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Abstract

Cache side-channel attacks based on speculative executions
are powerful and difficult to mitigate. Existing hardware de-
fense schemes often require additional hardware data struc-
tures, data movement operations and/or complex logical com-
putations, resulting in excessive overhead of both processor
performance and hardware resources. To this end, this paper
proposes SpecLFB, which utilizes the microarchitecture com-
ponent, Line-Fill-Buffer, integrated with a proposed mecha-
nism for load security check to prevent the establishment of
cache side channels in speculative executions. To ensure the
correctness and immediacy of load security check, a structure
called ROB unsafe mask is designed for SpecLFB to track
instruction state. To further reduce processor performance
overhead, SpecLFB narrows down the protection scope of
unsafe speculative loads and determines the time at which
they can be deprotected as early as possible. SpecLFB has
been implemented in the open-source RISC-V core, Sonic-
BOOM, as well as in Gem5. For the enhanced SonicBOOM,
its register-transfer-level (RTL) code is generated, and an
FPGA hardware prototype burned with the core and running a
Linux-kernel-based operating system is developed. Based on
the evaluations in terms of security guarantee, performance
overhead, and hardware resource overhead through RTL sim-
ulation, FPGA prototype experiment, and Gem5 simulation,
it shows that SpecLFB effectively defends against attacks. It
leads to a hardware resource overhead of only 0.6% and the
performance overhead of only 1.85% and 3.20% in the FPGA
prototype experiment and Gem5 simulation, respectively.

1 Introduction

Out-of-order (OoO) and speculative execution mechanisms
are the optimization techniques commonly used by modern
CPUs to improve performance. In OoO execution, the CPU
does not strictly execute instructions in program order, but
rather executes later instructions ahead of time when condi-
tions are met, in order to improve the utilization of processor

components. Speculative mechanism refers to the processor’s
speculative execution of instructions, which, in coordination
with pipelining and OoO execution, can significantly improve
CPU performance. However, speculative execution is not
guaranteed to be completely accurate, and OoO execution
may result in instructions being executed before they have
proper permission. Typically, these erroneously executed in-
structions, also known as transient instructions, change the
microarchitectural state and are “rolled back” by the proces-
sor before they are “committed” to the architectural state.
Therefore, programmers can only see instructions executed
correctly according to the program flow at the architectural
level.

However, the disclosure of side-channel attack methods
such as Flush+Reload [55] and Prime+Probe [53] has shown
that information can be leaked through the microarchitectural
state and behavior. In early 2018, several independent security
research teams disclosed serious vulnerabilities in modern
CPU architectures, such as Spectre [30] and Meltdown [35]
attacks, which have made a significant impact on the indus-
try and continue to do so to this day. Among the exploited
techniques for these vulnerabilities, cache side-channel at-
tack [9, 11, 21, 22, 27, 34, 53–55] is the main approach. The
Spectre attacks can leverage speculative executions to change
the cache state and leak data through the cache side channels.

To mitigate speculative execution attacks, many hardware
defense solutions have been proposed. Yan et al. proposed
InvisiSpec [52], in which speculative loads that may cause
security problems are stored in the Speculative Buffer (SB)
instead of the cache. When a speculation succeeds, the spec-
ulative data is then installed back into cache. SafeSpec pro-
posed in [28] shadows the hardware architecture used during
the execution of speculative instructions, so that any changes
to the microarchitectural state could be reverted if the pro-
cessor’s speculation is turned out to be incorrect. Both so-
lutions make speculative execution “invisible” by clearing
all side effects of speculative executions. Based on this idea,
many other methods have been proposed [3, 40, 49]. How-
ever, regardless of whether speculation succeeds or not, they



all require expensive re-install operations. Speculative taint
tracking (STT) [57] and NDA [47] use dataflow tracing sim-
ilar to taint propagation to track instructions that may lead
to information leakage. These instructions are forced to be
delayed until their related instructions become safe, thus pre-
venting unsafe speculative data from being transmitted to side
channels. Compared with the solution of hiding all the side-
effects of speculative executions until reaching the visibility
point (e.g., when all old control flow instructions have been re-
solved) in InvisiSpec, these solutions which selectively delay
speculative executions are more efficient. However, instruc-
tion tracing and taint marking also require complex logic to
compute the “root of taint”, resulting in significant hardware
changes and performance overhead.

Overall, most of the above hardware defense solutions re-
quire additional data structures, data movement operations
and/or complex logical calculations, which can cause exces-
sive additional performance and hardware resource overhead.
These methods also lack implementation and evaluation based
on real hardware prototypes, and most defense solutions are
only verified through architecture simulation platforms such
as Gem5 [38] rather than register-transfer-level (RTL) im-
plementation. In addition, the types of attacks included in
the security verification of these schemes are relatively ho-
mogeneous, which have always been Spectre v1 and v2 [30]
with similar principles, which exploit unresolved branches in
the instruction stream. However, the factors that can lead to
unsafe speculation executions are diverse.

To address these issues, this paper proposes a novel hard-
ware defense scheme, SpecLFB. It leverages the microarchi-
tectural component Line-fill-buffer (LFB) and introduces a
simple yet effective security check mechanism to LFB to pre-
vent potentially unsafe speculative loads from being reloaded
from lower-level cache into adjacent upper-level cache (e.g.
from L2 cache into L1 data cache (L1D cache)), thereby pre-
venting the establishment of cache side channels. We have
implemented SpecLFB in the L1D cache of open-source
RISC-V core SonicBOOM (the latest version, also called
BOOMv3) [58] and both cache levels of X86 O3 CPU model
in Gem5 simulator [38]. The SpecLFB-enhancing cores have
been evaluated in the Verilator simulation based on the RTL
code generated by Chipyard and in an FPGA hardware proto-
type we have developed, as well as in the Gem5 simulation.
The evaluation results show that it can successfully defend
against Spectre v1, v2, v4 [24] and v5 [31] attacks. In com-
parison with the original cores and the cores enhanced with
the state-of-the-art defense schemes, the experimental results
show that SpecLFB leads to a hardware resource overhead
of only 0.6%. Furthermore, by running the SPEC CPU 2017
benchmark suite (SPEC2017), SpecLFB exhibits the perfor-
mance overhead of only 1.85% and 3.20% in the FPGA pro-
totype experiment and Gem5 simulation, respectively.

This paper makes the following contributions:

• We propose a novel scheme called SpecLFB to defend

against cache side-channel attacks. By introducing a
simple yet effective security check mechanism to LFB,
the executions of unsafe speculative loads can be delayed
to prevent the establishment of cache side channels from
propagating sensitive data.

• To reduce processor performance overhead, SpecLFB
narrows down the protection scope of unsafe specula-
tive loads and determines the time at which they can be
deprotected as early as possible.

• We fully and seamlessly implement SpecLFB in the L1D
cache of the open-source RISC-V core, SonicBOOM, as
well as in all cache hierarchy of Gem5 OoO processors.

• We develop an FPGA hardware prototype burned with
the L1D-SpecLFB-enhancing SonicBOOM and running
a Linux-kernel-based operating system.

• We evaluate SpecLFB in terms of security guarantee,
performance overhead, and hardware resource overhead,
through both Gem5 and RTL simulations, as well as the
experiment based on the developed hardware prototype.

2 Background

2.1 Transient Execution
In modern OoO processors, instructions issued in program
order are decoded into micro-operations (µops), but the exe-
cution of µops may not follow the program order. Even if an
earlier µop in the instruction stream has not been completed,
the CPU may execute a ready µop when certain conditions are
met (i.e., the µop’s operands do not have dependencies on pre-
vious µops or their values have been computed). CPU tracks
all µops through the reorder buffer (ROB), and when a µop
completes execution, it is retired from the ROB in program
order, irreversibly modifying the CPU’s architectural state.
This OoO execution technique can increase the component
utilization of the processor.

Conditional branches or data dependencies between in-
structions are generally included in the instruction stream.
Theoretically, the processor without knowing the future in-
struction stream of a program must wait for the branch result
or resolved data dependencies before continuing to execute
instructions. Since the execution suspension will reduce pro-
cessor performance, the processor can predict the results of
conditional branches and data dependencies through some
components such as branch predictors, memory disambigua-
tors, etc., and then execute along the speculative path. If the
prediction turns out to be correct, the precomputed results
of the speculative execution are committed; otherwise, if the
processor determines that it followed the wrong path, the
instruction-related µops will be squashed and the processor
will be rolled back to the last correct state and resume along
the correct path.
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Figure 1: Transient execution flow. The point ① is when there
is an unresolved branch or data dependency, and the point
② is when the processor gets the results and finds that the
speculation is wrong.
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Figure 2: The working principle of LFB in L1D cache.

Therefore, these instructions that are executed out of order
and whose executions are incorrectly speculated may cause
the microarchitectural state of the processor to change, even
though their results are never committed to the architectural
state due to processor rollback. This is called transient ex-
ecution, and these instructions are called transient instruc-
tions [30, 35]. As shown in Figure 1, the period of time from
the beginning of the execution of a transient instruction to
when the processor detects the error and begins to roll back
its state is called the transient execution window.

2.2 LFB
A cache with only Data and Tag Arrays, which would not ac-
cept new load/store misses in case of cache misses, is called
a blocking cache. In an OoO processor, a blocking cache pre-
vents the load/store unit (LSU) from issuing several store or
read accesses to it, thus affecting the overall processor speed.
To solve this problem, modern processors [12,16,43,58] have
introduced Miss Status Holding Registers (MSHR) to hold
the information of unresolved cache misses in order to accept
more than one cache misses and implement non-blocking
caches. When a cache miss occurs or data prefetching re-
quires cache refills, MSHR will request data from the data
bus and refill the requested data into cache via LFB.

As shown in Figure 2, when the data targeted by a memory
access instruction is missed in the upper-level caches, the miss
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Figure 3: Speculative cache side-channel attack process.

handling logic first checks MSHR to see if there is a pending
request that matches the current one. If so, the request is
merged into the same entry and no new data request needs to
be issued [33]. Otherwise, a new MSHR entry and LFB entry
will be reserved for this data request. When the requested
cache line is fetched from the lower-level caches or memory,
it is placed into LFB instead of directly being written into the
upper-level caches, allowing cache eviction and refill to occur
in parallel [19], so the hit time of the cache can be greatly
reduced. When the cache eviction is complete, LFB is flushed
into the cache arrays.

3 Speculative Cache side-channel Attacks

This paper focuses on defending against the speculative cache
side-channel attacks, which simultaneously exploit both spec-
ulative execution and cache side-channel vulnerabilities of
processors. Speculative execution attack exploits the side ef-
fects of the transient instructions which are mis-speculated
and destined to be squashed. The attack program specula-
tively executes load instructions, which leak sensitive data to
the covert channel before they are squashed. A cache side-
channel attack can establish cache side channels, thus pro-
viding a covert channel for the speculative execution attacks.
Figure 3 shows the general process of such attacks. An at-
tacker exploits the speculative execution mechanism to trigger
transient execution of instructions, which access victim’s sen-
sitive data, causing changes in cache state. Then, the data is
transmitted from the microarchitectural state to the architec-
tural state through a cache side channel, thereby leaking the
sensitive data.

3.1 Cache Side-channel Attack

A cache, consisting of SRAM, has a small capacity but is
much faster than memory composed of DRAM, approach-
ing the speed of CPU. Modern processors use a hierarchy
of successively smaller but faster caches to bridge the speed
gap between processor and memory. In a multi-level cache,
the last-level cache (LLC) is shared by all the cores in the
processor. For example, in a typical Intel processor, cache is
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Figure 4: Side-channel attack process. In each phase, the
left side of the figure represents the cache, while the right
represents the evicted cache lines. Lattice in green: a normal
cache line; lattice in white: the cache line at this location has
been evicted by the attacker; lattice in yellow: the cache line
accessed by the victim.

divided into three levels, with the L1 and L2 caches individu-
ally owned by each core, while the LLC is shared among all
cores. When the processor needs data, it first checks whether
a copy of the data is present in the top level of cache hierar-
chy, i.e., the L1 cache. If a copy is found, a cache hit occurs;
otherwise a cache miss occurs, and the processor repeats the
procedure to try to retrieve data from the next-level cache,
and finally from the memory. Retrieving data from memory
or upper-level caches closer to memory takes longer than re-
trieving data from upper-level caches closer to the core. The
cache side-channel attack in our threat model is an attack that
exploits such timing differences [30].

Attackers exploit the variation in cache state to establish a
cache side channel. The attack process usually contains three
phases, as shown in Figure 4. First, an attacker evicts the mon-
itored cache lines from the cache hierarchy. Second, a victim
program is executed. In the third phase, the attacker probes
the time it takes for accessing the monitored cache lines. If
the victim program has already accessed the monitored cache
lines in the second phase, the cache lines represented by the
yellow lattices will be loaded into the cache, resulting in a
shorter time for the attacker to access them; otherwise, the
attacker’s access time will be longer. Hence, by measuring
and comparing the access time, the attacker can determine
whether the victim program has accessed the monitored cache
line to obtain sensitive information. Based on the method of
evicting the monitored cache line, cache side-channel attacks
can generally be divided into two types [22]:

Flush-Based Attack: An attacker uses specialized machine
instructions, such as the x86 CLFLUSH instruction used in
Flush+Reload [55], to flush the target cache line out of the
shared cache between the attacker and victim. This type of
attack also includes Flush+Flush [21], Flush+Coherence [54],

Reload+Refresh [9], etc.
Conflict-Based Attack: An attacker constructs a conflict

set to evict the target cache line. For example, in Evict+Reload
[34], the attacker forces contention in the cache set by ac-
cessing dummy data and loading it into the cache set, caus-
ing the processor to evict the target cache line due to the
limited size of the cache. This type of attack also includes
Evict+Time [27], Prime+Probe [53], Prime+Abort [11], etc.

3.2 Spectre Attack
Spectre attack is a representative one of speculative cache
side-channel attacks. In different variants of Spectre attack,
an attacker mistrains the CPU’s predicted components, which
causes the CPU to transiently violate program semantics by
executing an instruction that would not normally execute,
thereby triggering a transient execution.

In Spectre v1 [30], the attacker mistrains the pattern his-
tory table, which determines whether the conditional branch
instructions (e.g., bne and bnq in RISC-V) should take the
branch or not. As shown in the following code example:

if (x < array1_size)
y = array2[array1[x] * L1_BLOCK_SZ_BYTES];

the attacker maliciously selects a value of x that is out of
the array1’s range, causing array1[x] to be resolved to a
secret byte k in the victim’s memory, where x = (the address
of the secret byte to be read) - (the base address of the array).
Furthermore, the attacker ensures that the processor cannot
immediately obtain the value of array1_size (because it
is not in cache or requires complex computations), causing
the branch condition to wait for the uncached parameter. As
a result, the processor executes the instructions inside the
conditional branch statement under mis-speculation, leaking
the byte k into cache.

In Spectre v2 [30], the attacker mistrains the branch target
buffer of indirect branch instructions (e.g., jalr in RISC-V
and MOV in ARM) with malicious target addresses correspond-
ing to code snippets called gadgets, which can leak sensitive
data, as shown in the following code example:

void victimFun(uint64_t x)
{

uint64_t y = array2[array1[x] * L1_BLOCK_SZ_BYTES];
}

During the training phase, the attacker makes the branch pre-
dictor mispredict a branch from the indirect branch instruction
to the address of victimFunc. During the attack phase, simi-
lar to Spectre v1, the attacker maliciously chooses a value of
x that is out of the array1’s range and delays the processor’s
access to the target address of the indirect branch instruction,
causing the processor to speculatively execute victimFunc
and leak the secret byte k into the cache.

In Spectre v4 [24], the attacker exploits the misprediction
of the memory disambiguator. Modern processors adopt an



optimization called speculative store bypassing to further im-
prove performance, where the memory disambiguator is used
to speculate which load instructions do not depend on any pre-
ceding store instructions. Therefore, the attacker can exploit
the memory disambiguator to trigger transient executions of
unsafe load instructions, allowing access to sensitive data.
Considering the following code snippet:

ptr = secret_ptr;
ptr = general_ptr;//store operation
x = *ptr;//load operation
y = array2[x];

for a read-after-write (RAW) dependency operation, the at-
tacker prevents the processor from immediately obtaining
the value of general_ptr in the store operation ptr =
general_ptr. Therefore, in the attack stage, the load op-
eration x = *ptr should return the value of general_ptr.
But since the value of general_ptr cannot be immediately
obtained (because it is not in cache or requires complex com-
putations), the processor will speculatively execute the load
operation, causing x to take the value of secret_ptr, which
leaks secret_ptr into cache.

In Spectre v5 [31], also known as SpectreRSB, the attacker
exploits the return stack buffer (RSB), which is a hardware
stack used to track the return addresses of previous call in-
structions. When encountering a ret instruction, the proces-
sor speculatively uses the top address of the RSB as the return
address, as accessing the software stack is slower. Therefore,
the attacker can exploit the RSB to supply CPU with a mali-
cious return address corresponding to a gadget (the same as in
Spectre v2), resulting in speculative execution of the gadget,
thereby allowing the gadget to leak sensitive information via
a cache side channel.

4 Threat Model

We focus on eliminating cache side channels in speculative
execution established by flush- and conflict-based cache side-
channel attacks, which require pre-evicting the cache lines to
be leaked. Overall, we make the following assumptions:

• Attackers are allowed to run arbitrary code before and
during the victim’s executions to affect the victim’s spec-
ulation, for example, by altering the state of RSB, branch
predictor, and memory disambiguator.

• Attackers are aware of the cache index method and re-
placement strategy, enabling them to evict target cache
lines from the cache.

• Attackers can locate gadgets within the victim’s exe-
cutable memory space.

• All these assumptions hold under the condition that the
processor hardware and operating system work correctly.
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Figure 5: Normalized ratio of L1D cache misses.

We do not consider other speculative side channels, such as
TLB [20], port contention [4,7], etc. Speculative side channels
based on TLB can be mitigated through alternative secure
TLB architectures, e.g., the one proposed by Deng et al. [14].
Speculative side channels based port contention can be miti-
gated by turning off SMT or by employing the defense scheme
proposed in [32]. We neither consider non-speculative side
channels [10, 15], nor physical side channels [29, 44] (which
are generally noisier, requiring longer time for attackers to
observe the effects).

5 Speculative Loads Protected in SpecLFB

In modern OoO processors, to reduce hardware cost and com-
plexity, all instructions are considered as speculative execu-
tions until they reach the head of ROB, and any load of these
instructions initiating memory reads is a speculative load [52].
Transient execution allows speculative loads to load data into
cache, which may cause security issues. Although the proces-
sor can handle exceptions or squash these loads after validat-
ing the speculation, the cache state in the microarchitecture
has already been changed, allowing attackers to establish
cache side channels to leak sensitive information. To pre-
vent the establishment of cache side channels, the speculative
loads, which are potentially exploited by attackers, should be
protected to prevent them from changing the cache state.

Based on the principle of speculative cache side-channel
attacks (cf. Section 3), the cache lines that are exploited to
leak data by the attacker must be evicted in the first phase
before they can be refilled by the speculative loads of the
victim, thereby causing cache misses in the second phase
and then creating observable timing differences in the third
phase, as shown in Figure 4. Figure 5 shows that the ratio of
data cache misses during the executions of Spectre v1, v2,
v4, and v5 attack programs in SonicBOOM is significantly
higher than that of the normal programs from the benchmarks
provided by the RISC-V toolchain [1]. Furthermore, in the
simulations of attacks on SonicBOOM using Chipyard, the
output log indicates that all the unsafe loads exploited by the
attacker in the victim code generate cache misses. Therefore,
to defense against such attacks, the speculative loads causing
cache misses are considered unsafe and should be protected



by delaying their execution. In this paper, we use MUSL to
denote an unsafe speculative load that causes cache miss.

MUSLs can be confirmed as safe without needing to reach
the head of ROB. Delaying the execution of MUSLs until
they reach the head of ROB is overly conservative. Take the
MUSLs in Spectre v1 for example. They can be safe as soon
as the branch resolves in a correct prediction. This is the
earliest point when the data returned by speculative loads is
no longer considered unsafe. Therefore, to save performance
as much as possible, it is necessary for processors to confirm
MUSLs as safe as early as possible.

When processors can confirm MUSLs as safe depends on
different speculation sources. According to [51], there are
mainly the following sources:

• Control flow prediction. It predicts the execution path
that a program will follow through the branch prediction
unit (BPU), which may generate speculative loads in
unresolved control flows.

• Address speculation. It predicts the data dependencies
between loads and stores when the physical address is
not fully available, which may generate speculative loads
in an unresolved memory access order.

• Value prediction (VP). It predicts the result of a µop
based on the execution history allowing dependent in-
structions to continue their execution without waiting
for the result to become available, which may generate
speculative loads in an unresolved value.

• Other exceptions. Additionally, we also consider other
exceptions that may lead to speculative execution and
correspond to speculative loads in other exceptions.

We have run in the SonicBOOM core the programs of
RISC-V benchmarks [1] to validate the types of speculative
loads. Since the current version of SonicBOOM does not
implement VP, Figure 6 only shows the normalized ratio of
the speculative loads resulting from the other three sources,
where one can find that most speculative loads result from the
unresolved control flow and memory access order.

Based on the above classification and analysis, we further
precisely elaborate the MUSLs to be protected as follows:

1. MUSLs in an Unresolved Control Flow

When the branch condition or target address of control
instructions, such as branches and jumps, is unknown or
has been predicted but not yet verified, the speculative
loads that follow these unresolved branch instructions
are the MUSLs to be protected. When the conditions and
addresses can be verified by the processor, the MUSLs
can be transformed into safe loads, if the speculative
execution is in the correct path. Otherwise, they will be
squashed at the end of the transient execution window.
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Figure 6: Normalized ratio of speculative loads. These statis-
tics only consider the oldest reason that caused the speculative
load since there might be multiple reasons.

2. MUSLs in an Unresolved Memory Access Order

Two scenarios are discussed based on two different rea-
sons causing such MUSLs, respectively.

Memory Dependency. During memory access, wait-
ing for the results of stores with unresolved addresses
increases the processor’s latency. To further improve per-
formance, the memory disambiguator of the processor
is used to predict which loads do not depend on any
previous stores. When it determines that a load has no
such RAW dependencies, the load will be speculatively
executed. Therefore, the speculative loads causing cache
misses that follow the stores are the MUSLs to be pro-
tected. Such a MUSL can be transformed into a safe load,
if it is later discovered that the store which the MUSL
follows points to a different address from that of the
MUSL. Otherwise, the MUSL will be squashed at the
end of the transient execution window.

Memory Consistency Model. The memory consistency
model specifies the order in which a core executes mem-
ory operations and is observed by other cores in a shared
memory system. When a memory operation is commit-
ted, it exposes itself to the memory hierarchy and other
cores in the system. Therefore, those instructions that are
not committed in the program order must ensure that they
comply with the defined memory consistency model [6].
Read operations can read data from memory and are
executed out of order before reaching the ROB head,
indicating that some loads will be speculatively executed
before earlier loads and stores in the ROB. However, for
a memory consistency model that does not allow store-
load or load-load reordering operations, the speculative
loads may be squashed due to violating the model. For
example, in the total-store-order model, which does not
allow store-store or load-load reordering, if the execution
of an older load is delayed, a younger load may be exe-
cuted speculatively. The speculative load that generates
cache misses in this scenario is a MUSL to be protected.
If an invalidation is received when the older load has



finished its execution, the MUSL will be squashed. Oth-
erwise, the MUSL can become safe.

3. MUSLs in an Unresolved Value

With VP, the processor first determines whether the result
of a µop is predictable based on the execution history.
If it is considered to be predictable, the processor may
execute the dependent instruction using the predicted
source operand value in parallel with the instruction
which generates the required result. Therefore, the spec-
ulative loads causing cache misses generated by these in-
structions are the MUSLs to be protected. Such a MUSL
can be transformed into a safe load, if the prediction is
validated to be correct. Otherwise, the MUSL will be
squashed at the end of the transient execution window.

Remark: To the best of our knowledge, both Gem5 and
SonicBOOM at their current versions where we imple-
ment SpecLFB do not support VP. Because the ROB
unsafe mask in our design (as shown in Section 6.2)
has to be set according to the specific microarchitecture
which supports VP, we have no practical implementa-
tion of SpecLFB which considers VP in either Gem5 or
SonicBOOM.

4. MUSLs in Other Exceptions

For the instructions that can cause other exceptions, such
as unauthorized data access, memory operations with
unknown addresses, arithmetic operations with overflow,
etc., they will not be squashed until the processor can
check for the exceptions. Therefore, the loads causing
cache misses in the subsequent instructions that are spec-
ulatively executed during this period are the MUSLs to
be protected. If any exception exists after the processor
checks, the MUSLs will be squashed. Otherwise, the
MUSLs can be transformed into safe loads.

6 SpecLFB Design

6.1 Design Overview

In non-blocking caches, MSHR is an essential microarchitec-
ture component between different levels of cache hierarchy
and memory. The lower-level cache is requested by MSHRs
to retrieve the missing data of MUSLs. Therefore, SpecLFB
can be reused with the same defense mechanism in the LFBs
of different cache levels. For the convenience of illustration,
we use the L1D cache as an example scenario. Generally, the
response data is refilled into the L1D cache via LFB. While
in a processor that adopts the proposed SpecLFB, as shown
in Figure 7, the response data must pass through a security
check mechanism introduced to LFB. Only when the security
check mechanism determines that it is safe, can the data be
refilled into the L1D cache, thus preventing the execution of

MUSLs from altering the cache state. To ensure the correct-
ness and immediacy of the security check, a set of judgments
are required, such as whether the response data is loaded by
MUSLs, or whether MUSLs can be converted into safe loads
to continue refilling response data into the L1D cache. This
is essential to further avoid the scenarios where safe data
are misjudged as the data loaded by MUSLs or where the
data loaded by MUSLs that have been converted into safe
loads still fail in passing through the security check, which
results in longer execution delays of the related instructions
and degraded processor performance.

In order to facilitate the judgment in the security check
mechanism, an ROB unsafe mask is designed as shown in
Figure 7. The bits of the mask correspond to the entries in the
ROB with a one-to-one mapping, which is set and changed
according to the unsafe parameter of µop and the various
information and exceptions returned by execution units (EU)
and LSU. Parameter unsafe is a boolean variable. If an in-
struction meets one of the following three conditions: 1) it
uses the load queue, 2) it uses the store queue (excluding a
fence instruction that isolates the previous and subsequent
store operations to ensure sequential execution), or 3) it is a
branch/jump instruction, then the unsafe parameters of the
instruction’s µops are set to true. If the value of a bit in the
ROB unsafe mask is 1, it means that the instructions in the
ROB entry to which the bit corresponds are currently in an
unsafe state, i.e., these instructions may generate MUSLs;
otherwise, they are in a safe state, i.e., they will not generate
MUSLs. After LFB obtains the missing data requested by
the L1D cache, it judges whether the data can pass the secu-
rity check mechanism according to the ROB unsafe mask bit
corresponding to its related instruction. Only a mask bit of 0
can it pass the check and continue refilling the data into the
L1D cache. By exploiting SpecLFB to delay the execution of
MUSLs, the processor can eliminate the need for additional
data structures to hide the cache lines fetched by specula-
tive loads and data movement operations. Additionally, since
the cache line already exists in the L1 upon a cache hit, no
additional coherence mechanism is required.

6.2 Detailed Design

6.2.1 ROB unsafe mask

The ROB unsafe mask has the same number of bits as the
number of entries in ROB, and a one-to-one mapping exists
between the ROB entries and the mask bits. The design de-
tails of the ROB unsafe mask vary depending on the specific
processor architecture. As shown in Figure 8, the ROB entries
in SonicBOOM are divided into multiple banks, and each row
(corresponding to a small cell in Figure 8) of a bank stores
the information of one instruction [46]. Since the addresses of
the instructions dispatched to the ROB are always contiguous,
they are stored in different banks of each entry in the ROB in
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the order of arrival, and only the addresses of the instructions
in bank 0 of each entry are stored to save hardware over-
head. Branch instructions or jump instructions are dispatched
separately to an entry to ensure the continuity of instruction
addresses in each entry of the ROB. Therefore, the value of
each bit in the ROB unsafe mask is not only determined by
the instruction in bank 0, but also jointly determined by the
instructions in all banks of that entry. Once there is a possibil-
ity that any instruction in the entry may generate MUSLs, the
corresponding bit in the mask for that entry is set to 1.

Let M and N denote the number of entries and that of banks
in the ROB, respectively. Let ri represent the ith (i ∈ [0,M−
1]) bit of the ROB unsafe mask, and let bi j represent the
security state of the instruction stored in the jth ( j ∈ [0,N −
1]) bank of the ith entry of the ROB. If the corresponding
instruction is possible to generate MUSLs, i.e., it is unsafe,
then bi j = 1; otherwise, bi j = 0. Then, ri is

ri = bi1 || bi2 || ... || bi j || ... || bi(N−1) . (1)

6.2.2 Rules for updating ROB unsafe mask

For an instruction stored in the jth bank of the ith entry in
the ROB, if the value of the unsafe parameter of the instruc-
tion’s µop is true, the corresponding bi j is initialized to 1. The
load of the instruction resulting in cache miss is considered
as a MUSL temporarily, so that the data loaded by the MUSL
cannot pass through the security check mechanism when be-

ing refilled into the L1D cache through the LFB. Based on
the elaboration of MUSLs in Section 5, the update rules for
corresponding bi j of the instruction are as follows:

• For the instructions in unresolved control flow, according
to the information returned by BPU, SpecLFB traverses
ROB in each cycle to update bi j depending on whether
the instructions are still under the control flow. Specifi-
cally, if there are no older control instructions that are un-
resolved before the instructions, the bi j of the instruction
should be updated to 0; otherwise, they should be set to 1.
In practice, general processors would provide interfaces
for obtaining more detailed control-flow-related infor-
mation. For example, in SonicBOOM, each µop has a
br_mask parameter to record which speculated branches
it belongs to. When traversing ROB, SpecLFB checks if
the branch the current µop belongs to has been resolved.
If so, the bi j of the instruction should be updated to 0.

• For the instructions in unresolved memory order,
SpecLFB tracks data dependencies through the load
queue (LDQ) and store queue (STQ) in the LSU. When
placing a memory access instruction (denoted as A) into
the LDQ/SDQ, SpecLFB compares it with the instruc-
tions in every entry of the LDQ/STQ for checking data
dependencies. If a data dependency is not found with
an older store/load instruction, for example, there is no
older store instruction that accesses the same memory
address as instruction A , the bi j of the instruction should
be updated to 0. SpecLFB updates the data dependencies
between instructions when an instruction is dequeued
from the LDQ/SDQ.

• For the instructions related to other exceptions, once
the ROB receives exception information from backend
units such as execution units and LSU, the bi j of the
instruction and younger instructions cannot be updated
to 0 until the exception has been handled.

When all bi j of the ith ROB entry are 0, its ri can be updated



to 0. Then, the data loaded by the MUSLs in the instructions
of that ROB entry can pass the security check of the LFB
and be refilled into the L1D cache. While SpecLFB promptly
updates the bi j of instructions when the correctness of specu-
lation has been verified, the delays introduced by traversing
the ROB queue and the STQ/LDQ to confirm the safety of
related instructions are inevitable. Nevertheless, these delays
are still relatively shorter compared to other solutions. For
STT, unsafe speculative instructions are allowed to continue
their execution when the youngest tainted root of the instruc-
tions reaches a visibility point, where there are the oldest
unsafe speculative instructions. In addition to the delay for
computing the instruction’s tainted root and traversing the
ROB, there is also a delay caused by the fact that the visibility
point could be updated only when the related instruction is
committed. For SEE-RV, it uses the point-of-no-return pointer
in the ROB to track the oldest unsafe speculative instruction.
This approach helps avoid the delay for computing the instruc-
tion’s tainted root. However, it causes the instructions to be
delayed until all older speculative instructions become safe.
This delay only occurs for the instructions in unresolved con-
trol flow in SpecLFB. Furthermore, during the waiting period
for SpecLFB to update the ROB unsafe mask, the MSHR can
simultaneously request data of MUSLs from the lower-level
caches. As soon as the protection is disabled, the requested
data can be refilled directly from the LFB into the L1D cache
instead of the lower-level caches or memory, and thus without
causing too much delay. In the case of a processor validat-
ing incorrect speculation, the relevant instructions have been
squashed from the pipeline, and the relevant data in LFB will
become invalid before changing the state of the L1D cache.
The processing of these data only needs to follow the original
rollback mechanism of processors.

6.3 SpecLFB Security Analysis
SpecLFB keeps track of speculative loads through ROB un-
safe masks. Initially, all speculative loads are marked as un-
safe because their correctness is not yet verified. The ROB
unsafe mask ensures that speculative loads are considered
safe only when specific conditions are met (e.g., control flow
resolution, memory access order resolved, exception handling
completed), which is thoroughly determined based on the pro-
cessor’s speculation sources (cf. Section 5) and the working
principle of microarchitecture. The ROB unsafe masks cur-
rently designed do not consider MUSLs in VP, making the
tracking of unsafe speculative loads accurate only on proces-
sors without VP implementation. For processors that imple-
ment VP, the related update rules of ROB unsafe masks need
to be set in accordance with their specific implementation.

Take Spectre attack based on evict+reload as an example.
Figure 9 shows how SpecLFB blocks the establishment of
cache side channels, where each lattice denotes a cache line.

• In phase one, the attacker first evicts the specified cache

ThresholdThreshold

EvictPhase 1

Reload
Phase 2

Reload

Phase 3

SpecLFBBaseline
Attacker

Victim

Attacker

Probe ProbeAccess time Access time

Victim

Attacker

Figure 9: The process of Evict+Reload attacks in Baseline and
SpecLFB. The red lattices represent the cache lines accessed
by the victim speculatively. For more details of the figure
please refer to Figure 4.

lines from the cache.

• In phase two, the victim runs the program under the con-
ditions created by the attacker. For example, in Spectre
v1 and v2, the attacker mistrains the branch predictor
to speculate along a wrong path, thereby triggering a
transient execution. The cache lines represented by the
yellow lattices that have already been evicted in phase
one but need to be accessed during the transient execu-
tion will be reloaded into the cache in phase three. How-
ever, in the processors that adopt the SpecLFB scheme,
these cache lines represented by the red lattices will be
regarded as data loaded by MUSLs. During the transient
execution period (i.e., waiting for the processor to verify
speculation), these cache lines cannot pass through the
security check to be refilled into the cache.

• In phase three, the attacker probes the time it takes to ex-
ecute a read at the memory address corresponding to the
cache line evicted in phase one. The cache lines that have
been accessed by the victim in phase two are reloaded
into the cache, resulting in a significantly shorter ac-
cess time for the corresponding yellow lattices than the
cache lines that are not in the cache (represented by the
white lattices). In the processors that adopt the SpecLFB
scheme, the cache lines that have been accessed by the
victim in phase two are not refilled into the cache. This
makes it impossible for the attacker to determine which
cache lines have been accessed by measuring the access



time, thus preventing the leakage of sensitive data.

7 Experimental Setup

We use Chipyard v1.8.0 to generate RTL for each of the three
SonicBOOM-based processors shown in Table 1, and then run
the simulations through Verilator v4.210. The original Sonic-
BOOM is selected as the unsafe baseline. For the comparison
in this paper, we have also implemented SSE-RV [39] in the
latest SonicBOOM1. As introduced in Section 10, SSE-RV
is a hardware-level taint tracking protection mechanism that
improves upon STT [57]. Similar to our approach, it prevents
the propagation of sensitive data by delaying speculative in-
structions. Then by running Vivado, a Xilinx software suite
for hardware design synthesis and analysis, the three Sonic-
BOOM cores have been successfully synthesized with their
hardware resource overheads obtained.

Besides, to achieve a more realistic evaluation in terms
of processor performance, we have built a hardware proto-
type based on Xilinx EK-KC-705 FPGA [2] platform (with
a clock frequency of 50MHz) burned with the above three
SonicBOOM cores. The prototype framework is shown in Fig-
ure 10. The common parameters of the three SonicBOOMs
are shown in Table 2. Then a Linux-kernel-based operating
system, Debian, is booted in the prototype, based on which
SPEC2017 has been run for a comprehensive evaluation of
the three processors’ performance.

Due to the fact that SonicBOOM’s L2 cache uses an open-
source simple cache component which is beyond the scope
of the SonicBOOM core that we can modify, we evaluate
the performance of SpecLFB applied in all cache levels
based on the SpecLFB’s Gem5 [38] implementation, where
SpecLFB is applied to both levels of the cache in the O3 CPU
model in Gem5. Additionally, we compare the performance of
SpecLFB to the state-of-the-art defense, STT [57], which was
also implemented in Gem5. Table 1 provides the configura-
tions of the simulated processors in Gem5, and the parameter
settings for each component of Gem5 are detailed in Table 2.

To evaluate the effectiveness of the proposed defense
scheme, we cross-compile proof-of-concept (PoC) programs
of Spectre attacks both for the RISC-V instruction set archi-
tecture (ISA), including Spectre v1, v2, v4, and v5, and the
X86 ISA, including Spectre v1 and v4. The programs of the
RISC-V ISA have been run in both the Chipyard simulator
and the FPGA hardware prototype, while the programs of the
X86 ISA have been run in Gem5 simulator.

1SSE-RV was originally implemented in an earlier version of Sonic-
BOOM, which has some differences in handling 32-bit instructions and
cannot be adapted to Chipyard v1.8.0.

Table 1: Processor configurations.

Processor SonicBOOM
Configurations

Gem5
Configurations

Baseline Original SonicBOOM Original O3 CPU
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Figure 10: Prototype framework.

Table 2: Gem5 and SonicBOOM-FPGA parameters.

Parameter SonicBOOM-FPGA Gem5

ISA RV64 X86-64
Frequency FPGA@50MHz simulate@2GHz

Processor type
2-decode 4-issue

MediumBoom O3CPU
8-decode 8-issue

DerivO3CPU
ROB/LDQ/STQ 64/16/16 entries 192/32/32 entries

L1I Cache
16KB, 4-way,

64B line
32KB, 8-way,

64B line, 4 MSHRs

L1D Cache
16KB, 4-way,

64B line, 2 MSHRs
32KB, 8-way,

64B line, 4 MSHRs

L2 Cache
512KB, 16-way,

64B line
2MB, 16-way,

64B line, 20 MSHRs

8 Evaluation

8.1 Attack Replication
To replicate the Spectre attacks introduced in Section 3.2,
we adopt the Flush+Reload [55] and Evict+Reload [34] tech-
niques to establish a cache side channel in X86 and RISC-V
cores, respectively. In a practical attack scenario, the attacker
can treat the content of any memory address they want to
attack as an address which is essentially a numerical value in
their own process, and actively access it in the code. Specif-
ically, we construct a 256-element array (i.e., array2 intro-
duced in Section 3.2) in the attacker’s code (since only one
byte can be exploited at a time, with a value between 0 and
255). Then a corresponding array element is loaded into the
L1D cache based on the value of the content at the attack
address. For example, if the value of the content at the address
is 0, the attack code will load the first element of the array into
the Dcache. In this way, by detecting which element of the
array is in the Dcache, the value of the content at the attack
address can be determined.

Loading memory data into cache is relatively straightfor-
ward, but it is not as easy for cache evict operations in the



the secret character 'T'

0

10

20

30

40

50

60

70

80

90

100

0 12 24 36 48 60 72 84 96 10
8
12
0
13
2
14
4
15
6
16
8
18
0
19
2
20
4
21
6
22
8
24
0
25
2

Ac
ce

ss
La

te
nc

y
(c

yc
le

s)

Array Index

Baseline
SpecLFB

Threshold

(a) Spectre v1 in Chipyard

the secret character '#'

0

10

20

30

40

50

60

70

80

90

100

0 12 24 36 48 60 72 84 96
108

120
132

144
156

168
180

192
204

216
228

240
252

Ac
ce

ss
La

te
nc

y
(c

yc
le

s)

Array Index

Baseline
SpecLFB

Threshold

(b) Spectre v4 in Chipyard

the secret character  'T'
0

40
80

120
160
200

0 12 24 36 48 60 72 84 96 10
8
12
0
13
2
14
4
15
6
16
8
18
0
19
2
20
4
21
6
22
8
24
0
25
2Ac

ce
ss

La
te

nc
y

(c
yc

le
s)

Array Index

Baseline

0
40
80

120
160
200

0 12 24 36 48 60 72 84 96 10
8
12
0
13
2
14
4
15
6
16
8
18
0
19
2
20
4
21
6
22
8
24
0
25
2Ac

ce
ss

La
te

nc
y

(c
yc

le
s)

Array Index

SpecLFB

(c) Spectre v1 in Gem5

the secret character '#'
0

40
80

120
160
200

0 12 24 36 48 60 72 84 96 10
8
12
0
13
2
14
4
15
6
16
8
18
0
19
2
20
4
21
6
22
8
24
0
25
2Ac

ce
ss

La
te

nc
y

(c
yc

le
s)

Array Index

Baseline

0
40
80

120
160
200

0 12 24 36 48 60 72 84 96 10
8
12
0
13
2
14
4
15
6
16
8
18
0
19
2
20
4
21
6
22
8
24
0
25
2Ac

ce
ss

La
te

nc
y

(c
yc

le
s)

Array Index

SpecLFB

(d) Spectre v4 in Gem5

Figure 11: Access latency measured in the Spectre attacks through cache-based side channel.
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Figure 12: The performance overhead comparison between
SpecLFB and SSE-RV [39] both running the selected work-
loads contained in SPEC2017.
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Figure 13: The performance overhead comparison between
SpecLFB and STT [57] both running the selected programs
contained in SPEC2017.

RISC-V as in the x86 ISA, since the current RISC-V ISA
does not provide any instruction for achieving direct flush op-
erations of cache lines like the clflush instruction in the x86
ISA. Therefore, we achieve an L1D cache evicting operation
at a specified cache address by loading dummy data into the
target location in the L1D cache to cover the original content,
which is based on the working principle of Evict+Reload, for
the replication of the attacks in RISC-V core.

8.2 SpecLFB Security Evaluation

Since Spectre v1 and v4 are associated with the MUSLs in
unresolved control flow and those in unresolved memory ac-
cess order, respectively, we choose them as two representative
attacks to evaluate SpecLFB Security. Figure 11 shows the

attacker’s access latency of the elements in array2 of Spec-
tre v1 and v4 (cf. Section 3.2) during the third phase of the
side-channel attack. Based on the measurement of the access
latency taken for accessing data upon cache hits and cache
misses, we set the latency threshold to 50 cycles for Sonic-
BOOM in Chipyard and 80 cycles for the O3 CPU model in
Gem5. After triggering a transient execution in the victim,
the attacker probes the elements of array2 and reports the
access latency. As shown in Figure 11, for Baseline, only the
accesses to the element of array2 corresponding to the secret
character hit in the cache with a time less than 50 cycles,
while all the other accesses to the elements of array2 cause
cache misses; therefore, the attacker is able to obtain the se-
cret character. In contrast, for SpecLFB, the access latency of
the elements in array2 is evenly distributed, without signif-
icant differences that fall below the threshold, as SpecLFB
does not allow the data loaded by MUSLs to change the cache
state until it is validated by the processor. After the specula-
tion has been validated as incorrect, the element of array2
corresponding to the secret character in LFB becomes invalid
without being reloaded into the cache. Therefore, the attacker
is unable to obtain the secret data.

A successful attack is defined as leaking one character dur-
ing a PoC program run. In both Chipyard and Gem5, we run
each of the evaluated attacks 100 times. The length of the
secret string randomly generated exceeds 100 characters at
each run. In the processors without any defense mechanism,
the success rate of leaking the secret value is 100%. With
our defense mechanism, the success rates in Chipyard and
Gem5 drop to below 0.01% and to 0, respectively. Due to the
software noise, three secret characters are detected by chance
out of 40,000 attack attempts in Chipyard. Also for the FPGA
hardware prototypes, all four attacks work successfully in the
original SonicBOOM but fail to work in the SonicBOOM en-
hanced with SpecLFB. In summary, our mechanism provides
strong and effective protection against these attacks.

8.3 Performance Evaluation

We run SPEC2017 in the FPGA-based hardware prototype
and Gem5 to evaluate our mechanism. In the FPGA-based
hardware prototype, performance overhead for a processor



running a workload is defined as the workload’s execution
time normalized to that of the Baseline (as shown in Table 1),
while in Gem5, it is defined as the IPC (Instructions per Clock
Cycle) of the workload normalized to that of the Baseline. Fig-
ure 12 and Figure 13 show the comparison of the performance
overhead between SpecLFB and SSE-RV/STT both running
the selected workloads contained in SPEC2017, where the last
pair of bars “GEOMEAN” in the figures shows their average
performance overhead over all the executed programs.

Evaluation based on Hardware prototype. As shown
in Figure 12, the average overhead of SpecLFB and SSE-
RV is 1.85% and 4.8%, respectively. Compared to SSE-RV,
SpecLFB has the advantage that only the instructions generat-
ing MUSLs will be delayed during the L1D cache refill stage.
For the instructions becoming safe, SpecLFB can release its
protection at an earlier point and the data related to the de-
layed instructions has already been in the LFB, which allows
the delayed instructions to access the data more quickly when
they continue to be executed. Therefore, for the programs
with limited cache capacity demands, such as “imagick” and
“parest”, which can be executed well without regular accesses
to the memory [23] resulting in few cache misses, the corre-
sponding performance overhead of SpecLFB is much smaller.
In contrast, SSE-RV incurs a larger performance overhead for
the programs with a large number of memory access opera-
tions, such as “parest”.

Evaluation based on Gem5. We compare the IPC per-
formance of SpecLFB with that of STT in two protection
modes, i.e., STT-Spectre (STT-Sp) and STT-Furistic (STT-
Fu). As shown in Figure 13, STT-Sp, which aims to defend
against Spectre-type attacks, incurs an average overhead of
7.36%. However, as indicated in Table 3, STT-Sp only con-
siders control-flow prediction, while STT-Fu considers all
speculative sources, resulting in a significantly higher aver-
age overhead of 26.82%. In contrast, when considering more
speculative sources compared to STT-Sp, SpecLFB introduces
only a 3.20% average overhead. The reason for such an over-
head difference is similar to SSE-RV. On one hand, STT
conservatively delays all unsafe speculative loads, whereas
SpecLFB only delays those that cause cache misses. On the
other hand, the relatively complex tracking logic and visi-
bility point of STT cause more delays, which further delay
the execution of unsafe speculative instructions. Addition-
ally, SpecLFB allows the delayed instructions to access data
earlier after the protection is disabled. However, it cannot be
denied that SpecLFB achieves some performance improve-
ments compared with STT and SEE-RV by narrowing down
the defense scope. For protected speculative loads, SpecLFB
specifically protects speculative loads causing cache misses,
while STT-Sp and STT-Fu, as well as SEE-RV also consider
speculative loads causing cache hits. For blocked covert chan-
nels, SpecLFB specifically blocks covert channels through
cache, while STT-Fu is able to block any covert channel.

FPGA resources utilization. Based on the same core pa-

Table 3: Comparison of STT [57], SpecLFB and SSE-RV [39].
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rameter configurations, SoC bus, and peripheral devices, we
synthesize the resources usage of the three processors us-
ing Vivado 2021.2 based on the FPGA hardware prototype.
As shown in Table 4, SpecLFB only adds less than 1% of
resources compared to the baseline, and consumes fewer re-
sources than SSE-RV, especially in terms of LUTs (Look-
Up-Tables) and FFs (Flip-Flops). LUTs are primarily used to
implement logic circuit functionality, and FFs are sequential
logic elements used for storing and transferring binary data in
digital circuits on FPGAs. The high LUT utilization of SSE-
RV is mainly due to the additional logic in the taint initial-
ization and propagation stages, which is more complex than
the security mechanism of SpecLFB. The high FF utilization
is due to the taint file, propagation queue, and intermediate
registers, while SpecLFB only adds intermediate registers
related to the ROB unsafe mask. Therefore, SpecLFB pro-
vides a lower additional hardware resource overhead while
addressing security issues. The recent transient execution
attack defense work ProSpeCT [13] also implements its de-
fense hardware prototype on the open-source OoO RISC-V
processor Proteus [8] and deploys it in FPGA for resource
evaluation. As shown in Table 4, when the size of BOOM
and Proteus are quite different, SpecLFB has advantages in
terms of both the absolute number and relative proportion
of additional resource overhead. ProSpeCT is proposed as
a universal secure speculative processor model encompass-
ing the security semantics of all current speculative mech-
anisms. The ProSpeCT model is implemented as a Proteus
plugin, with some additional modifications in the base proces-
sor. Such plugin implementation cannot constrain resource
overhead tailored to the specific processor implementation,
which causes the hardware resource overhead to be large and
sensitive to the specific implementation of the processor and
the processor size. SpecLFB only adds specified logic to the
micro-architecture already existing in the processor, and thus
has obvious resource overhead advantages.

9 Limitations and Discussions

Speculative accesses resulting in cache hits. SpecLFB de-
fends against speculative cache side-channel attacks by pre-
venting cache lines speculatively loaded by the victim under



Table 4: FPGA resources utilization.

Scheme Core Device LUTs FFs

Baseline SonicBOOM Xc7a325T 169,463 93,994

SSE-RV SonicBOOM Xc7a325T
172,538

(+1.81%)
94,567

(+0.61%)

SpecLFB SonicBOOM Xc7a325T
170,765

(+0.77%)
94,283

(+0.31%)

Baseline Proteus-O3 Xc7a35T 16,847 11,913

ProSpeCT Proteus-O3 Xc7a35T
19,728

(+17.1%)
12,600

(+5.8%)

cache misses from being refilled into the cache. However, we
cannot ignore the threat of speculative cache side-channel
attacks where attackers may not need to evict the cache lines
they want to leak in the first phase. This could lead to cache
hits rather than cache misses when the victim executes specu-
lative loads. For example, Xiong et al. [50] proposed a cache
side-channel attack based on Least-Recently-Used (LRU)
strategy, which does not require pre-evicting cache lines to
be leaked. In its first phase, the attacker brings cache lines
they want to monitor into the cache. In the second phase, the
victim performs speculative accesses, leading to cache hits.
In the third phase, the attacker needs to access a cache line
that is not in the cache. The least-recently-accessed cache line
is replaced based on the LRU strategy. Finally, the attacker
determines whether the victim has speculatively loaded the
monitored cache line based on whether it has been replaced.

Leakage through speculative loads under cache hits is out
of the current defense scope of SpecLFB. However, we do not
consider it a limitation of using LFB to ensure speculative ex-
ecution security, as LFB can still be utilized to defend against
such attacks. Since attackers need to manipulate the cache
state, which often involves cache eviction and replacement, to
directly or indirectly leak the speculative data, cache misses
are inevitable in speculative cache side-channel attacks. For
example, the third phase of the attack in [50] requires access-
ing a cache line that is not previously in the cache, triggering
a cache replacement. Therefore, as long as the LFB can iden-
tify the loads that are exploited by the attacker to manipulate
cache states, regardless of whether these loads are speculative
or not, further defensive measures can be taken. Specifically,
to defend against the attack described in [50], the cache en-
tries where the cache lines accessed by unsafe speculative
load instructions reside will be marked in the second phase.
This marking needs to be removed when unsafe speculative
loads become safe. The unsafe speculative load instructions
can still be traced using SpecLFB’s ROB unsafe mask. In
such attack scenario, cache manipulation from the attacker
does not have to happen speculatively, so interception cannot
follow SpecLFB. Therefore, in the refill process of the third
phase, if the unsafe speculative load has completed execution
without causing a cache miss, the cache lines in the marked
cache entries will be replaced through LFB with the high-
est priority and the marking will be removed. Otherwise, the
logic used by SpecLFB to intercept speculative loads that

cause cache misses will be reused. As a result, the original
refill purely according to LRU in the third phase of the attack
will be prevented. To the best of our knowledge, in Gem5
and SonicBOOM, LFB can specify the location in the cache
where cache lines are refilled. For the speculative loads that
become safe, the cache lines they accessed may be replaced
from the cache by this solution, potentially affecting the mem-
ory access latency of dependent instructions. Additionally,
because LFB cannot intercept the data loaded by speculative
instructions under cache hits, it does not prevent speculative
changes to cache metadata. Instead, it prevents attackers from
detecting such changes, such as the third phase of the attack
described in [50]. This solution prevents attackers from chang-
ing the cache occupancy state during the probe phase, such
as eviction and replacement, making it more challenging for
them to carry out such attacks.

Other speculative side channels. Besides cache side chan-
nels, there are other speculative side channels, such as TLB
[20], FPU [18], port contention [7], etc., also posing a threat
to processors in high-security scenarios. There have been de-
fense mechanisms [37, 57] comprehensively considering all
speculative sources, which prevent speculative results from
leaving the CPU core and leaking into side channels. How-
ever, since they provide aggressive protection against all side
channels, their significant performance overhead makes them
unsuitable for being deployed in real-world processors. Al-
though the cache is not dedicated to speculative side-channel
attacks, it remains the most practical method of data exfil-
tration and is an example attack in Spectre [30]. SpecLFB
restricts defense scope only to cache-based attacks to achieve
a trade-off between performance overhead and defense scope.
Besides SpecLFB, we will consider using other existing mi-
croarchitectures of CPU in future work to specifically prevent
secrets from being leaked through other side channels, thereby
achieving more defense capabilities of the system.

Limitations of the implementation and experimental
verification. First, we currently do not have a practical imple-
mentation of SpecLFB that considers the speculation source
VP. However, it is possible to be implemented in the processor
where VP has been specifically supported. In such a processor,
the SpecLFB’ ROB unsafe mask could be set based on the
elaboration of MUSLs in an unresolved value and the work-
ing principle of VP in the processor to provide protection,
which we leave as a future work. Second, due to the specific
defense scope of SpecLFB, we have not directly compared it
with the solutions that have entirely the same defense scope
in performance evaluation. Third, due to the cache constraints
imposed by SonicBOOM, we further utilize Gem5 rather than
RTL to evaluate the performance impact of SpecLFB when
applied to all cache levels. As the RTL-FPGA based evalua-
tion is obviously more accurate, which is also strong evidence
of the practicality of SpecLFB in the real world, we also leave
it as a future work to implement the SpecLFB applied to all
cache levels in hardware prototype.



10 Related work

Existing mechanisms for mitigating speculative cache side-
channel attacks can be classified into four types as shown
below in detail, including 1) limiting the execution of specu-
lative instructions, 2) making the results of unsafe speculative
executions invisible to the microarchitectural state, 3) delay-
ing the executions of unsafe speculative instructions, and 4)
reducing the accuracy of the covert channel.

Limiting the execution of speculative instructions. Intel
and AMD recommend using serialization instructions, e.g.,
lfence, in a branch [25, 48]. ARM introduces a full data
synchronization barrier and instruction synchronization bar-
rier that can be used to prevent speculation [5]. However,
serializing every branch would be equivalent to disabling
branch speculation entirely, severely degrading processor per-
formance [25]. To counter the attackers’ mistraining of specu-
lation mechanisms, both Intel and AMD extended their ISAs
with a mechanism to control indirect branches [26], but it can
only target the Spectre variants based on branch poisoning.
oo7 [45] is a method of statically analyzing binary programs,
using taint analysis, address analysis, and modeling of spec-
ulative execution to check for potentially vulnerable code
patterns. It mitigates speculative execution attacks by insert-
ing fence instructions. Such a software mitigation relying
on static analysis of a specific problem typically requires
recompiling the program and has a low coverage.

Making the results of unsafe speculative executions in-
visible to the microarchitectural state. InvisiSpec [52] adds
an SB to store the speculative data leading to security issues.
If the speculation is incorrect, the data stored in SB becomes
invalid. Otherwise, the speculative data will be re-installed
into cache. As the access to SB does not participate in cache
coherence protocols, InvisiSpec needs to reload its data for
validation at the instruction committing stage, which results
in significant performance overhead due to double memory
access. Similarly, SafeSpec [28] stores speculated data in a
fully associative shadow structure of the load/store queue,
enabling recovery of any changes to the microarchitectural
state, but the same data must be present multiple times in the
shadow structure to prevent side-channel leakage, resulting in
a high invalidation cost. MuonTrap [3] avoids double memory
access by storing the result of speculative cache access in an
L0 filter cache. However, the data movement caused by the
re-installing operation still degrades processor performance.
Therefore, CleanupSpec [40] allows the data to be installed
into the cache during the speculative execution, and the re-
placed data is stored into a newly added data structure. The
replaced data will be re-installed into the cache hierarchy to
roll back the cache state only when speculation fails. ReversiS-
pec [49] proposes a comprehensive cache coherence protocol
that takes into account speculative cache access. Compared
to InvisiSpec, the SB only stores data when it is not in the
cache, resulting in less data movement when a speculative

load becomes safe. Overall, in comparison with the above
mechanisms, SpecLFB does not require additional data struc-
tures to hide the cache lines fetched by the speculative loads
or the data movement caused by the re-installing operations.

Delaying the executions of unsafe speculative instruc-
tions. Sakalis et al. [41] proposed the delay-on-Miss mecha-
nism, which aims to delay the execution of speculated loads
rather than hide the side effects of those speculative loads
that have already been executed. Then they adopted a value
predictor to improve the mechanism, which predicts the value
of L1 cache misses to continue the speculations rather than
delaying them, further improving performance in cases of low
prediction success rates. However, the predictor also causes
significant hardware overhead. STT [57] proposes a taint
tracking technique, which marks physical registers to track
the transient execution flow after a speculative memory access.
Both NDA [47] and STT use data flow tracking similar to taint
propagation to track instructions that may cause information
leakage. These instructions are forced to be delayed until their
related instructions become safe. SDO [56] added a safe VP
mechanism based on STT to reduce overhead caused by the
delay and tracking analysis. SSE-RV [39], based on STT, uses
existing ROB pointers in SonicBOOM to track speculated
instructions, simplifying the tracking analysis logic. However,
it still requires a large taint file as a shadow structure for the
PRF to implement tainting, and unnecessary instructions may
still be incorrectly identified as unsafe instructions, which in-
creases the delay of execution. In contrast, SpecLFB requires
a smaller range of speculated instructions to be delayed and a
shorter delay for each instruction, with minimal changes to
existing hardware.

Reducing the accuracy of the covert channel. Reduc-
ing the precision of cache side channels can also mitigate
cache side-channel attacks. Therefore, many web browsers
lower the accuracy of timers in JavaScript by adding jitter or
even removing some timers. However, Schwarz et al. [42]
have shown that timers can be constructed in many different
ways, and it is not practical to remove all of them. Disruptive
Prefetch [17] and Prefender [36] add noise to cache side chan-
nels by utilizing the content brought into the cache by data
prefetchers, but they can only achieve secure enhancement
without fully defending against the attacks.

11 Conclusion

This paper proposed SpecLFB, a novel mechanism for defend-
ing against speculative cache side-channel attacks. It intro-
duces a simple yet effective security check mechanism to the
LFB, delaying the execution of unsafe speculative loads and
preventing sensitive data leakage through cache side channels.
To minimize the overhead of both processor performance
and hardware resources, SpecLFB limits the scope of unsafe
speculative loads that need to be delayed to MUSLs, which
denotes unsafe speculative loads that cause cache misses. In



addition, SpecLFB transforms them into safe loads and con-
tinues their execution as early as possible through the LFB
unsafe security check mechanism based on the ROB unsafe
mask we designed. We have implemented SpecLFB both in
SonicBOOM and Gem5 O3 processor. Based on the evalu-
ations through RTL simulation, FPGA hardware prototype
experiment, and Gem5 simulation, SpecLFB has been shown
to effectively block the establishment of cache side channels
in Spectre attacks. It leads to a hardware resource overhead
of only 0.6% and the performance overhead of just 1.85% in
the FPGA hardware prototype experiment and 3.20% in the
Gem5 simulation.
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