

History-Based Latency Prober Tuning

Jeff Borwey (jborwey@google.com) March 15, 2022

sre.google • twitter.com/googlesre

Monitoring 101: Probers!

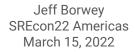
What are Probers

- Fixed workload
- Executed with a regular cadence
- Without knowledge of internals

Prober Design Decisions

Key Design Decisions

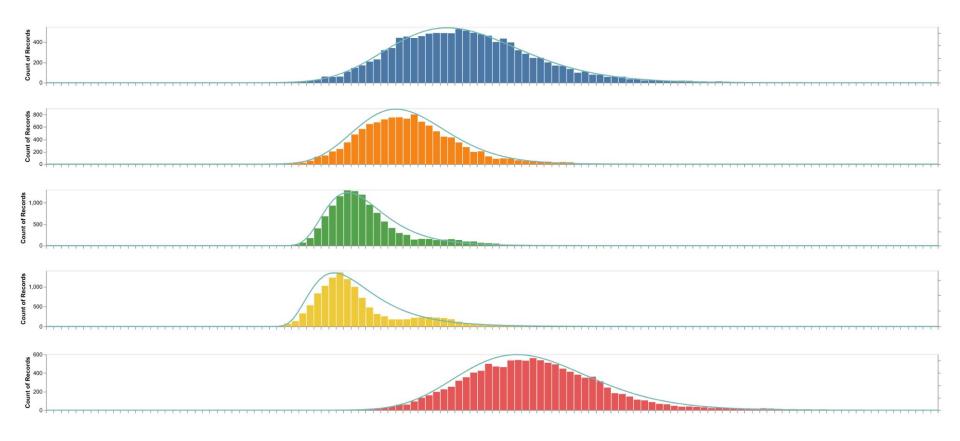
- 1. What code paths should be exercised?
- 2. How frequently should it be run?
 - a. Cost/Detection Latency trade off
- 3. How do you alert on this signal?
 - a. What is an acceptable latency?
 - i. Does this change over time?
 - ii. Does this change per environment?
 - b. How do we control false-positive rate?



How is it done in practice?

- 1. Identify an area of the system with low visibility
 - a. New feature
 - b. Reoccuring source of regressions/outages
- 2. Craft a specific workload that exercises the relevant code paths
- 3. Throw it into your framework of choice
- 4. Use "domain expertise" to pick a threshold
- 5. Get paged too much...
- 6. Increase the threshold

Now scale that to 100's of environments



Better Probing Through History!

A Better Solution: Look to History!

Alerting thresholds via **outlier detection**:

- Model historical performance
- Derive threshold for Out-Of-Distribution samples
- Adjust windowing
- Backtest!

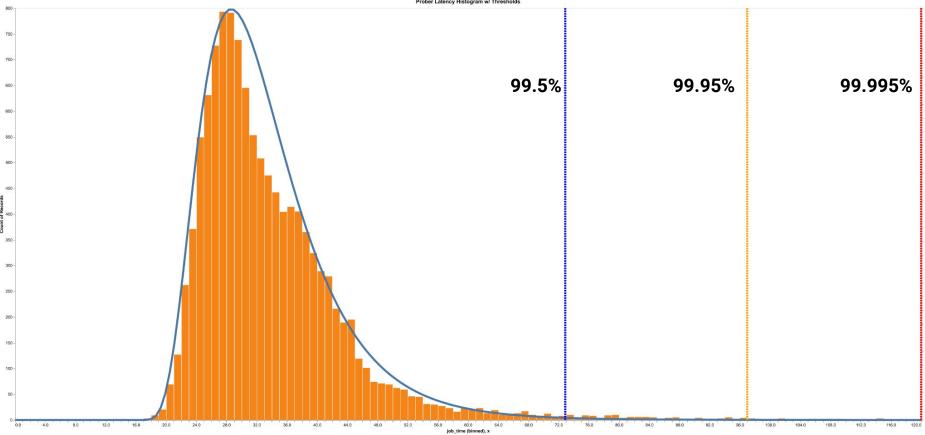
Parametric approach

- Model latency distribution per environment
- Pick a high percentile of the distribution (99.5%, 99.95%, etc)
- Log-normal often works well for latencies
- Requires trimming outliers before fitting

$$log(X - l) \sim N(\mu, \sigma^2)$$

X~Lognormal(μ, σ^2, l)

 $\boldsymbol{\mu}$ is the mean, $\boldsymbol{\sigma^2}$ is the variance, $\boldsymbol{\mathsf{I}}$ is the location offset



Non-parametric approach

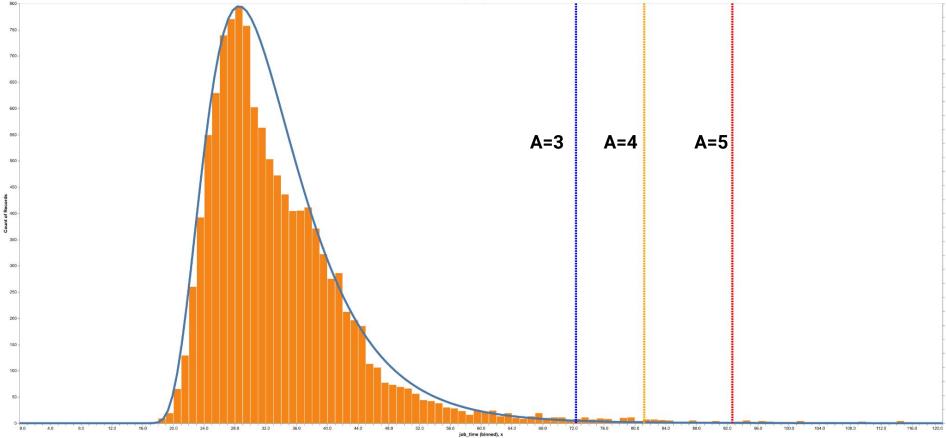
- Compute Interquartile Range (IQR) (75%-25%)
- Compute **skewness** using **medcouple (MC)**
- Skew-adjusted box-plot [1]

$$threshold = Q_3 + 1.5 * e^{A * MC} * IQR$$

Q₃ is the 75%, **A** is a tuneable parameter

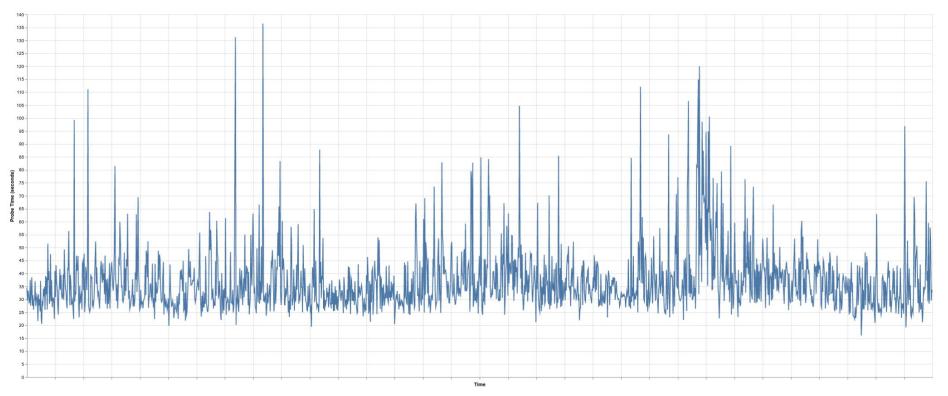
[1] Hubert, M.; Vandervieren, E. (2008). "An adjusted boxplot for skewed distribution". *Computational Statistics and Data Analysis*. **52** (12): 5186–5201.



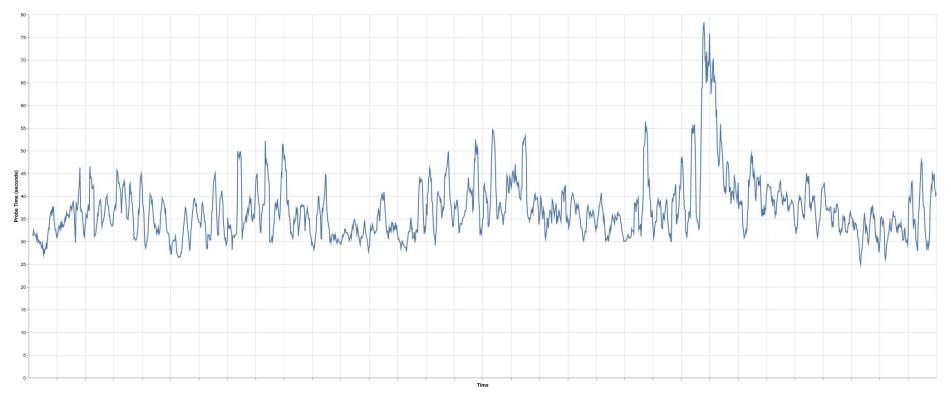


From Samples To Alerts

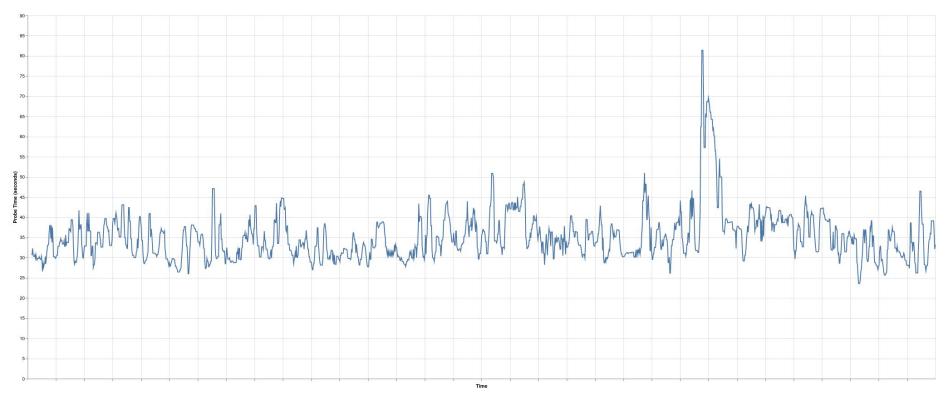
Windowing



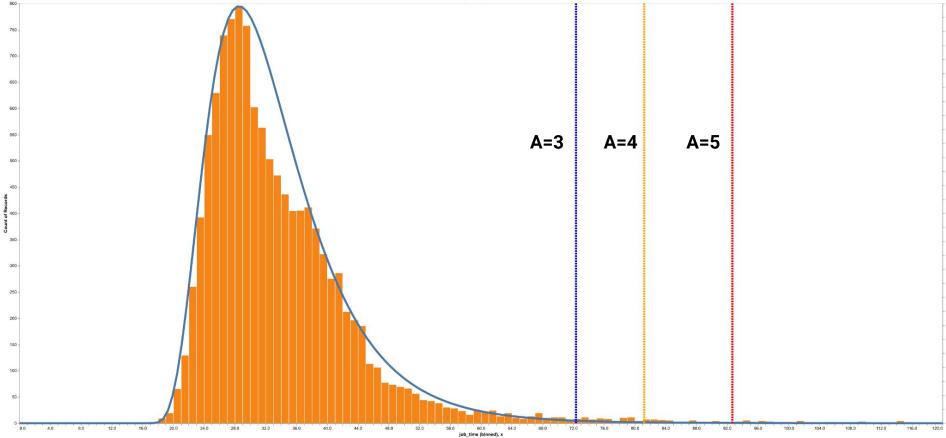
Windowing (Average)



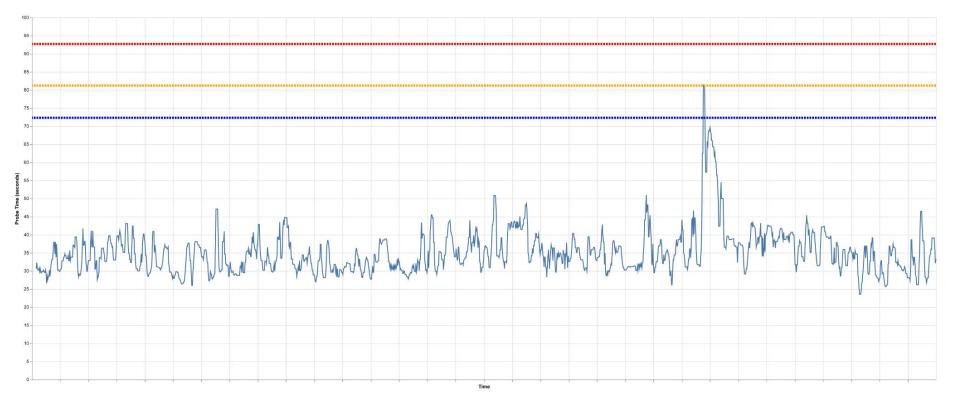
Windowing (Median)



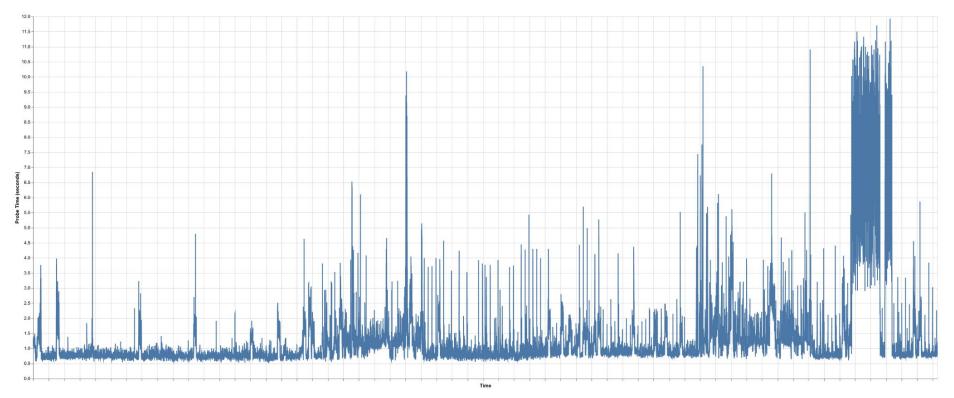
Google



An Alert?

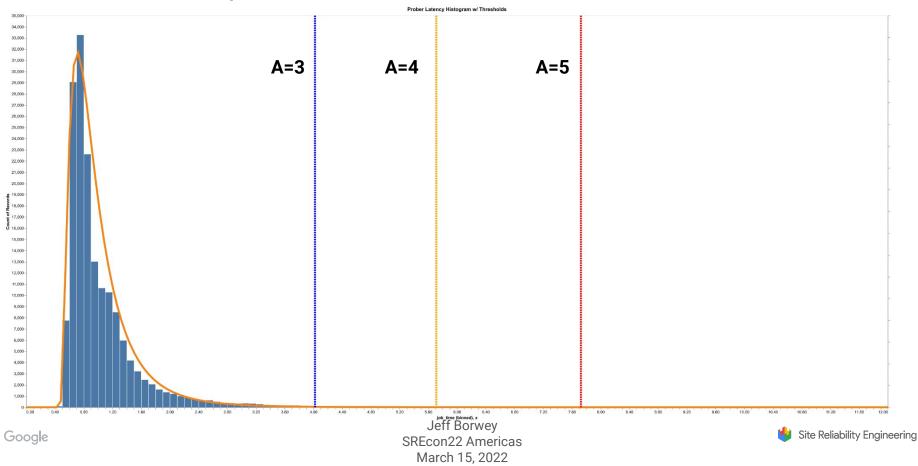


Another Example

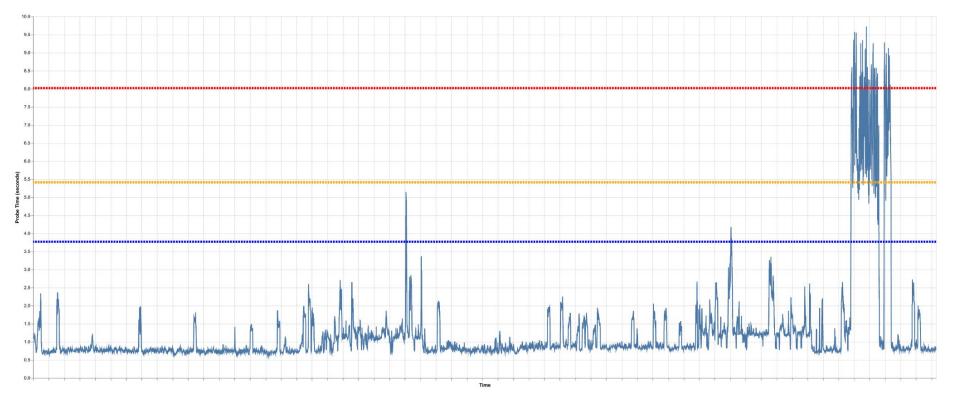


Google

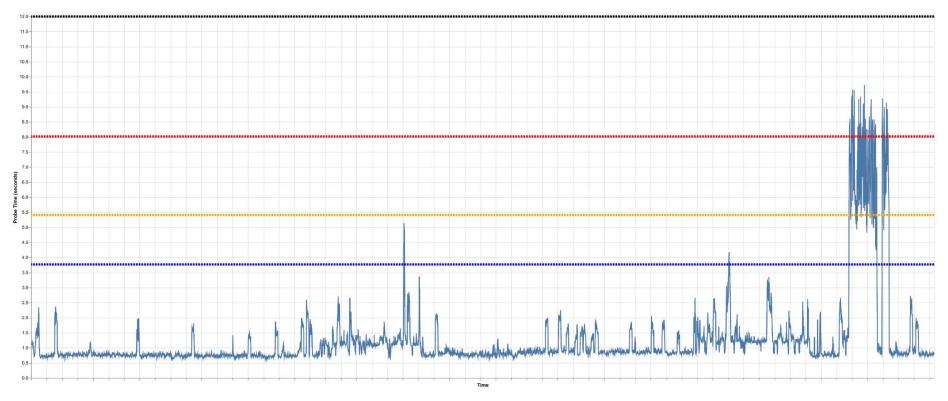
Another Example



An Alert!



An Alert!



Google

Conclusions

Conclusions

- Not all environments are the same!
- Probers shouldn't be pets
- Using simple statistical techniques lets us:
 - Get more out of our existing probers
 - Eliminate toil
 - Still provide knobs for tuning

