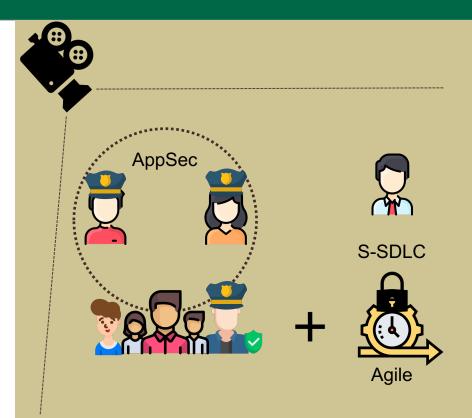


An Analysis of the Role of Situated Learning in Starting a Security Culture in a Software Company

Anwesh Tuladhar, Daniel Lende, Jay Ligatti, Xinming Ou University of South Florida


Introduction

- Goals
 - Obtain first-hand understanding of software development and security in the real world
 - Adopt a holistic approach to study software development Collective effort of the whole software development team
- Anthropological research method of Participant Observation
 - Studying developers in their "native habitat"
 - Studying the problem within the context of where the process happens
 - Observe software engineers as a collective

The Company

- Development team
 - 5 software engineers (1 with extensive background in security)
 - 1 quality assurance (QA) engineer
- Network engineers
 - Managing internal infrastructure
- Support engineers
- Virtual application security (AppSec) team
 - At least 1 software engineer from each product team assigned
 - Responsible for security of the product

Sprint Tasks

AppSec Tasks

Months 1 - 3

- AppSec Tasks
 - Cybersecurity Framework (CSF)
 - Application Security Verification Standard (ASVS)
- Sprint + AppSec tasks
- "Burning cycles"
 - "I knocked off a couple of CSF tickets."
 - "My changes are in PR. I will next work on ASVS tickets while I wait for reviews."

Sprint Tasks

AppSec Tasks

Months 4 - 5

• Threat modelling

Sprint Tasks

AppSec Tasks

Months 4 - 5

- Threat modelling
- Security Scrum Poker

Sprint Tasks + AppSec Tasks

Months 4 - 5

- Threat modelling
- Security Scrum Poker
- Contextual analysis of security
- Inclusion of security tickets within the sprint

Sprint includes security

Sprint Tasks + AppSec Tasks

Security-aware development

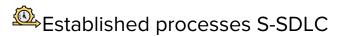
Months 6 - 8

- Whole team involvement in security
- Security considerations made in other tickets
 - During design
 - Security driven code refactor
- Customer requested feature postponed as security issue was identified
- Total 20 security related tickets filed

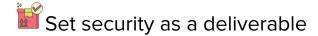
Context

Sprint includes security

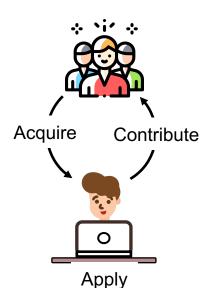
Security-aware development



What was Driving the Change?


The Role of Management

The Role of Situated Learning


Role of Subject Matter Experts (SMEs)

Existence of Preferred Practices

- Knowledgeable developers
- Learners

Co-creation + Situated Learning

 Co-creation can leverage the situated learning environment to establish secure preferred practices.

Security Scrum Poker

Applying Security Knowledge In Practice

Learning Cycle

Thank you!

Anwesh Tuladhar

<u>atuladhar@usf.edu</u>

Daniel Lende

<u>dlende@usf.edu</u>

Jay Ligatti

ligatti@usf.edu

Xinming Ou

xou@usf.edu