(Xq; w̃ww∗s) = Ỹq, we
have:

∥w̃ww∗s −wwwt∥2
2 ≥

2
M

[
L(Ỹq,Yq)−L(Yq,Yq)

]
. (4)

We prove Lemma 1 in Appendix A.1.

Utility and validity constraints We consider the scenarios
where the users care about not only the top-1 label but also the
confidence scores in the predictions, which can be used for
downstream tasks such as out-of-distribution detection [18].
This leads to the following two utility constraints:

(Distortion constraint) As different downstream tasks may
have different utility metrics, we adopt the ℓ1 norm of the
perturbation as a generic metric of the utility loss [36]. And
we constrain the distortion magnitude as follows:

∥ŷyyq,i− yyyq,i∥1 ≤ ε, i = 1,2, · · · ,N. (5)

(Top-1 accuracy preserving constraint) The top-1 label
cannot be changed by the perturbation:

argmax
k

ŷ(k)q,i = argmax
k

y(k)q,i i = 1,2, · · · ,N, (6)

where ŷ(k)q,i is the k-th dimension of ŷyyq,i.

In addition to the utility constraints, we also need to guaran-
tee that the perturbed predictions are valid predictions. Thus
we have the following validity constraint:

(Simplex constraint) The perturbed predictions must be
valid confidence score vectors:

C

∑
k=1

ŷ(k)q,i = 1, and ŷyyq,i ⪰ 0, i = 1,2, · · · ,N. (7)

Namely, for each perturbed prediction, the sum of all dimen-
sions is 1 and each dimension is non-negative. The ℓ1 distor-
tion on ŷyyq,i cannot be larger than 2.0 under this constraint.

Challenges in solving the optimization problem It is still
intractable to solve Equation (3) directly because we are
not aware of what recovery mechanism r is used to calcu-
late Ỹq. We explore two options to bypass this difficulty:
(a) Assuming a weak adaptive attack and approximating
Ỹq = r(Ŷq) ≈ Ŷq when solving Equation (3); (b) Defending
against the strongest adaptive attack where r leads to the low-
est L(Ỹq,Yq). In the following sections, we will introduce how
to solve Equation (3) with these two options respectively.

3.3 MODELGUARD-W
In this section, we introduce the first variant MODELGUARD-
W which adopts the first option, i.e., treats Ỹq ≈ Ŷq.

As we are focusing on classification tasks in this paper,
we set L to be the CE loss LCE, which is one of the most
popular loss functions in classification tasks. With this spe-
cific loss and the simplification Ỹq = Ŷq, we can reformulate
Equation (3) for each i = 1, · · · ,N respectively as follows.

min
ŷyyq,i

C

∑
k=1

y(k)q,i log ŷ(k)q,i (8)

subject to ∥ŷyyq,i− yyyq,i∥1 ≤ ε,

argmax
k

ŷ(k)q,i = argmax
k

y(k)q,i ,

C

∑
k=1

ŷ(k)q,i = 1, and ŷyyq,i ⪰ 0.

Because of the logarithm in the objective function, it is diffi-
cult to solve this constrained non-convex optimization prob-
lem directly. A good convex approximation to this non-convex
objective function is to swap Yq and Ŷq in the loss function,
which instead maximizes LCE(Yq,Ŷq) as follows:

min
ŷyyq,i

C

∑
k=1

ŷ(k)q,i logy(k)q,i (9)

subject to ∥ŷyyq,i− yyyq,i∥1 ≤ ε,

argmax
k

ŷ(k)q,i = argmax
k

y(k)q,i ,

C

∑
k=1

ŷ(k)q,i = 1, and ŷyyq,i ⪰ 0.

In this formulation, the objective function becomes linear
w.r.t ŷyyq,i, and thus this optimization problem becomes Linear
Programming, which can be solved efficiently by existing
algorithms [5]. We call this defense MODELGUARD-W.

Remark 2. As justified in Appendix A.2, the solution ŷyyq,i of

Equation (9) assigns a small confidence score ŷ(k)q,i to the class

k where y(k)q,i is large, which can also lead to a small objective
value in Equation (8). Thus, minimizing Equation (9) is an
effective approximation of minimizing Equation (8).

MODELGUARD-W is effective against the attack that satis-
fies Ỹq ≈ Ŷq, but it may fail to defend against strong adaptive
attacks where Ỹq significantly deviates from Ŷq. We will see
how we are able to derive a defense against strong adaptive
attacks with the optimal r in the following sections.

3.4 Bayes Attack
Now we consider the second option, where we treat r as
the optimal prediction recovery that leads to the lowest loss
L(Ỹq,Yq). We begin with the introduction to the optimal pre-
diction recovery, i.e., the Bayes estimator, in this section. And
we introduce the second variant, MODELGUARD-S, which de-
fends the information-theoretic lower bound of the objective
function in Section 3.5.

Objective of the prediction recovery The goal of the at-
tacker is contrary to the goal of the defender given in Equa-
tion (3): the attacker tries to find a recovery function r against
the perturbation function p that minimizes L(Ỹq,Yq). As the
clean predictions are unknown to the attacker, Yq becomes
a random variable in the perspective of the attacker, and the
attacker tries to minimize the following posterior expected
loss conditioned on the returned prediction set Ŷq:

min
r

E
[
L(r(Ŷq),Yq)|Ŷq

]
, (10)

where E stands for the expectation w.r.t Yq.
For analysis simplicity, we adopt the most popular squared

loss L(xxx,yyy) = ∥xxx− yyy∥2
2 as the recovery loss2, whose Bayes

estimator (i.e., the minimizer r∗) is given by the posterior
mean of Yq given Ŷq:

Ỹ ∗q = r∗(Ŷq) = E[Yq|Ŷq]. (11)

Namely, the optimal recovered prediction Ỹ ∗q is the average of
all the clean predictions that can result in the same perturbed
prediction Ŷq returned to the attacker.

Bayes Attack: a brute-force Bayes estimator As the at-
tacker does not know about the true distribution of Yq, it is non-
trivial to calculate the posterior mean E[Yq|Ŷq] even though the

2Lemma 2 shows that our analysis can also adapt to CE loss.

attacker knows the defense mechanism. Previous adaptive at-
tack methods use some approximate estimators as the solution
to Equation (10), e.g., a trained neural network as an approxi-
mation of the Bayes estimator r∗ [8,28]. As an alternative, we
propose a brute-force method which we call Bayes Attack, to
find the Bayes estimator in Equation (11) under the assump-
tion that the attacker has sufficient computing power. Since
we allow the attacker to perform the same perturbation p(Y)
given any clean prediction set Y = [yyy1,yyy2, · · · ,yyyN] ∈ RN×C,
the attacker can build a lookup table that contains (Y, p(Y))
pairs of all possible valid Y . When given the perturbed predic-
tion set Ŷq, the attacker finds all the Y that satisfy p(Y) = Ŷq
in the table, then the mean of these Y will be used as the
recovered prediction set Ỹq. We can summarize it as follows:

T= {(Y, p(Y)) : ∃X ∈ RN×d ,∃www,Y = ft(X ;www)},
M(Ŷq) = {Y : (Y, p(Y)) ∈ T,∥p(Y)− Ŷq∥ ≤ δ},

Ỹq =
1

|M(Ŷq)|
∑

Y∈M(Ŷq)

Y,
(12)

where T is the lookup table, and M(Ŷq) contains all matching
clean prediction sets within a small error tolerance δ.
Remark 3. Bayes Attack is proposed against the deterministic
defense mechanism. For a randomized perturbation mech-
anism p(Y), as we allow an unlimited query budget of the
attacker, the attacker can repeat querying the target model with
the same query data and obtain the mean of the perturbations.
This makes it equivalent to attacking against a determinis-
tic perturbation mechanism p′(Y) = E[p(Y)]. Therefore, we
exclude randomized perturbation from the discussion.

Partial Bayes Attack: shrinking the sampling space In
practice, we are not able to implement the perfect Bayes At-
tack, because we do not have an infinite computing power
to traverse all possible clean prediction sets Y , especially
when we need to recover the prediction set Yq as a whole
in a very high dimension (Yq ∈ RN×C). We can approximate
the perfect Bayes Attack based on the fact that most defense
mechanisms perturb each clean prediction yyyq,i independently,
i.e., ŷyyq,i = p(yyyq,i) is only dependent on yyyq,i. Therefore, we can
build a lookup table that contains (yyy, p(yyy)) pairs in a much
lower dimension (yyy ∈RC) instead of (Y, p(Y)) pairs in a high
dimension (Y ∈ RN×C), namely,

T= {(yyy, p(yyy)) : ∃xxx ∈ Rd ,∃www,yyy = ft(xxx;www)}. (13)

Even with the independent sampling, the sampling space of
yyy is still huge when the number of classes is large (e.g., up
to 256 in our experiment). Based on the observation that the
prediction yyy in the neighborhood of each yyyq,i is more likely
to be perturbed to a result close to ŷyyq,i, we further shrink the
sampling space by only sampling clean predictions from the
neighborhood of each true clean prediction yyyq,i as elaborated
in Appendix B.1. We obtain Partial Bayes Attack with the
independent sampling and the neighborhood sampling.

3.5 MODELGUARD-S
Now we introduce our second variant MODELGUARD-S,
which is an information-theoretic defense against strong adap-
tive attacks such as Bayes Attack. We target maximizing
the expectation of the loss in Equation (3), i.e., E[L(Ỹq,Yq)],
against the prediction recovery with a statistical estimator.
Given any recovery mechanism r, the expectation of the loss
can be lower bounded by the following lemma derived from
Information Theory:

Lemma 2. Given a prediction perturbation mechanism p
such that Ŷq = p(Yq), an adaptive model extraction attack
with an arbitrary recovery function r cannot attain a smaller
gap between recovered predictions Ỹ = r(Ŷq) = r(p(Yq)) and
clean predictions Yq than the following lower bound:

E
[
∥Ỹq−Yq∥2

2
]
≥ NC

2πe
exp

(
2

NC
h(Yq|Ŷq)

)
, (14)

where h(Yq|Ŷq) is the conditional entropy. Subsequently,

E
[
L(Ỹq,Yq)−L(Yq,Yq)

]
≥ Cl

2πe
exp

(
2

NC
h(Yq|Ŷq)

)
, (15)

where l is a constant related to the loss function L , e.g., l =
0.5 for CE loss and l = 1 for MSE loss.

We prove Lemma 2 in Appendix A.3.
Lemma 2 reveals that no adaptive attack can precisely re-

cover the clean predictions when the uncertainty (i.e., the con-
ditional entropy h(Yq|Ŷq)) is still large given the perturbed pre-
dictions. Therefore, maximizing the conditional entropy can
maximize the lower bound of the expected loss E[L(Ỹq,Yq)]
and defend against the adaptive attacks with any recovery
mechanisms. Maximizing the conditional entropy is equiv-
alent to minimizing the mutual information I(Yq;Ŷq) since
h(Yq|Ŷq) = h(Yq)− I(Yq;Ŷq), so we can formulate our defense
objective as follows:

min
Ŷq

I(Yq;Ŷq) (16)

subject to ∥ŷyyq,i− yyyq,i∥1 ≤ ε,

argmax
k

ŷ(k)q,i = argmax
k

y(k)q,i ,

C

∑
k=1

ŷ(k)q,i = 1, and ŷyyq,i ⪰ 0,

for i = 1,2, · · · ,N.

Online prediction quantization We notice that without
the top-1 accuracy preserving constraint and the simplex con-
straint, Equation (16) is a rate-distortion problem in informa-
tion theory. Since minimizing the mutual information in the
rate-distortion problem is equivalent to finding the optimal

(a) (b) (c)

(d) (e) (f)

Figure 2: An illustration of non-ordered (upper) and ordered
(lower) incremental prediction quantization. The order of the
centroids is blue -> red -> green. The quantization result of
the black point changes from the blue centroid in Figure (a)
to the green centroid in Figure (c) in non-ordered incremental
quantization, while it is always quantized to the blue centroid
from Figure (d) to (f) in ordered incremental quantization.

compression method for the source data Yq under the distor-
tion constraint [11], we can adopt a classical compression
method, vector quantization, to solve this problem.3 How-
ever, we are not able to use a standard vector quantization to
compress the whole clean prediction set Yq because of the se-
quential characteristics of the query data and the requirement
for a timely response. Namely, we have to perturb each pre-
diction one by one as soon as it arrives instead of perturbing
all predictions together after getting all the query data.

A naive solution to this problem is to quantize each clean
prediction yyyq,i independently with predefined static quantiza-
tion centroids. Because static quantization does not utilize the
distribution information of the source data, it usually either
introduces a large distortion with a small number of centroids
or attains a low compression rate (large mutual information)
with a large number of centroids. Therefore, we turn to seek
an online (dynamic) quantization method that can automat-
ically increase the number of centroids to achieve a better
balance between utility and defensive performance.

Information leakage in online prediction quantization A
simple online quantization method is that we add a new cen-
troid if no existing centroids are close enough to the incoming
clean prediction. Otherwise, we quantize the incoming clean
prediction to the closest centroid that satisfies the distortion
constraint. However, we will see that this online quantiza-
tion method may cause potential information leakage to the
attacker, which may weaken the defensive performance.

3We do not consider randomized compression methods as discussed in
Remark 3.

Algorithm 1 MODELGUARD-S
1: Initialize centroids Ci = /0 for each label i = {1,2, · · · ,C}.

2: while getting new input xxxs from the user do
3: Get clean prediction yyyq = ft(xxxs) with top-1 label t.
4: if Ct == /0 or minccc∈Ct ∥ccc− yyyq∥1 > ε then
5: Append yyyq to the end of Ct .
6: end if
7: ŷyyq← the first element in {ccc ∈ Ct : ∥ccc− yyyq∥1 ≤ ε}.
8: Return ŷyyq to the user.
9: end while

We consider quantizing the t-th clean prediction yyyq,t .
We denote Yq,t−1 = [yyyq,1,yyyq,2, · · · ,yyyq,t−1] as the historical
clean perturbations, together with their perturbations Ŷq,t−1 =
[ŷyyq,1, ŷyyq,2, · · · , ŷyyq,t−1] that have been returned to the user. We
can decompose h(Yq,t |Ŷq,t) as:

h(Yq,t |Ŷq,t) =h(Yq,t−1,yyyq,t |Ŷq,t−1, ŷyyq,t)

=h(Yq,t−1|Ŷq,t−1)+h(yyyq,t |Yq,t−1,Ŷq,t−1)

− I(Yq,t−1; ŷyyq,t |Ŷq,t−1)

− I(yyyq,t ; ŷyyq,t |Yq,t−1,Ŷq,t−1). (17)

Therefore, we need to minimize the last two terms to maxi-
mize the conditional entropy:

min
ŷyyq,t

I(yyyq,t ; ŷyyq,t |Yq,t−1,Ŷq,t−1)+ I(Yq,t−1; ŷyyq,t |Ŷq,t−1). (18)

While the first term in Equation (18) can be minimized
by an online quantization method that quantizes each clean
prediction yyyq,t one by one, the second term introduces an addi-
tional requirement that the new quantization result ŷyyq,t should
not provide extra information about historical clean predic-
tions Yq,t−1 given previous quantization results Ŷq,t−1. For
instance, given the same query data xxx with the same clean pre-
diction yyyq,t1 = yyyq,t2 = ft(xxx), the quantization results at differ-
ent times t1 and t2 should be consistent: p(yyyq,t1) = p(yyyq,t2) =
p(ft(xxx)). Otherwise, the attacker can obtain new information
about the clean prediction from the difference. While the on-
line quantization increases the centroids over time to satisfy
the distortion constraint, it may also introduce inconsistency
in the quantization result. An example of such information
leakage in online quantization is shown in the upper three
figures of Figure 2, where we always quantize the new clean
prediction to the nearest centroid. After the online quanti-
zation adds a new centroid (the green point) to satisfy the
distortion constraint for new inputs coming in Figure (c), the
quantization result of the black point changes from the blue
point to the green point. This change allows the attacker to
know that the green point is near the boundary of the blue and
green areas in Figure (c) since the quantization result can be
changed only when the point is near the boundary.

MODELGUARD-S: an ordered incremental prediction
quantization Based on the analysis above, we propose the
second variant, MODELGUARD-S, which is described in Al-
gorithm 1 and illustrated in Figure 2 (d) - (f). The key idea
of MODELGUARD-S is to automatically increase the number
of centroids while maintaining the order of the centroids. For
each class, MODELGUARD-S maintains one set of centroids
for quantizing the predictions with the top-1 label of this class,
such that MODELGUARD-S does not change the top-1 label
after quantization (Line 1 in Algorithm 1). Given a new clean
prediction for perturbing, if none of the existing centroids in
the set are close enough to satisfy the distortion constraint,
we append this clean prediction as a new centroid to the end
of the set (Lines 4-5 in Algorithm 1). Each clean prediction
is always quantized to the first centroid that satisfies the dis-
tortion constraint (Line 7 in Algorithm 1), such that we avoid
the information leakage in different quantization results for
the same data queried at different times.

An intuitive explanation of why prediction quantization can
defend against adaptive attacks is that quantization maps all
clean predictions in a cluster to the same perturbed prediction,
i.e., the quantization centroid. Therefore, the attacker cannot
distinguish between different clean predictions in the same
cluster and the Bayes estimator becomes the mean of the
cluster, which makes it unable to recover the clean prediction
precisely given a perturbed prediction.

4 Experiments

In this section, we evaluate MODELGUARD and compare it
with previous defense methods with extended experiments.
We first introduce the common experiment settings in Sec-
tion 4.1, then we show the defensive performance of different
defense methods against a wide range of attack methods in
Section 4.2. We will also give ablation studies to further ex-
plore and understand our MODELGUARD in Section 4.3

4.1 Experiment Setup

Training datasets and model architectures of target mod-
els In Table 1, we summarize the training datasets and the
architectures of the target models. We conduct experiments
with four target models trained on four different image classi-
fication datasets respectively: Caltech256 [15], CUB200 [45],
CIFAR100, and CIFAR10 [26]. Since one of the baselines,
Adaptive Misinformation [24], requires using Outlier Expo-
sure (OE) [19] that trains the model with an additional OE
dataset, we train all the target models used in our experiments
with OE, adopting Indoor67 [39] and SVHN [33] as the OE
dataset. We adopt two different models as the target models:
ResNet50 [17] for Caltech256 and CUB200, and VGG16-
BN [42] for CIFAR100 and CIFAR10. We also report the
top-1 accuracy of each target model in Table 1.

Query datasets and model architectures of substitute mod-
els The query datasets and architectures of the substitute
models are also summarized in Table 1. When conducting
model extraction attacks, We use ImageNet1k [12] as the
query dataset for target models trained on Caltech256 and
CUB200, while we use TinyImageNet200 [32] as the query
dataset for target models trained on CIFAR100 and CIFAR10.
Following Orekondy et al. [36], we use the same model archi-
tecture of the target model for each substitute model.

Evaluation metric Following previous literature [24, 36],
we mainly use the extraction accuracy, i.e., the top-1 accuracy
of the substitute model tested on the test set of the target
model, as the metric of defensive performance. We also use
fidelity, i.e., the top-1 label agreement between the target
model and the substitute model [28], as an auxiliary metric in
a part of our experiments. The lower extraction accuracy and
fidelity, the better defensive performance.

Attack algorithms Each model extraction attack algorithm
can be decomposed into two parts: the query strategy and the
attack strategy, and each query strategy can be combined with
different attack strategies.

We consider two query strategies: KnockoffNet [35] and
JBDA-TR [23]. The query dataset of KnockoffNet consists of
only natural data, while JBDA-TR generates synthetic data
from a small amount of natural data (called seed set) by using
Jacobian-based data augmentation. We sample 50,000 images
as the query dataset for KnockoffNet and 1,000 images as the
seed set for JBDA-TR. We fix the random seed to sample the
same images for all attack strategies and defense methods.

We consider the following attack strategies, including both
weak adaptive attacks (Top-1 Attack, S4L Attack, and Smooth-
ing Attack) and strong adaptive attacks (D-DAE Attack, D-
DAE+ Attack, and Partial Bayes Attack):

1. Naive Attack: No prediction recovery is performed, and
standard CE loss is used for training the substitute model.

2. Top-1 Attack: Only the hard top-1 label in the perturbed
prediction is used for training the substitute model.

3. S4L Attack [21]: A self-supervised rotation loss is added
to the CE loss for training the substitute model. S4L
attack can be viewed as an adaptive attack without an
explicit prediction recovery.

4. Smoothing Attack [29]: The query image is augmented
by random affine augmentations. The predictions of sev-
eral augmented images are averaged as the recovered
prediction of the original image.

5. D-DAE [8]: A generative model is trained to recover
the clean prediction. The training data (i.e.,(perturbed
prediction, clean prediction) pairs) of this generative
model is generated by small shadow models.

Table 1: Overview of experiment settings. The dataset and model architecture selections are partly following Orekondy et al. [36].
Defender Training Dataset Xt Caltech256 CUB200 CIFAR100 CIFAR10

OE Dataset XOE Indoor67 Indoor67 SVHN SVHN
Target Model wwwt ResNet50 ResNet50 VGG16-BN VGG16-BN

Top-1 Accuracy of wwwt 85.67% 82.19% 75.11% 93.70%
Attacker Query Dataset Xq ImageNet1k ImageNet1k TinyImageNet200 TinyImageNet200

Substitute Model wwws ResNet50 ResNet50 VGG16-BN VGG16-BN

6. D-DAE+: D-DAE+ amends the original D-DAE method
by using the lookup table generated for Partial Bayes
Attack as the training data of the generative model.

7. Partial Bayes (pBayes) Attack: The independent sam-
pling and the neighborhood sampling are used to estab-
lish the Bayes estimator as we proposed in Section 3.4.

Defense methods We evaluate the following defense meth-
ods in our experiments:

1. No defense (None): No perturbation is added to the
prediction, and the clean prediction is always returned
to the user.

2. Reverse Sigmoid Defense (RevSig) [28]: A reverse sig-
moid function is used to perturb the clean prediction to
attain large CE loss LCE(Yq,Ŷq).

3. Maximizing Angular Deviation (MAD) [36]: The pertur-
bation is obtained by maximizing the angular deviation
between the gradient of the CE loss calculated with clean
predictions Yq and the gradient of the CE loss calculated
with perturbed predictions Ŷq.

4. Adaptive Misinformation (AM) [24]: An out-of-
distribution (OOD) detection mechanism is combined
with the prediction perturbation, and only the prediction
of an OOD query data is perturbed to a wrong prediction
generated from another misinformation function f̂s.

5. Top-1 Defense (Top-1): Only the hard top-1 label is re-
turned to the user. Top-1 Defense can be viewed as a
static quantization method that quantizes all the predic-
tions with the same top-1 label to one centroid. Thus,
Top-1 defense may introduce large distortions in the
perturbed predictions with too few centroids.

6. Rounding Defense (Rounding): Only one decimal place
is kept in each dimension of the prediction vector. Round-
ing defense can be viewed as another static quantization
method that quantizes each dimension of the prediction
independently. For example, yyy = [0.12,0.31,0.26,0.31]
is quantized as ŷyy = [0.1,0.3,0.3,0.3].

7. MODELGUARD-W: The perturbations are calculated by
solving Equation (9) as introduced in Section 3.3.

8. MODELGUARD-S: The predictions are quantized as in-
troduced in Section 3.5.

We provide more details of the above-mentioned attack and
defense methods, as well as the model training hyperparame-
ters in Appendix B.

4.2 Experimental Results
In this section, we conduct two groups of experiments. In
the first group, we evaluate the performance of each defense
method under fixed utility constraints to show that our method
outperforms other baselines under the same utility constraint.
In the second group, we show the privacy-utility trade-off
of different defense methods with different distortion bud-
gets, and we will see that our method attains a better balance
between the defensive performance and the model utility com-
pared with other methods.

Defensive performance with fixed utility constraints We
first evaluate all the defenses under fixed utility constraints
that keep ℓ1 distortion not more than 1.0 and top-1 accuracy
not changed. More specifically, we fix ε = 1.0 for MAD,
MODELGUARD-W, and MODELGUARD-S, and we fix γ =
0.2 and β (0.008, 0.011, 0.02, 0.21 for Caltech256, CUB200,
CIFAR100, and CIFAR10 respectively) for RevSig to make
the maximal distortion (i.e., the largest distortion imposed by
each defense in all perturbed predictions ŷyyq,i ∈ Ŷq) at around
1.0 4. For AM, we fix τ (0.25, 0.3, 0.4, 0.7 for Caltech256,
CUB200, CIFAR100, and CIFAR10 respectively) such that
the protected accuracy (i.e., the accuracy of the target model
wwwt on the test set when adding perturbations to the predictions)
does not drop significantly.

The attack and defense results on target models trained on
Caltech256, CUB200, CIFAR100 and CIFAR10 are reported
in Table 2, Table 3, Table 4 and Table 5 respectively. Each
row reports the extraction accuracy of the substitute model
using the specific attack method against the specific defense
method given in each column. We report the maximal ex-
traction accuracy and fidelity among all the attacks against
each defense since we hope to verify each defense against the
strongest attack. We also report the maximal ℓ1 distortion and
the protected accuracy as the measurements of utility loss.

4We are not able to control the distortion of AM, Top-1 and Rounding
Defense, thus we report their vanilla ℓ1 distortions.

Table 2: Defensive performance of different defense methods against different attacks on the target model trained on Caltech256.
Query Method Attack Method None RevSig MAD AM Top-1 Rounding MODELGUARD-W MODELGUARD-S

KnockoffNet

Naive Attack 83.00% 76.92% 66.20% 76.22% 72.47% 79.53% 56.02% 71.72%
Top-1 Attack 72.47% 72.47% 72.47% 67.20% 72.47% 72.47% 72.47% 72.47%
S4L Attack 81.22% 74.09% 61.83% 76.17% 72.67% 78.33% 52.25% 70.59%

Smoothing Attack 81.30% 75.98% 68.36% 74.02% 75.81% 78.75% 53.53% 74.05%
D-DAE 83.00% 80.76% 80.16% 77.38% 73.23% 75.20% 50.97% 74.28%

D-DAE+ 83.00% 81.67% 81.62% 77.52% 69.95% 79.59% 73.16% 74.97%
pBayes Attack 83.00% 82.81% 82.80% 82.78% 68.31% 81.76% 80.83% 75.17%

JBDA-TR

Naive Attack 63.16% 53.11% 8.48% 37.80% 29.86% 44.92% 4.88% 41.62%
Top-1 Attack 29.86% 29.86% 29.86% 21.97% 29.86% 29.86% 29.86% 29.86%

D-DAE 63.16% 54.23% 17.89% 37.44% 26.02% 40.39% 3.06% 40.70%
D-DAE+ 63.16% 63.39% 35.06% 42.75% 32.02% 52.23% 23.48% 43.33%

pBayes Attack 63.16% 62.55% 36.26% 62.86% 31.25% 54.78% 25.73% 42.80%
Max Accuracy of wwws 83.00% 82.81% 82.80% 82.78% 75.81% 81.76% 80.83% 75.17%
Max Fidelity of wwws 87.94% 87.66% 87.78% 87.89% 78.39% 86.16% 85.00% 79.05%
Max ℓ1 Distortion 0.00 1.01 1.00 2.00 1.99 1.00 1.00 1.00

Protected Accuracy of wwwt 85.67% 85.67% 85.67% 84.16% 85.67% 85.67% 85.67% 85.67%

Table 3: Defensive performance of different defense methods against different attacks on the target model trained on CUB200.
Query Method Attack Method None RevSig MAD AM Top-1 Rounding MODELGUARD-W MODELGUARD-S

KnockoffNet

Naive Attack 71.28% 57.71% 49.90% 52.09% 49.10% 63.27% 32.14% 52.97%
Top-1 Attack 49.10% 49.10% 49.10% 27.27% 49.10% 49.10% 49.10% 49.10%
S4L Attack 66.21% 49.86% 43.46% 44.80% 45.58% 56.16% 25.16% 48.03%

Smoothing Attack 66.08% 53.18% 48.84% 49.12% 53.33% 59.27% 29.77% 52.36%
D-DAE 71.28% 61.41% 60.94% 39.09% 48.88% 46.10% 23.11% 45.51%

D-DAE+ 71.28% 68.93% 69.16% 53.43% 29.01% 63.91% 58.97% 53.07%
pBayes Attack 71.28% 71.35% 71.16% 71.61% 33.76% 66.33% 67.69% 55.56%

JBDA-TR

Naive Attack 28.48% 19.90% 0.59% 5.25% 11.48% 10.72% 0.54% 12.84%
Top-1 Attack 11.48% 11.48% 11.48% 2.05% 11.48% 11.48% 11.48% 11.48%

D-DAE 28.48% 21.21% 4.59% 4.07% 5.92% 10.06% 0.81% 7.32%
D-DAE+ 28.48% 27.91% 7.80% 19.16% 3.12% 14.38% 2.86% 10.10%

pBayes Attack 28.48% 26.49% 5.94% 26.15% 4.94% 15.55% 4.35% 12.91%
Max Accuracy of wwws 71.28% 71.35% 71.16% 71.61% 53.33% 66.33% 67.69% 55.56%
Max Fidelity of wwws 79.67% 79.20% 78.86% 79.70% 57.59% 72.52% 73.85% 59.27%
Max ℓ1 Distortion 0.00 1.04 1.00 1.88 1.99 1.00 1.00 1.00

Protected Accuracy of wwwt 82.19% 82.19% 82.19% 81.22% 82.19% 82.19% 82.19% 82.19%

pBayes Attack outperforms other attacks Since we hope
to verify our defense against the strongest adaptive attack,
we first compare the results of different attacks. Among all
the attacks, we can see that KnockoffNet + pBayes Attack
attains the highest extraction accuracy in most cases. Previous
studies have shown that when attacking against prediction
perturbation defenses, model extraction attacks with natural
data attain better results than attacks with synthetic data [8,
36]. And the superiority of pBayes Attack aligns with our
analysis in Section 3.4 that pBayes Attack utilizes the Bayes
estimator which can minimize the squared posterior expected
loss. Some exceptions where pBayes Attack is not the best
attack method could be attributed to the imperfect lookup
table. Since we do not have the infinite computing power
to generate the complete lookup table, a finite number of
(perturbed predictions, clean predictions) pairs in the lookup
table may introduce bias into the derived Bayes estimator.

MODELGUARD outperforms existing defenses When de-
fending against the strongest attack, Top-1 Defense and MOD-

ELGUARD-S with strong prediction quantization always attain
lower maximal extraction accuracy than the other defenses.
While pBayes Attack can penetrate the other defenses and
achieve a comparable extraction accuracy as attacking against
no defense, none of the attacks can weaken the defensive
performance of Top-1 Defense or MODELGUARD-S to attain
a significantly higher extraction accuracy than Naive Attack.
This result is consistent with our analysis in Section 3.5 that
no attacker can exactly recover the clean predictions from the
quantized predictions because the quantization is not invert-
ible. While Top-1 Defense achieves a little lower extraction
accuracy compared with MODELGUARD-S in some cases, it
introduces a much larger ℓ1 distortion that exceeds the dis-
tortion constraint. Thus, MODELGUARD-S should be chosen
among all defenses we discuss since it is the strongest defense
against strong adaptive attacks under utility constraints.

Although Rounding Defense also contains prediction quan-
tization in its perturbation mechanism, it fails to achieve
strong defensive performance because of static quantization.
Namely, Rounding Defense introduces too many centroids

Table 4: Defensive performance of different defense methods against different attacks on the target model trained on CIFAR100.
Query Method Attack Method None RevSig MAD AM Top-1 Rounding MODELGUARD-W MODELGUARD-S

KnockoffNet

Naive Attack 65.96% 62.80% 59.37% 63.45% 55.54% 63.59% 53.09% 57.52%
Top-1 Attack 55.54% 55.54% 55.54% 52.84% 55.54% 55.54% 55.54% 55.54%
S4L Attack 62.82% 58.88% 54.29% 60.50% 55.37% 60.62% 48.16% 54.51%

Smoothing Attack 65.96% 63.50% 60.81% 64.05% 61.19% 64.71% 52.47% 59.74%
D-DAE 65.96% 63.61% 63.09% 61.93% 57.14% 62.68% 49.38% 59.10%

D-DAE+ 65.96% 64.26% 64.22% 61.79% 56.97% 63.42% 57.09% 58.93%
pBayes Attack 65.96% 65.44% 65.25% 65.59% 57.15% 64.83% 62.54% 58.67%

JBDA-TR

Naive Attack 40.52% 33.39% 11.61% 29.66% 22.57% 35.55% 8.88% 25.90%
Top-1 Attack 22.57% 22.57% 22.57% 15.72% 22.57% 22.57% 22.57% 22.57%

D-DAE 40.52% 29.63% 12.73% 25.96% 17.44% 25.32% 3.76% 22.43%
D-DAE+ 40.52% 37.81% 21.10% 30.01% 22.36% 34.15% 14.61% 25.73%

pBayes Attack 40.52% 39.03% 26.49% 39.73% 23.22% 38.11% 21.15% 25.94%
Max Accuracy of wwws 65.96% 65.44% 65.25% 65.59% 61.19% 64.83% 62.54% 59.74%
Max Fidelity of wwws 72.05% 71.51% 71.35% 71.79% 65.67% 70.70% 67.35% 64.18%
Max ℓ1 Distortion 0.00 1.00 1.00 1.99 1.98 1.00 1.00 1.00

Protected Accuracy of wwwt 75.11% 75.11% 75.11% 74.30% 75.11% 75.11% 75.11% 75.11%

Table 5: Defensive performance of different defense methods against different attacks on the target model trained on CIFAR10.
Query Method Attack Method None RevSig MAD AM Top-1 Rounding MODELGUARD-W MODELGUARD-S

KnockoffNet

Naive Attack 87.32% 84.86% 83.61% 82.84% 83.51% 86.91% 75.06% 84.11%
Top-1 Attack 83.51% 83.51% 83.51% 80.30% 83.51% 83.51% 83.51% 83.51%
S4L Attack 85.99% 82.04% 80.72% 81.86% 83.72% 85.49% 71.23% 82.80%

Smoothing Attack 87.86% 85.27% 84.07% 84.81% 86.16% 87.37% 76.26% 85.36%
D-DAE 87.32% 85.62% 84.82% 77.30% 84.81% 86.96% 63.79% 84.97%

D-DAE+ 87.32% 86.58% 86.84% 84.17% 84.26% 86.93% 58.23% 84.27%
pBayes Attack 87.32% 86.58% 87.20% 87.13% 84.04% 86.70% 85.63% 84.63%

JBDA-TR

Naive Attack 75.50% 66.54% 53.32% 59.56% 62.55% 73.38% 38.13% 61.55%
Top-1 Attack 62.55% 62.55% 62.55% 53.71% 62.55% 62.55% 62.55% 62.55%

D-DAE 75.50% 55.89% 40.63% 55.59% 59.61% 67.83% 16.00% 61.14%
D-DAE+ 75.50% 72.48% 67.45% 65.59% 63.28% 72.67% 31.86% 64.65%

pBayes Attack 75.50% 70.90% 67.25% 74.99% 63.27% 74.46% 63.46% 66.57%
Max Accuracy of wwws 87.86% 86.58% 87.20% 87.13% 86.16% 87.37% 85.63% 85.36%
Max Fidelity of wwws 89.72% 89.20% 89.73% 89.56% 88.12% 89.47% 87.97% 87.14%
Max ℓ1 Distortion 0.00 1.02 1.00 2.00 1.80 0.43 1.00 1.00

Protected Accuracy of wwwt 93.70% 93.70% 93.70% 92.42% 93.70% 93.70% 93.70% 93.70%

and fails to reduce the mutual information I(Yq;Ŷq).
We notice that when defending the target model trained on

CIFAR10, there is only a small difference between different
defense methods against strong adaptive attacks. Because of
the small number of classes, the attacker can easily extract the
target model even with only the hard label (i.e., Top-1 Attack).
As a result, no defense method can defend against the model
extraction attack effectively under the top-1 accuracy preserv-
ing constraint. In our result, MODELGUARD-S attains the best
defensive performance with the lowest maximal extraction
accuracy and fidelity among all defenses, which verifies the
effectiveness of MODELGUARD-S in this extreme case.

MODELGUARD-W vs. MODELGUARD-S When defend-
ing against Naive Attack, Smoothing Attack and S4L Attack,
MODELGUARD-W attains the lowest extraction accuracy
while satisfying both top-1 accuracy preserving constraint and
distortion constraint. However, adaptive attacks with strong
prediction recovery mechanisms, e.g., D-DAE+ and pBayes
Attack, can significantly weaken the defensive performance

of MODELGUARD-W. We can see that pBayes Attack can
penetrate MODELGUARD-W and achieve a comparable ex-
traction accuracy as attacking against no defense. This is be-
cause D-DAE+ and pBayes Attack significantly deviate from
the assumption of MODELGUARD-W that the attack is nearly
non-adaptive, i.e., Ỹq ≈ Ŷq. In contrast, MODELGUARD-S con-
siders the strongest adaptive attack that can lead to the worst
defensive performance, thus no attacks including D-DAE+
and pBayes Attack can attain significantly higher extraction
accuracy than Naive Attack against MODELGUARD-S. Since
strong attacks should be considered by the defender, MODEL-
GUARD-S should be chosen among the two variants.

Impact of the distortion budget To evaluate the privacy-
utility balance of different defenses, we now change the dis-
tortion budget in a range of [0,2.0], which covers all possi-
ble ℓ1 distortion values under the validity constraint. We set
ε∈ {0.25,0.5,0.75,1.0,1.25,1.5,1.75,2.0} for MAD, MOD-
ELGUARD-W and MODELGUARD-S, and we vary β∈ [0,1.0]
with fixed β = 0.2 for RevSig to allow different distortions.

0.0 0.5 1.0 1.5 2.0
ℓ1 Distortion

0%

20%

40%

60%

80%

Ex
tra

ct
io

n
Ac

cu
ra

cy

Caltech256: Naive Attack

0.0 0.5 1.0 1.5 2.0
ℓ1 Distortion

0%

20%

40%

60%

CUB200: Naive Attack

0.0 0.5 1.0 1.5 2.0
ℓ1 Distortion

0%

20%

40%

60%

CIFAR100: Naive Attack

0.0 0.5 1.0 1.5 2.0
ℓ1 Distortion

20%

40%

60%

80%

CIFAR10: Naive Attack

0.0 0.5 1.0 1.5 2.0
ℓ1 Distortion

70%

75%

80%

Ex
tra

ct
io

n
Ac

cu
ra

cy

Caltech256: pBayes Attack

0.0 0.5 1.0 1.5 2.0
ℓ1 Distortion

40%

50%

60%

70%
CUB200: pBayes Attack

0.0 0.5 1.0 1.5 2.0
ℓ1 Distortion

58%

60%

62%

64%

66%
CIFAR100: pBayes Attack

0.0 0.5 1.0 1.5 2.0
ℓ1 Distortion

84%

85%

86%

87%

CIFAR10: pBayes Attack

None RevSig MAD ModelGuard-W ModelGuard-S AM Top-1 Rounding

Figure 3: The extraction accuracy of Naive Attack (upper) and Partial Bayes Attack (lower) against defenses with different ℓ1
distortion budgets for the perturbation.

We show the extraction accuracy of Naive Attack and pBayes
Attack against each defense in Figure 3.

As shown in the upper four figures, MODELGUARD-W
can attain the lowest extraction accuracy given different ℓ1
distortion budgets when defending against Naive Attack in
most cases. MAD and RevSig can attain similar results with
MODELGUARD-W only when the distortion budget is very
large (e.g., 2.0). The superiority of MODELGUARD-W against
Naive Attack is guaranteed by the optimality of Linear Pro-
gramming when solving Equation (9), while previous meth-
ods are not able to guarantee the optimal defensive perfor-
mance because of heuristic perturbation mechanisms.

Although MODELGUARD-S does not attain a strong de-
fense against Naive Attack because MODELGUARD-S is max-
imizing the pessimistic lower bound of the objective function
in Equation (3), it shows excellent resistance to pBayes Attack
which utilizes a strong prediction recovery. MODELGUARD-S
consistently attains the lowest extraction accuracy among all
the defenses under any distortion budget, and other defenses
fail to defend against pBayes Attack until a large distortion
budget (e.g., larger than 1.5). While Top-1 Defense lacks
flexibility, MODELGUARD-S can easily adapt to different
distortion budgets and attain the best privacy-utility trade-off.

We notice that there are some fluctuations in the extrac-
tion accuracy of pBayes Attack when attacking against some
defenses, which makes the extraction accuracy not monotoni-
cally decrease w.r.t the increase of the distortion budget. This
is because the lookup table we use in pBayes Attack is ran-
domly sampled, which inevitably introduces some variance
in the recovery.

4.3 Ablation Studies
How does conditional entropy influence defensive perfor-
mance? Since the conditional entropy h(Ya|Ŷa) generally
decreases with the increasing number of centroids used for
quantization, we plot how the extraction accuracy and the
mean recovery distance E∥ỹq−yq∥2 of pBayes Attack change
with respect to the number of centroids. We can see in Figure 4
that with more centroids used in quantization, i.e., smaller
conditional entropy, the extraction accuracy increases while
the recovery distance decreases. This result aligns with our
theory that the adaptive attack can recover the prediction more
precisely and attain higher extraction accuracy when the con-
ditional entropy is smaller.

How may a non-ordered incremental prediction quanti-
zation leak information? As we discussed in Section 3.5,
an online quantization that does not output consistent results
given the same clean prediction may leak information to the
attacker. We now show how this information leakage can hap-
pen in practice. We consider a simple attack strategy called m
Queries Per Image (m-QPI), where the attacker repeats query-
ing the target model with the same query dataset for m times
and use the average of the query results as Ỹq to train the sub-
stitute model. For example, in 1-QPI, the attacker conducts
only one query through the whole query dataset, which is the
same as Naive Attack. In 2-QPI, the attacker conducts the
second query after querying through the whole query dataset
for the first time, and then the attacker averages the query
results of the first query and the second query.

We consider the non-ordered incremental quantization that

103 104

Number of Centroids

70%

75%

80%

Ex
tra

ct
io

n
Ac

cu
ra

cy

Caltech256: ModelGuard-S

103 104

Number of Centroids

40%

50%

60%

70%
CUB200: ModelGuard-S

102 103 104

Number of Centroids

58%

60%

62%

64%
CIFAR100: ModelGuard-S

101 102 103

Number of Centroids
84%

85%

86%

CIFAR10: ModelGuard-S

0.1

0.2

0.3

0.05

0.10

0.15

0.05

0.10

0.15

0.20

0.25

0.05

0.10

0.15

0.20

Re
co

ve
ry

 D
ist

an
ce

Figure 4: The extraction accuracy (blue line) and the mean recovery distance (red line) of Partial Bayes Attack against
MODELGUARD-S with different numbers of centroids.

Table 6: The mean recovery distance of 1-QPI (1st column)
and 2-QPI (2nd column) on the changed predictions. The
3rd column gives the number of predictions changed in the
second query of 2-QPI.

Xt 1-QPI 2-QPI Changed Predictions
Caltech256 0.300 0.193 2335
CUB200 0.205 0.142 2443

CIFAR100 0.372 0.239 2071
CIFAR10 0.463 0.252 393

0.0 0.5 1.0 1.5 2.0
ℓ1 Distortion ε

0.5

0.6

0.7

0.8

0.9

1.0

OO
D

De
te

ct
io

n
AU

RO
C

Top-1
0 10 20 30 40 50

Number of Queries (k)
0

200

400

600

Nu
m

be
r o

f C
en

tro
id

s

Caltech256 CUB200 CIFAR100 CIFAR10

Figure 5: Left: AUROC of the OOD detector given predictions
perturbed by MODELGUARD-S with different ℓ1 distortion
budgets ε. Right: Number of centroids created by MODEL-
GUARD-S along the query procedure.

always quantizes the clean prediction to the closest centroid.
In Table 6, we report how many quantization results among
total 50,000 queries are changed in the second query of 2-
QPI, together with the mean recovery distance E∥ỹq−yq∥2
of 1-QPI and 2-QPI on these changed predictions. We can
see that the recovery distance can be significantly decreased
by 2-QPI, which verifies that the non-consistent quantization
results in a non-ordered incremental quantization may cause
information leakage to the attacker.

We do not report the extraction accuracy here because the
proportion of changed quantization results is too small (less
than 5%) to cause a significant extraction accuracy change in
our experiments. However, there still exists a potential risk
of more significant information leakage in a larger system
by using a non-ordered quantization. MODELGUARD-S with
ordered quantization can completely eliminate such potential
risk with consistent quantization results.

How does MODELGUARD influence the utility in the down-
stream task? While ℓ1 distortion in the prediction is a
generic metric for measuring the utility loss of the perturba-
tion, a specific utility metric may be considered for a specific
downstream task when determining the distortion budget ε

used by MODELGUARD. We consider a specific downstream
task, out-of-distribution (OOD) detection, and we show how
the ℓ1 distortion influences the AUROC of the OOD detec-
tor in Figure 5. Following [19], we use the Maximum Soft-
max Probability maxk y(k) as the in-distribution (ID) score.
We use Xt as the ID set, and we use DTD [9] as the OOD
set for Caltech256 and CUB200, while GTSRB [20] for CI-
FAR100 and CIFAR10. We can see that MODELGUARD-S
can maintain a good detection performance (AUROC≥ 0.8)
with ε≤ 0.75, while the detection performance is still accept-
able (AUROC ≥ 0.7 is acceptable according to [18]) until
ε = 1.5 in most cases. Notice that Top-1 Defense always has
AUROC = 0.5 because it only returns one-hot vectors for
both ID and OOD queries.

How does the independent sampling influence the perfor-
mance of Partial Bayes Attack against MODELGUARD?
Since MODELGUARD-S utilizes dynamic quantization, the
perturbation result depends on the historical queries that
increase the number of centroids. However, we observe
that MODELGUARD-S will behave like a static quantization
method with almost invariant centroids after a short "warm-
up" phase. Figure 5 shows the number of centroids used
in MODELGUARD-S with ε = 1.5, and we can see that the
centroids increase slowly after the first 4,000 queries. This
makes Partial Bayes Attack with independent sampling in
Equation (13) attain similar performance with the perfect
Bayes Attack that samples the whole prediction sequence in
Equation (12) against MODELGUARD-S, while avoiding huge
sampling cost for sampling in a high dimension.

How efficient is MODELGUARD? Since the real-time na-
ture of an MLaaS system is usually important in many sce-
narios, the computational overhead introduced by the defense
mechanism should be as little as possible. We compare the
response time for returning the prediction of a single query
to the user with different defenses in Figure 6. Among all de-

0

100

200

300

400

Re
sp

on
se

 T
im

e
(m

s)

Caltech256

0

5

10

15

0

50

100

150

200

250

300

350

400

Re
sp

on
se

 T
im

e
(m

s)

CUB200

0

5

10

15

0

25

50

75

100

125

150

175

200

Re
sp

on
se

 T
im

e
(m

s)

CIFAR100

0

2

4

0

25

50

75

100

125

150

175

Re
sp

on
se

 T
im

e
(m

s)

CIFAR10

0

2

4

None Top-1 Rounding RevSig AM ModelGuard-S MAD ModelGuard-W

Figure 6: Response time of different defenses.

fenses, only MAD and MODELGUARD-W introduce a signif-
icant computational overhead when perturbing the prediction.
MODELGUARD-S requires only marginal extra computation
compared with None Defense since we only need to calculate
the distance between the incoming clean prediction and the
existing centroids when quantizing each prediction. Moreover,
MODELGUARD-S only needs a small extra memory to store
the quantization centroids. To summarize, MODELGUARD-S
attains both high computation and memory efficiency.

5 Related Works

Model extraction attacks Machine Learning (ML) systems
have been shown to be vulnerable to various kinds of attacks,
such as evasion attacks [14], data poisoning attacks [3], back-
door attacks [16] and so on. In this paper, we focus on a
specific attack called model extraction attack that aims at
compromising the confidentiality of ML models. Model ex-
traction attack aims at stealing the parameters or functionality
of the target model deployed in the ML-as-a-Service (MLaaS)
system such that the attacker can retain access to the service
without paying [43]. Furthermore, the extracted substitute
model can expose the vulnerability of the target model to the
attacker such that the attacker can conduct powerful down-
stream attacks on the target model, such as white-box model
evasion attacks [38], hyperparameter stealing attacks [46],
and model inversion attacks [41]. Model extraction attacks
can be conducted in different ways, e.g., via the power side
channel [2] or via the query interactions [34], while we focus
on query-based model extraction attacks in this paper.

Previous studies have shown that the attacker can use a
small number of queries to attain high-fidelity model extrac-
tion, with either natural data [10,35] or synthetic data [23,44].
In addition, active learning [7] and semi-supervised learn-
ing [21] can also be applied in model extraction attacks to
further improve query efficiency and attain higher extracted
accuracy, which makes these attacks even more practical and
threatening in realistic settings.

Recently, as more defenses against the model extraction
attack have been proposed, adaptive model extraction attacks
that can penetrate the defenses are getting more attention.
Lee et al. [28] explore using a DNN model to recover the

clean predictions given perturbed predictions from the target
defended by a known defense mechanism. Chen et al. [8]
complement this idea with a defense detector so that the at-
tacker can detect an unknown defense and recover the clean
predictions accordingly. In this work, we additionally propose
a strong adaptive model extraction attack method based on the
Bayesian estimator. We evaluate MODELGUARD and show
its resistance against these adaptive attacks.

Defenses against model extraction attacks A wealth of
works strive to defend the target against model extraction
attacks and many different defense methods have been pro-
posed. There are mainly four types of defenses:

(a) Model extraction detection detects the model extrac-
tion attacker based on the assumption that the query data
from the attacker is distributed differently from the benign
users [23,37]. Such detection can be bypassed by using query
data that is similar to the data of benign users, e.g., natural
data from a domain similar to the task domain of the target.

(b) Model information monitoring monitors the informa-
tion of the model exposed to each user such that the system
can reject to respond [25], add more noise in the response [47],
or increase the query cost [13], for a user that may obtain too
much information for model extraction. This kind of defense
cannot defend against collaborative attacks, where each indi-
vidual attacker queries the system with only a small amount
of data, and all the attackers share the query results to collab-
oratively train a single substitute model.

(c) Model watermarking forces the target model to learn
a specific input-output pair (i.e., watermark), such that the
attacker cannot remove this “backdoor” when extracting the
model, and the owner can claim the ownership with this non-
removable watermark [1,4,6,22]. Model watermarking cannot
prevent “stealth attackers” who only use the substitute model
in private or for subsequent attacks.

(d) Prediction perturbation perturbs the prediction re-
turned to the user to enlarge the loss [24,28] or change the gra-
dient direction [30, 36] calculated with the perturbed predic-
tion, such that the attacker cannot extract the target correctly.
Although prediction perturbation makes the least assump-
tions about the attacker, previous perturbation methods either
achieve marginal defensive performance or impose a large

utility loss because of heuristic perturbation mechanisms. In
addition, there is little discussion about the prediction pertur-
bation against adaptive attacks. In this work, we try to develop
a novel prediction perturbation framework, MODELGUARD,
to attain a better privacy-utility trade-off. MODELGUARD
also provides the first information-theoretic prediction pertur-
bation defense against adaptive model extraction attacks.

6 Conclusion, Limitations, and Future Work

In this paper, we propose MODELGUARD, a novel predic-
tion perturbation defense against adaptive model extraction
attacks. MODELGUARD investigates a general optimization
problem that aims at defending against different kinds of
model extraction attacks while maintaining a high utility of
the protected system. We explore two different variants, MOD-
ELGUARD-W and MODELGUARD-S, to efficiently solve the
optimization problem. Especially, MODELGUARD-S utilizes
an information-theoretic method that can defend against the
adaptive attack with the optimal prediction recovery. Our
experimental results show that MODELGUARD-S attains a
significantly better defensive performance than other base-
lines against adaptive attacks while maintaining a high utility.

Although MODELGUARD-S is theoretically resistant to
the perfect Bayes Attack, because of our limited computing
power, we are not able to evaluate the defensive performance
of MODELGUARD-S against the perfect Bayes Attack with
a complete lookup table. Our proposed Partial Bayes Attack
samples a partial lookup table from the complete lookup table,
which may cause a biased Bayes estimator and a suboptimal
attack performance. It is a meaningful future work to derive a
better estimation method for the perfect Bayes Attack.

Another important future direction is extending the de-
fenses against model extraction attacks to domains beyond
classification. While we only evaluate our defenses on image
classification tasks following previous works [24, 36], our
theory and methodology can adapt to different tasks by mod-
ifying the utility and validity constraints, as well as the loss
function L in the objective function.

Acknowledgements

We appreciate the constructive comments of the reviewers
and the shepherd. This research is generously supported
in part by Gift from Accenture, NSF CNS-2112562, CNS-
2131859, CNS-2125977, CNS-1937786, CNS-1937787, and
CNS-1822085, as well as ARO W911NF2110182.

References

[1] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas,
and Joseph Keshet. Turning your weakness into a strength:
Watermarking deep neural networks by backdooring. In 27th
USENIX Security Symposium (USENIX Security 18), 2018.

[2] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan
Picek. Csi neural network: Using side-channels to recover
your artificial neural network information. arXiv preprint
arXiv:1810.09076, 2018.

[3] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poison-
ing attacks against support vector machines. arXiv preprint
arXiv:1206.6389, 2012.

[4] Franziska Boenisch. A survey on model watermarking neural
networks. arXiv preprint arXiv:2009.12153, 2020.

[5] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe.
Convex optimization. Cambridge university press, 2004.

[6] Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. Ipguard:
Protecting intellectual property of deep neural networks via
fingerprinting the classification boundary. In ACM Asia Con-
ference on Computer and Communications Security, 2021.

[7] Varun Chandrasekaran, Kamalika Chaudhuri, Irene Giacomelli,
Somesh Jha, and Songbai Yan. Exploring connections between
active learning and model extraction. In 29th USENIX Security
Symposium (USENIX Security 20), 2020.

[8] Yanjiao Chen, Rui Guan, Xueluan Gong, Jianshuo Dong, and
Meng Xue. D-dae: Defense-penetrating model extraction at-
tacks. In 2023 IEEE Symposium on Security and Privacy (SP),
2022.

[9] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and A. Vedaldi.
Describing textures in the wild. In Proceedings of the IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR),
2014.

[10] Jacson Rodrigues Correia-Silva, Rodrigo F Berriel, Claudine
Badue, Alberto F de Souza, and Thiago Oliveira-Santos. Copy-
cat cnn: Stealing knowledge by persuading confession with
random non-labeled data. In 2018 International Joint Confer-
ence on Neural Networks (IJCNN), 2018.

[11] Thomas M Cover. Elements of information theory. John Wiley
& Sons, 1999.

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and
Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, 2009.

[13] Adam Dziedzic, Muhammad Ahmad Kaleem, Yu Shen Lu, and
Nicolas Papernot. Increasing the cost of model extraction with
calibrated proof of work. arXiv preprint arXiv:2201.09243,
2022.

[14] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Ex-
plaining and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572, 2014.

[15] Gregory Griffin, Alex Holub, and Pietro Perona. Caltech-256
object category dataset. 2007.

[16] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Bad-
nets: Identifying vulnerabilities in the machine learning model
supply chain. arXiv preprint arXiv:1708.06733, 2017.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 2016.

[18] Dan Hendrycks and Kevin Gimpel. A baseline for detect-
ing misclassified and out-of-distribution examples in neural
networks. arXiv preprint arXiv:1610.02136, 2016.

[19] Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich.
Deep anomaly detection with outlier exposure. arXiv preprint
arXiv:1812.04606, 2018.

[20] Sebastian Houben, Johannes Stallkamp, Jan Salmen, Marc
Schlipsing, and Christian Igel. Detection of traffic signs in real-
world images: The German Traffic Sign Detection Benchmark.
In International Joint Conference on Neural Networks, 2013.

[21] Matthew Jagielski, Nicholas Carlini, David Berthelot, Alex
Kurakin, and Nicolas Papernot. High accuracy and high fi-
delity extraction of neural networks. In 29th USENIX security
symposium (USENIX Security 20), 2020.

[22] Hengrui Jia, Christopher A Choquette-Choo, Varun Chan-
drasekaran, and Nicolas Papernot. Entangled watermarks
as a defense against model extraction. arXiv preprint
arXiv:2002.12200, 2020.

[23] Mika Juuti, Sebastian Szyller, Samuel Marchal, and N Asokan.
Prada: protecting against dnn model stealing attacks. In 2019
IEEE European Symposium on Security and Privacy (Eu-
roS&P), 2019.

[24] Sanjay Kariyappa and Moinuddin K Qureshi. Defending
against model stealing attacks with adaptive misinformation.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020.

[25] Manish Kesarwani, Bhaskar Mukhoty, Vijay Arya, and Sameep
Mehta. Model extraction warning in mlaas paradigm. In Pro-
ceedings of the 34th Annual Computer Security Applications
Conference, 2018.

[26] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009.

[27] Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. Adver-
sarial examples in the physical world. In Artificial intelligence
safety and security. Chapman and Hall/CRC, 2018.

[28] Taesung Lee, Benjamin Edwards, Ian Molloy, and Dong Su.
Defending against neural network model stealing attacks using
deceptive perturbations. In 2019 IEEE Security and Privacy
Workshops (SPW), 2019.

[29] Nils Lukas, Edward Jiang, Xinda Li, and Florian Kerschbaum.
Sok: How robust is image classification deep neural network
watermarking? In 2022 IEEE Symposium on Security and
Privacy (SP), 2022.

[30] Mantas Mazeika, Bo Li, and David Forsyth. How to steer your
adversary: Targeted and efficient model stealing defenses with
gradient redirection. In International Conference on Machine
Learning, 2022.

[31] Thomas Minka. Estimating a dirichlet distribution, 2000.

[32] Mohammed Ali mnmoustafa. Tiny imagenet, 2017.

[33] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco,
Bo Wu, and Andrew Y Ng. Reading digits in natural images
with unsupervised feature learning. 2011.

[34] Seong Joon Oh, Bernt Schiele, and Mario Fritz. Towards
reverse-engineering black-box neural networks. In Explainable
AI: Interpreting, Explaining and Visualizing Deep Learning.
Springer, 2019.

[35] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz.
Knockoff nets: Stealing functionality of black-box models. In
Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 2019.

[36] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Pre-
diction poisoning: Towards defenses against dnn model steal-
ing attacks. arXiv preprint arXiv:1906.10908, 2019.

[37] Soham Pal, Yash Gupta, Aditya Kanade, and Shirish Shevade.
Stateful detection of model extraction attacks. arXiv preprint
arXiv:2107.05166, 2021.

[38] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh
Jha, Z Berkay Celik, and Ananthram Swami. Practical black-
box attacks against machine learning. In Proceedings of the
2017 ACM on Asia conference on computer and communica-
tions security, 2017.

[39] Ariadna Quattoni and Antonio Torralba. Recognizing indoor
scenes. In 2009 IEEE conference on computer vision and
pattern recognition, 2009.

[40] Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal Berrang,
Mario Fritz, and Michael Backes. Ml-leaks: Model and data
independent membership inference attacks and defenses on
machine learning models. arXiv preprint arXiv:1806.01246,
2018.

[41] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly
Shmatikov. Membership inference attacks against machine
learning models. In 2017 IEEE symposium on security and
privacy (SP), 2017.

[42] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

[43] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and
Thomas Ristenpart. Stealing machine learning models via pre-
diction {APIs}. In 25th USENIX security symposium (USENIX
Security 16), 2016.

[44] Jean-Baptiste Truong, Pratyush Maini, Robert J Walls, and
Nicolas Papernot. Data-free model extraction. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021.

[45] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona,
and Serge Belongie. The caltech-ucsd birds-200-2011 dataset.
2011.

[46] Binghui Wang and Neil Zhenqiang Gong. Stealing hyperpa-
rameters in machine learning. In IEEE Symposium on Security
and Privacy, 2018.

[47] Haonan Yan, Xiaoguang Li, Hui Li, Jiamin Li, Wenhai Sun, and
Fenghua Li. Monitoring-based differential privacy mechanism
against query flooding-based model extraction attack. IEEE
Transactions on Dependable and Secure Computing, 2021.

A Proofs

A.1 Proof of Lemma 1
Lemma 1. Assuming that L(Xq,Yq;www) = L(ft(Xq;www);Yq) is
M-smooth in www. Given two models wwwt and w̃ww∗s with the same
architecture such that ft(Xq;wwwt) =Yq and fs(Xq; w̃ww∗s) = Ỹq, we
have:

∥w̃ww∗s −wwwt∥2
2 ≥

2
M

[
L(Ỹq,Yq)−L(Yq,Yq)

]
.

Proof. With the M-smoothness of L(Xq,Yq;www) and the fact
that ∇L(Xq,Yq;wwwt) = 0, we have

∥w̃ww∗s −wwwt∥2
2 ≥

2
M

[L(Xq,Yq; w̃ww∗s)−L(Xq,Yq;wwwt)]

=
2
M

[
L(Ỹq,Yq)−L(Yq,Yq)

]
,

where the last equation comes from the definition that
ft(Xq;wwwt) =Yq and ft(Xq; w̃ww∗s) = fs(Xq; w̃ww∗s) = Ỹq since ft and
fs has the same architecture.

Remark 4. The smoothness assumption provides the rela-
tionship between the model parameters www and the loss L
such that we can unify the parameter-stealing attack and
the functionality-stealing attack in one framework. How-
ever, MODELGUARD is still an effective defense against the
functionality-stealing attack without the assumption, as jus-
tified by our experiments on neural networks that may not
satisfy the smoothness assumption.

A.2 Theoretical Justification of Approximat-
ing Equation (8) with Equation (9)

We will show that the solution ŷyy of Equation (9) has a low
confidence score ŷyy(k) at the class with large yyy(k), which leads
to a small objective value in Equation (8). To make the solu-
tion interpretable, we analyze the optimization problem given
in Equation (9) with a distortion relaxation (i.e., ε = 2.0).
Without loss of generality, we consider y(1) = maxk y(k).

min
ŷyy

C

∑
k=1

ŷ(k) logy(k)

subject to ŷ(1) ≥ y(j), j = 2,3, · · · ,C
C

∑
k=1

ŷ(k) = 1, and ŷyy⪰ 0.

The Lagrangian of this problem is given by:

L(ŷyy,µ1, · · · ,µC,ν2, · · · ,νC,λ) =

C

∑
k=1

(logy(k)−µk +λ)ŷ(k)−
C

∑
j=2

ν j(ŷ(1)− ŷ(j))−λ.

The Karush-Kuhn-Tucker (KKT) condition for the optimal
solution (ŷyy,µ1, · · · ,µC,ν2, · · · ,νC,λ) of this problem is

ŷ(1) ≥ ŷ(j), j = 2, · · · ,C;∑
C
k=1 ŷ(k) = 1, and ŷyy⪰ 0;

µk ≥ 0,k = 1,2, · · · ,C;ν j ≥ 0, j = 2, · · · ,C;
∂L/∂ŷ(1) = logy(1)−µ1 +λ−∑

C
j=2 ν j = 0;

∂L/∂ŷ(j) = logy(j)−µ j +λ+ν j = 0, j = 2, · · · ,C;
µkŷ(k) = 0,k = 1, · · · ,C;ν j(ŷ(1)− ŷ(j)) = 0, j = 2, · · · ,C.

We first assume that ν j = 0, we get from the fourth condition:

ν j = 0⇒ µ j = λ+ logy(j) ≥ 0⇒ λ≥− logy(j).

Equivalently, with the last condition and the fact that ŷ(1) =
maxk ŷ(k) > 0, we have

λ <− logy(j)⇒ ν j > 0⇒ ŷ(j) = ŷ(1) > 0.

On the other hand, if λ >− logy(j), we know that

λ >− logy(j)⇒ µ j−ν j = λ+ logy(j) > 0⇒ µ j > ν j ≥ 0,

which means that ŷ(j) = 0 according to the last condition.
In the last case λ = − logy(j), we have µ j = ν j. If µ j =

ν j > 0, we have ŷ(1) = ŷ(j) = 0, which is impossible. Thus
we have µ j = ν j = 0 and 0 ≤ ŷ(j) ≤ ŷ(1). In conclusion, for
j = 2, · · · ,C, we have

y(j) < e−λ⇒ ŷ(j) = ŷ(1);
y(j) = e−λ⇒ 0≤ ŷ(j) ≤ ŷ(1);
y(j) > e−λ⇒ ŷ(j) = 0.

This result shows that except for the top-1 class, all classes
with y(k) larger than the threshold e−λ will be reduced to 0 in
the solution ŷyy.

A.3 Proof of Lemma 2
Lemma 2. Given a prediction perturbation mechanism p
such that Ŷq = p(Yq), an adaptive model extraction attack
with an arbitrary recovery function r cannot attain a smaller
gap between recovered predictions Ỹ = r(Ŷq) = r(p(Yq)) and
clean predictions Yq than the following lower bound:

E
[
∥Ỹq−Yq∥2

2
]
≥ NC

2πe
exp

(
2

NC
h(Yq|Ŷq)

)
,

where h(Yq|Ŷq) is the conditional entropy. Subsequently,

E
[
L(Ỹq,Yq)−L(Yq,Yq)

]
≥ Cl

2πe
exp

(
2

NC
h(Yq|Ŷq)

)
,

where l is a constant related to the loss function L , e.g., l =
0.5 for CE loss and l = 1 for MSE loss.

Proof. The following inequality holds for Yq with an arbitrary
distribution conditioned on the event {Ŷq = Ŷ} [11]:

h(Yq|Ŷq = Ŷ)≤ 1
2

log
(
(2πe)NC det(Cov(Yq|Ŷq = Ŷ))

)
⇒det

(
Cov(Yq|Ŷq = Ŷ)

)
≥ 1

(2πe)NC exp
(
2h(Yq|Ŷq = Ŷ)

)
,

where the equality holds with Gaussian Yq|{Ŷq = Ŷ}. Now
we consider an arbitrary recovery function r such that Ỹq =
r(Ŷq). With the fact that the Bayesian estimator Ỹ ∗q = r∗(Ŷq) =

E[Yq|Ŷq] minimizes E
[
∥Ỹq−Yq∥2

2|Ŷq
]
, we get:

E
[
∥Ỹq−Yq∥2

2|Ŷq = Ŷ
]
≥ E

[
∥Yq−E[Yq|Ŷq = Ŷ]∥2

2|Ŷq = Ŷ
]

=tr
(
E
[
(Yq−E[Yq|Ŷq = Ŷ])(Yq−E[Yq|Ŷq = Ŷ])T |Ŷq = Ŷ

])
=tr

(
Cov(Yq|Ŷq = Ŷ)

)
≥NC

[
det

(
Cov(Yq|Ŷq = Ŷ)

)]1/NC (19)

≥NC
2πe

exp
(

2
NC

h(Yq|Ŷq = Ŷ)
)
.

Inequality (19) uses the inequality of arithmetic and geometric
means: ∀AAA ∈ Sn×n

++ ,

tr(AAA) = ∑
i

λi(AAA)≥ n(∏
i

λi(AAA))1/n = n [det(AAA)]1/n ,

where λi(AAA) is the i-th eigenvalue of AAA. Taking expectation
over Ŷq at both sides yields the first part of the lemma with
Jensen’s Inequality.

Now we prove the second part of this lemma. For MSE
loss, we notice that

LMSE(Ỹq,Yq) =
1
N

N

∑
i=1
∥ỹyyq,i− yyyq,i∥2

2 =
1
N
∥Ỹq−Yq∥2

2

and LMSE(Yq,Yq) = 0, thus we get l = 1 immediately.
For CE loss, We have

LCE(Ỹq,Yq)−LCE(Yq,Yq) =
1
N

N

∑
i=1

DKL(yyyq,i||ỹyyq,i).

DKL(ppp||qqq) is 1-strongly convex because

Hppp = ∇
2
pDKL(ppp||qqq) = diag([1/p(1),1/p(2), · · · ,1/p(C)]),

and 1/p(k) ≥ 1 given p(k) ∈ [0,1]. With DKL(qqq||qqq) = 0,

DKL(ppp||qqq) = DKL(ppp||qqq)−DKL(qqq||qqq)

≥
(

∇pppDKL(ppp||qqq)
∣∣

ppp=qqq

)T
(ppp−qqq)+

1
2
∥ppp−qqq∥2

2

=
C

∑
k=1

(p(k)−q(k))+
1
2
∥ppp−qqq∥2

2 (20)

=
1
2
∥ppp−qqq∥2

2,

where Equation (20) uses the result that ∇pppDKL(ppp||qqq)
∣∣

ppp=qqq =

[1,1, · · · ,1]. Accordingly, we will get

LCE(Ỹq,Yq)−LCE(Yq,Yq)≥
1

2N
∥Ỹq−Yq∥2

2,

and l = 1
2 for CE loss.

B Experiment Details

Our experiments are conducted on a server with one NVIDIA
TITAN RTX GPU and one Intel Xeon Gold 6254 CPU.

B.1 Attack Methods
Query Strategies We consider two query strategies:

KnockoffNet [35]: Following Orekondy et al. [36], we con-
sider the KnockoffNet with a random strategy. The attacker
randomly selects unlabeled natural data Xq to query the target
model and obtain the predictions Ŷq. (Xq,Ŷq) then is used for
training a substitute model with an attack strategy.

JBDA-TR [23]: JBDA-TR starts from a small query
dataset (with 1,000 natural images in our setting) and re-
peatedly conducts two steps: (a) querying the target model
and training a substitute model with the current query dataset;
(b) augmenting the query dataset with a randomly targeted
iterative Fast Gradient Sign Method (I-FGSM) [14, 27]:

Xq,t = Xq,t−1 +αsign(∇ fs(Xq,t−1,Yq,t)), t = 1,2, · · · ,T

where α is the step size and T is the number of iterations
in I-FGSM. Yq,t is randomly selected targeted labels in each
iteration. The augmentation stops when the size of the query
dataset reaches the targeted size ().

Attack Strategies Details of some attack strategies:
S4L Attack [21]: S4L Attack appends a self-supervised

rotation loss to the CE loss, as given by:

LS4L(Xq,Ŷq) =
1
|Xq| ∑

xxxq∈Xq

LCE(fs(xxxq;wwws), ŷyyq)

+
1

4|Xq| ∑
xxxq∈Xq

3

∑
j=0

LCE(fr(R j(xxxq);θs), j),

where R j(xxx) rotates xxx by j×90◦. fr(·;θs) shares the model
with fs(·;wwws) except for the last layer.

Smoothing Attack [29]: Following Lukas et al. [29], we
use random cropping and random horizontal flipping to gen-
erate n = 3 augmented images for each original image in
the query dataset, and we average their query results as the
recovered prediction of the original image.

D-DAE [8] and D-DAE+: We implement D-DAE without
the defense detector since we assume that that attacker knows
the details of the defense. D-DAE trains a three-layer neural

network as the restorer to recover the clean predictions given
the perturbed predictions. The training dataset of the restorer
is {(p(fi(xxx)), fi(xxx)) : xxx ∈ Xq, i = 1, · · · ,S} where fi is a small
shadow model trained on a public dataset (we use a randomly
sampled subset of the query dataset with original labels as
the public dataset). We generate a total of 1,000,000 training
samples with S = 20 shadow models in our experiments. D-
DAE+ amends D-DAE by replacing its training dataset with
the lookup table generated for Bayes Attack.

Partial Bayes Attack: Considering the limited comput-
ing resources we can use when evaluating our defenses, in
addition to the independent sampling introduced in Equa-
tion (13), we further shrink the sampling space for the lookup
table by only sampling possible clean predictions from the
neighborhood of true clean predictions yyyq,i ∈ Yq as follows:

T=

|Yq|⋃
i=1

{(yyy j, p(yyy j)) : yyy j ∼ Dir(yyyq,i,s), j = 1, · · · ,K}. (21)

Dir(mmm,s) is a Dirichlet distribution with mean mmm, and the
precision s controls how concentrated the samples are [31].
We set s = 8C and K = 20 in our experiments where C is the
number of classes, resulting in a lookup table with 1,000,000
samples in total.

Remark 5. Notice that even the attacker uses yyyq,i ∈ Yq as
the means, they do not know which one corresponds to a
specific xxxq,i ∈ Xq. Therefore, the attacker is not able to use the
means of the samples to train the substitute model directly.
In addition, we set a relatively small precision s in order to
prevent the samples from becoming too close to the true clean
prediction yyyq,i, which simulates the situation that the attacker
does not know the clean predictions exactly.

B.2 Defense Baselines
Details of some defense baselines are given as follows.

Reverse Sigmoid (RevSig) [28]: Lee et al. propose to use
a Reverse Sigmoid function to perturb the prediction:

ŷ(k)q,i = αi

[
y(k)q,i −β

(
s
(

γs−1(y(k)q,i)
)
− 1

2

)]
, k = 1, · · · ,C.

s(x) = 1
1+e−x is the sigmoid function, and s−1(·) is its in-

verse function. αi is a factor that normalizes ŷyyq,i such that

∑
C
k=1 ŷ(k)q,i = 1. β and γ are hyperparameters that can control

the perturbation magnitude.
Maximizing Angular Deviation (MAD) [36]: MAD max-

imizes the angle between the gradient calculated with ŷyyq and
the gradient calculated with yyyq as follows:

max
ŷyyq,i

∥∥∥∥∥ GGGT ŷyyq,i

∥GGGT ŷyyq,i∥2
−

GGGT yyyq,i

∥GGGT yyyq,i∥2

∥∥∥∥∥
2

2

subject to (utility and validity constraints in Section 3.2)

GGG is the Jacobian of the substitute model: GGG =
∇wwws log fs(xxxq,i;wwws). As the defender is not aware of the sub-
stitute model fs(·;wwws), Orekondy et al. [36] propose to use
a randomly initialized model fs,sur(·;wwws,sur) as the surrogate
model for the substitute model and calculate the Jacobian with
this surrogate model during the defense.

Adaptive Misinformation (AM) [24]: AM is a selective
prediction perturbation mechanism that relies on an out-of-
distribution (OOD) detector. Their perturbation mechanism
can be formulated as follows:

ŷyyq,i =(1−αi)yyyq,i +αi f̂t(xxxq,i;wwwp),

where αi =
1

1+ exp
(

ν(y(max)
q,i − τ)

) .
ν is a large constant (we set ν = 1000 following Kariyappa
et al. [24]) and f̂t(·;wwwp) is a misinformation model that is
trained to minimize the reverse CE loss as follows:

min
wwwp

LCE(1− f̂t(Xq;wwwp),Yq),

where 1 = [1,1, · · · ,1] is a vector with all 1 elements.

B.3 Training Hyperparameters
Hyperparameters for training target models We train the
target models with Outlier Exposure (OE), which uses the
following loss function:

LOE(XID,YID,XOOD;wwwt) =LCE(ft(XID;wwwt),YID)

+λLCE(ft(XOOD;wwwt),U),

where (XID,YID) is equivalent to the in-distribution training
dataset (Xt ,Yt) (i.e., Caltech256, CUB200, CIFAR100 and
CIFAR10), while XOOD is the out-of-distribution dataset (i.e.,
Indoor67 and SVHN). U is a uniform label that has the same
value at all dimensions. We set λ = 1.0 in our experiments
following Kariyappa et al. [24].

We use models pretrained on ImageNet1k to initialize the
target models in all our experiments. We train each model for
100 epochs. We use an SGD optimizer with an initial learning
rate of 0.01, a batch size of 64, and a momentum of 0.5 for all
the models, while we halve the learning rate every 30 epochs.

Hyperparameters for training substitute models We use
the same pretrained model to initialize the substitute models
as what we do for the target models. The number of training
epochs is set to 30 for all the experiments as we find the
substitute models can always converge within 30 epochs. We
use an SGD optimizer with an initial learning rate of 0.01 and
a batch size of 32 for Caltech256 and CUB200, and an initial
learning rate of 0.1 and a batch size of 128 for CIFAR100 and
CIFAR10. The momentum is also set to be 0.5. We halve the
learning rate every 10 epochs.

	Introduction
	Threat Model
	ModelGuard Design
	Overview
	Objective and Constraints
	ModelGuard-W
	Bayes Attack
	ModelGuard-S

	Experiments
	Experiment Setup
	Experimental Results
	Ablation Studies

	Related Works
	Conclusion, Limitations, and Future Work
	Proofs
	Proof of Lemma 1
	Theoretical Justification of Approximating Equation (8) with Equation (9)
	Proof of Lemma 2

	Experiment Details
	Attack Methods
	Defense Baselines
	Training Hyperparameters

