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Is it working?



Reliability

Availability

Is the service there when you need it?

Performance

How effectively is work performed?

Correctness

Does a service do what’s expected?



<SQL>

Whenever there’s a problem, just page me

detuning

!
pain

<Data>



SLOs

1. Encode system goals

2. Specify behavior expectations

3. Determine when to page

4. Bound emergency behavior

5. Enable error budgets

6. Indemnify for dependency problems 

7. Coordinate priorities between teams

8. Estimate outage magnitude

9. Signal service maturity

10. Bound supported behavior

HURRY: LIMITED TIME OFFER



Availability

✔ Count the number of failed requests

Reliability in Practice

Availability

✔ Count the number of failed requests
✘ 400s vs 500s
✘ Deadlines
✘ Malformed Requests
✘ Retries Magnify Errors

✘ Workload dependent
✘ Probers are narrow

Correctness

✔ Integration Tests
✔ Golden Datasets

<SQL>

Performance

✔ Set P99 latency SLO

✔ Create Probers

✘ Limited, non-adaptive coverage

✘ Hope is not a strategy 

<Data>

Database



Yo Dawg, I heard you like SLOs

+



All happy families are alike; each unhappy family is unhappy in its own way.

Errors 

● SLOs require recognized errors

● Errors are ambiguous

● Bugs can result in over/undercounting

● Calibration errors result in over/undercounting

● Lots of room for problems

● No regular maintenance cycle

● Results in poor data products

Leo Tolstoy
Anna Karenina

are shallow data 

Errors

Total



What now?



Reliability via Performance Analytics



As a Customer:
● Is service meeting expectations?
●

As a Service Provider:
● Is the system working as it should?

Shared Concerns:
● Is it you, is it me, or is it both of us?

Taking a Step Back
<SQL>As a Customer:

● Is service meeting expectations?
●

As a Service Provider:
● Is the system working as it should?

As a Customer:
● Is service meeting expectations?



Workload performance … across all customers

Complications:
● Mix shifts in workload
● Environmental factors like contention
● Mixed environments, job priorities, etc

What do Service Providers See?
<SQL>Workload performance … across all customers



You may not know if a workload is performant

but your customers do

You may not know if a workload is performant

What do customers see?

SELECT img 
FROM DogPics AS DP
LEFT JOIN FriendsFavs AS FF
  USING (img_id)
WHERE DP.cute =‘very’ 
  AND FF.stars >= 4
ORDER BY FF.favs DESC
LIMIT 1000

“cute dog”

Services should be consistent



Workload Service

A High Level Model

Performance

Reliability



Shared Metrics & Logs

Service architecture 

Infrastructure

Environment

Dependency graph

Internal Metrics & Logs

Service source code

No Consensus Elephant

Workload

Requirements

Performance expectations

Correctness

Client Metrics & Logs

Application source code



Applying to the Model

Service

Reliability

PerformanceWorkload



Applying to the Model

Service

Reliability

PerformanceWorkload



Steps to Solve Service Reliability:

1. Partition Workloads by Intent

2. Analyze Performance

3. Profit!

It’s Just That Easy™



2𝜎 Technique



Hypothesis: 
Self-Similar Workloads Should Have Consistent Performance

Technique Overview:
● Partition workloads into Cohorts  ← Approximate Intent via Workload Features

● Build Performance Baselines ← Estimate Distributional Form (e.g. Normal)

● Estimate Likelihood of Delivered Performance ← Test For Stationary

2𝜎 Technique

Hypothesis: 
Self-Similar Workloads Should Have Consistent Performance

Technique Overview:
● Partition workloads into Cohorts  ← Approximate Intent via Workload Features

● Build Performance Baselines ← Estimate Distributional Form (e.g. Normal)

● Estimate Likelihood of Delivered Performance ← Test For Stationary

Result:
● Set of Events with Predicted Likelihoods

● Time-series of summary statistics describing concentration of extreme outliers

Hypothesis: 
Self-Similar Workloads Should Have Consistent Performance



Approximations Unlock Leverage

Assume:
● Metric distributions can be approximated by Normal distribution

● Modeling errors excluded via baseline qualification

Then: 
● Workload z-scores are a proxy for likelihood

● Workload performance should be IID

● Z-scores follow a standard Normal distribution

● Baseline distribution computation is “embarrassingly parallelizable”

● Z-scores are combinable (across cohorts!)

Assume:
● Metric distributions can be approximated by Normal distribution

● Modeling errors excluded via baseline qualification



Mechanics

Strategy: 
● Aggregate z-scores across workloads

● Monitor fraction of workloads with z-scores  ≥ 2, in windows

● Expect 2-5% 2𝜎 outliers in any given window

● When >10% of workloads are >2\sigma, BE AFRAID.

Detection is based on fraction of workloads exhibiting regression



Leveraging Structure: 2𝜎 Technique
“Model”

Historical Service Data Partition into Cohorts Compute Baselines

Cohort 
Metrics
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“Measure”
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Current Service Data Compute Z-Scores Monitor Z-Scores

Cohort 
Metrics
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Frequently Asked Questions

● Do performance metrics actually follow Normal distributions?

● How do you know if approximations hold?

● How do you define cohorts?

● How do deal with “singleton” / infrequent workloads?

● Aren’t there a lot of singleton workloads?

● Ok, but does this really work?



Backtesting



Applications



Sensitive Detection of Service Problems

18 hours



Streamlined Diagnosis

Total Time

I/O Time

Queue Time Execution 
Time

…

Total Time

I/O Time



Excursion Impact Assessment

Excursion Impact



Measuring unexpected correlations



Approximate Cohort A/B Testing



Conclusions



Key Observations
● Reliability is a shared property (between customer & service)

○ Reconstruction of end to end behavior is critical
● Variability is what customers actually care about
● Distributed systems often produce decorrelation

○ We can measure it, and its absence
● Workload correlation can identify proximate causes
● Metric combinability is critical for analysis
● Error recognition is a gestalt of human judgements over time
● Due to the unrecognized problems in error recognition, SLOs aren’t feasible



Contributions
2σ is a method that:

● Incorporates user intent in order to model expected performance
● Tests an IID hypothesis to infer when systems diverge from expected behavior
● To produce data products that are comparable and combinable

We use these data products in order to:
● Perform change point detection when systems diverge from expectations
● Estimate the duration, severity, and specific impact of these excursions
● Localize subsystem performance problems
● Compare relative and absolute performance over time and arbitrary workload 

dimensions
● Directly measure correlation across subsystems and isolation domains

Resulting in:
● Calibration-free insights that characterize the consistency of a system
● The ability to test system invariants continuously
● Data building blocks that can be reprocessed to answer many questions



Closing Thoughts
● We can do a lot better than SLOs, and we must
● Performance data >> Availability data
● We need more models
● We need help!

○ (and have openings, talk to me or Brent)



Questions


