Using Serverless Functions
for Real-time Observability

SRECon, 16 March 2022

® . honeycomb.io

Liz Fong-Jones

Principal Developer Advocate

@lizthegrey

Jessica Kerr

Principal Developer Advocate

@jessitron

.. h © 2021 Hound Technology, Inc. All Rights Reserved. 2

Today

How serverless is useful for on-demand compute

How serverless is painful for on-demand compute

How to experiment with serverless in your environment

- T

Whatis Lambda for?

Let's talk use cases of serverless

.

- T

What is Lembde for?

We'd like to optimize our custom datastore, Retriever

.

What is Retriever for?

It's a distributed column store for real-time event aggregation

@jessitron

What is Retriever for?

Real-time event aggregation for interactive querying over traces

@jessitron

B
e
——

SSS—

s
523
2333
ST

What is Honeycomb for?

is going on

: finding out what
traces!)

Observability
(by query

ing

jessitron

@

@jessitron

Monitors Y\g,

ik

L] L]
B E— - @jessitron

https://docs.google.com/file/d/1-Vmt20vJOwgWBNOUkUoFHvzSnwUbIGa5/preview

Interactive investigation of
production behavior

We run fast queries across any combination of fields.

@jessitron

-

Emphasis: interactive.

100ms is fast. 1000ms is ok. 10sec is slow. 100sec is unacceptable.

.

Retriever stores all your event data

1 o

@jessitron

Retriever is a distributed datastore.
- 39

W(¥\¥\Dd\(\§/ qu_ﬂ

Refniever
p er

Qafl Yo

@jessitron

Retriever is a distributed datastore.

Coun Lektevel
-4 Ceads < 0\@30686‘*95

© 2021 Hound Technolog!

@jessitron

Retriever is a distributed column store.

—]
\;—v/
—__|\

@jessitron

Retriever is a distributed column store.

s NN

.__—-———'—"

|

€

..g © 2021 Hound Techno @j e S S it rOﬂ

Retriever indexes segments by timestamp.

7
o —
X
_)1-"‘"1 >
eﬂeﬂ\f —>| \ geﬁmem \06 acciva
A\
’ e\ break at cowillion, o0 (Gb,
TN
0 d_-\q()“ or s
¢ Record Yre YneStamp ranﬁe

o segment,
X A r J @jessitron

Retriever indexes segments by timestamp.

6@‘3‘“?\%

\’q\o@{\ oy
Lot AN

®-h ©2021 Hound Technolc @jeSSitrOn

Retriever indexes segments by timestamp.

| L
2 [%ON\{ 0
ead each @

ouer\app N
Soq MeN jessitron

- T

Dynamic aggregation of any
fields across any time range

A custom datastore, carefully suited, continually optimized.

B 300000

Bigger customers, more data coming in.

Segments hold a smaller time range.

—{

~[]

-

-]
\ 4

Solution: MOAR storage

@jessitren

Now we can keep data for a fixed time range!

S oo

—1 0

e — @jessitron

Retrievers grab data back from S3 at need.

alniale

* nTmmBWﬂD

..h © 2021 Hound Technology, In @jeSSitrOﬂ

Now people can run queries over 60 days ¢

A

= |
e

=

4

=

i L’-\ , T 1)

. ; Ee3 L] L]
ST — P ¥ (@jessitren

Now people can run queries over 60 days &’

/N
Y T
R
£
)
& S$ip —\
bink - >
—7
4
O.g ee Sesmc

guerred @jessitron

ff | Lots more compute to play
with, pretty please!
but only if | want to play!

Retrievers

@jessitron

MOAR compute, on demand.

VISUALIZE WHERE GROUP BY
CONCURRENCY service_name = lambda None; don't segment Run 2 minute
name = Invoke ago
+ ORDER BY + LIMIT + HAVING
Results BubbleUp Metrics Traces Raw Data (O Compareto 1 day prior v {3} Graph Settings
Sep 28 2021, 8:46 PM - Sep 29 2021, 8:46 PM (Granularity: 1 min)
CONCURRENCY
L
%
(<A
L«
o
L4
o5 Leblold : , :
21:00 Wed Sep 29 06:00 12:00 15:00

@jessitron

Problem: too much data for one retriever...

A

= N
=

=

4

=

i \':\ , T [

. ; Ee3 L] L]
ST — P ¥ (@jessitren

Solution: more compute, on demand.

|

- T %\)Q'{j
& e g— 7-“:3/“ “
— {‘

: |
| m—) i
i =
[) b |
© 2021 Hound Tect

v @jessitren

Increase in query time is sublinear

12000
P50
10000
~
n
- 8000
N
5
2 6000
©
| -
S
S 4000
>
)
3 2000
o
0
0 20000 40000 60000 80000 100000 120000 140000 160000 180000

Segments in S3

@ . .
.. h © 2021 Hound Technology, Inc. All Rights Reserved. @J e S S It rOﬂ

- T

Buy compute in 1060msims units

Compute scales with time range, so response time doesn'’t have to.

.

Lambda scales* up our compute

median* startup of ours return* as expensive*
time within 1.5s as EC2

@ h © 2021 Hound Technology, Inc. All Rights Reserved.

- s

Considerations

Lambda is on-demand compute, but they didn't build it for this.

Lambdp our compute

median startup of ours return as expensive as
time within 1.5s EC2

(Y h © 2021 Hound Technology, Inc. All Rights Reserved.

Lambda scales... within limits

\pso\o'e
& \““\\‘v

' ncrewenk
pursy W\~

e

—

\aumdons jo“’ \'(\A’fo ron

\ \\ m{\’\»

AWS conevr(enty

@lizthegrey

Lambda scales... within limits

/r\
\oke T S
Aﬁ:\“\\-\' AWS concuilency
\\\m\’\/
Pufsy Wk T é,\b)(u\r\ﬁij

amlis \We %nj’m fon

N

@lizthegrey

Observability helps: concurrency

VISUALIZE WHERE GROUP BY
CONCURRENCY service_name = lambda None; don't segment Run 2 minute
name = Invoke ago
+ ORDER BY + LIMIT + HAVING
Results BubbleUp Metrics Traces Raw Data (O Compareto 1 day prior v {3} Graph Settings
Sep 28 2021, 8:46 PM - Sep 29 2021, 8:46 PM (Granularity: 1 min)
CONCURRENCY
L
%
(<A
L«
o
L4
o5 Leblold . : . , .
21:00 Wed Sep 29 03:00 06:00 09:00 12:00 15:00

@lizthegrey

Lambda scales... within limits

Study your limits:

https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html

Change the SDK retry parameters

Observability helps &=

Talk to your account reps

L]
[)4p] © 2021 Hound Technology, Inc. All Rights Reserved. @ I I Z-t h e g r@y

https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html

Lambda scales up our compute

of ours return as expensive as
within 1.5s EC2

median startup
time

. (Y h © 2021 Hound Technology, Inc. All Rights Reserved.

Functions start up... when they do

(m) ‘ (D) retriever-traces Queries | Honey: X D retriever-traces Trace | Honeycor X | -+ o
&)) https://ui-dogfood.honeycomb.io/prod/datasets/retriever-traces/result/fMrmnrkk9BV/trace/kDJ6kSoZaTz QU 18 B & % @ \ / = §° 6
< Trace 4a4cc66ech68cf734239d25674ee5a3b at 2021-09-29 20:31:59 Rerun lambda >
main
Search spans Z Fields
. Distribution of span duration &
name - ¢ service_name - 0s 200s 400s 600s 800s 1,000s 1,186s
HEATMAP(duration_ms)
[215] main lambda 13.24ms i
T
* fun lambda 1.863s
* sleep lambda | 3.945s
. rn lambda | 353.7ms
* sleep lambda - 33.204s Fields
e run lambda | 614.8ms Filter fields and values in span
* sleep lambda - 40.089s
Timestamp
* run lambda | 1.225s
2021-09-30T01:31:59.04967907Z
* sleep lambda | 15.48ms diifationems
. run lambda | 974.ams 13.236605
o sleep lambda I 9.063s global_availability_zone
* fun lambda | 1.333s
global.build_depth
* sleep lambda l 8.284s 11117
= run lambda | 12975 global.build_id
352504
* sleep lambda I 12.119s
global.commit_hash
2 lambda | 13568 66b8e1fadb87b42b900c54f2805a7751806
* sleep lambda | 57238 6c004
*run lambda | 3.608s globaleny
production
. 22.405:
.. Sleep lamids . 2 global.infra_type
L/ h © 2021 Hound = un lambda | 17388 aws_instance
o sleep lambda | 13.15ms alobal.instance tvoe

CONCURRENCY

ol
21:00

CONCURRENCY
30k
28k
26k
24k
22k
20k
18k +
16k
T4k
12k

Lambda invocations running

T T
Wed Sep 29 03:00 06:00

Lambdas running/sleeping

T
09:00

T
12:00

T
15:00

T
18:00

T T T
Wed Sep 29 03:00 06:00

T
09:00

T
12:00

T
15:00

Lambda scales up our compute

median startup
time

as expensive as
EC2

of ours return
ithin 1.5s

(Y h © 2021 Hound Technology, Inc. All Rights Reserved.

Functions return... usually

Sep 28 2021, 9:14 PM - Sep 29 2021, 9:14 PM (Granularity: 1 min)

HEATMAP(duration_ms)
55k 200000 gy
]
50k :U;DJU:
|
45k 4 I
2

40k

0 nm [1 1w i 1 1 iy L 1 luh 1 i aii wil 1] K| 1 i
Wed Sep 29 03:00 06:00 09:00 12:00 15:00 18:00 21:00

L]
..h © 2021 Hound Technology, Inc. All Rights Reserved. @ I I Z-t h e g rey

Functions accept... JSON

Put the data in S3 and send a link.

@lizthegrey

Functions return... up to 6Mb

Sep 28 2021, 9:22 PM - Sep 29 2021, 9:22 PM (Granularity: 1 min)

HEATMAP(app.response_size)

4000 g
300M —+]
]
2000
250M 4]
|
200M L
150M
100M
50M +
1
0 T T T T T T T T
Wed Sep 29 03:00 06:00 09:00 12:00 15:00 18:00 21:00
Put the data in S3 and send a link.
o® I
®-h © 2021 Hound Technology, Inc. All Rights Reserved. @ I I Z-t h e g rey

Lambda scales up our compute

median startup of ours return
time within 1.5s

as expensive as
EC2

. (Y h © 2021 Hound Technology, Inc. All Rights Reserved.

Functions cost... something

— Query run every 1440 minutes Define the calculation to perform and any relevant filters
VISUALIZE WHERE AND v GROUP BY
X SUM(lambda_cost) x dataset_id exists x dataset_id

Triggering Queries are constrained to one calculation, and as many filters as you'd like.

Below, we show the SUM(1lambda_cost) trends for each dataset_id (where dataset_id exists) forthe last 16 1440-minute intervals.

The markers indicate the last 16 points at which the trigger would have run.

Sep 15 2021, 8:15:43 PM - Oct 1 2021, 8:15:43 PM (Granularity: 1 day)

Sep 30,2021 7:00 PM

SUM(lambda_cost)

800+

700+

600 -

500 -

400

300

Fri Sep 17 ! Sep 19 ' Tue Sep 21 Thu Sep 23 Sat Sep 25 Mon Sep 27 Wed Sep 29 ' * Oct

... Threshold

R ©2021 Hound Techno @ I i Zt h e g rey

Trigger notification if returned SuM(lambda_cost) for any dataset_id is 300

Functions cost... let’s make it less?

AWS News Blog

AWS Lambda Functions Powered by AWS Graviton2 Processor — Run
Your Functions on Arm and Get Up to 34% Better Price Performance

by Danilo Poccia | on 29 SEP 2021 | in AWS Lambda, Compute, Graviton, Serverless | Permalink | ® Comments | # Share

L]
[)4p] © 2021 Hound Technology, Inc. All Rights Reserved. @ I I Z-t h e g rey

Mé6g instances are superior to C5 in every aspect—they cost less, have
more RAM, exhibit lower median and significantly narrower tail
latency, and run cooler with the same proportional workload per host.
Converting our entire ingest worker fleet has allowed us to run 30%
fewer instances, and each instance costs 10% less.

Yours Truly

@lizthegrey

Observability helps!

P99(duration_ms)

10k
9k
8k
7k
6k
Sk
4k
3k
2k
B
a

01:46 01:47

P50(duration_ms)
7.0k —
6 0k —
50Kk —
40k —
30k —
20k —

arch < COUNT » HEATMAP(Log_Duration) < P99(duration_ms) < P50(duration_ms) <

amd64 262,988 /\ 1,168.09377 139.24663
arme4 161,394 /L 2,677 .62006 175.50275

3 LaunchDarkly APP 4:48 pm
Liz Fong-Jones updated the flag Retriever Lambda ARM Percentage
I e Added the variation 1% ArM

Liz Fong-Jones updated the flag Retriever Lambda ARM Percentage in

Production

l e Changed the default variation from ss%—ArM to 1% ARM

m lizf C 6:49 Pm

reverting ARM experiment, just keeping a trickle on 1% for validation of
non-breakage/dogfooding of the lambda layer on both archs. it was 20%
slower at p50 and 100% slower at p99, so we need to roll back.

GJ

a 1reply 17 days ago
4 .
..h © 2021 Hound Technology, Inc. All Rights Reserved. @ I I Z't h e g r ey

seconds ago @
=
R

1<

COUNT arch exists arch Run a few
name = processSegment
ORDER BY LimMIT HAVING
COUNT desc None None; include all results
Results BubbleUp Metrics Traces Raw Data (JCompareto 10 minutes prior \ {5 Graph Settings
Oct 12021, 6:39:59 PM - Oct 1 2021, 6:49:59 PM (Granularity: 1 sec)
I
COUNT
14k -
12k -
10k
8k -
6k -
4k
y h h AA
07 T T e =t l T T
18:40 18:41 18:42 18:43 18:44 18:45 18:46 18:47 18:48 (FHEER) 18:49
arch COUNT =
. amd64 583,172
B amos 455,704

© 2021 Hound Technology, Inc. All Rights Reserved.

@lizthegrey

Why so slow?

e AWS capacity constraints
e Go register calling convention
e |z4 library asm optimization

L]
..h © 2021 Hound Technology, Inc. All Rights Reserved. @ I I Z-t h e g rey

Making progress carefully

3 LaunchDarkly APP 11:06 AM
Liz Fong-Jones turned on the flag Profile Lambda Percent in Production

Liz Fong-Jones scheduled changes for the flag Profile Lambda Percent in

Production

I e Changes will occur on sat, 16 oct 2021 18:15:00 UTC

| e Turn off the flag

Liz Fong-Jones scheduled changes for the flag Retriever Lambda ARM
Percentage in Production

I e Changes will occur on sat, 16 oct 2021 18:20:00 UTC

I e Update default variation to serve 1% ArM

% LaunchDarkly APP 11:15 AM
Completed scheduled changes to the flag Profile Lambda Percent in
Production (via API)

® l e Turned the flag off

L]
..h © 2021 Hound Technology, Inc. All Rights Reserved. @ I I Z-t h e g rey

MAX(cpu_util) MAX(amazonaws.com/AWS/Lambda/ConcurrentExecutions.max

0
Wed Mar 9 FriMar 11 Mar 13

iy 1 1’y
'ﬂﬂ i SUM(amazonaws.com/AWS/Lambda/Throttles.count)

il |
. A l a
Wed Mar 9 Fri Mar 11 Mar 13 Tum

: %&‘M e As JJ;\ A

T T T T T T T T 3 T T
Wed Mar 9 12:00 Thu Mar 10 12:00 FriMar 11 12:00 Sat Mar 12 12:00 Mar 13 12:00 Mon Mar 14 12:00 Tue Mar 15 12:00

0-—— T
Wed Mar 9 Fri Mar 11

HEATMAP(Log_Duration)

35000000 gy

553 SR S - e S c——l & il i i . . .- . - o-—iL'-- = 3

T T T T T T T T T T T T T T
Wed Mar 9 12:00 Thu Mar 10 12:00 Fri Mar 11 12:00 Sat Mar 12 12:00 Mar 13 12:00 Mon Mar 14 12:00 Tue Mar 15 12:00

COUNT_DISTINCT(meta.local_hostname)

’%WMW%

T T T T T T T T T T T T T T
Wed Mar 9 12:00 Thu Mar 10 12:00 Fri Mar 11 12:00 Sat Mar 12 12:00 Mar 13 12:00 Mon Mar 14 12:00 Tue Mar 15 12:00

P99(duration_ms)

T T T T T T T T T T T T
Wed Mar 9 12:00 Thu Mar 10 12:00 FriMar 11 12:00 Sat Mar 12 12:00 Mar 13 12:00 Mon Mar 14 12:00 Tue Mar 15 12:00

P50(duration_ms)

E%W AN MA_Amaea AN W—— MMM.%AAAN

T T T T T T T T T T T T T T
Wed Mar 9 12:00 Thu Mar 10 12:00 Fri Mar 11 12:00 Sat Mar 12 12:00 Mar 13 12:00 Mon Mar 14 12:00 Tue Mar 15 12:00

AVG(duration_ms)

T T T T T T T T T T T
Wed Mar 9 12:00 Thu Mar 10 12:00 Fri Mar 11 12:00 Sat Mar 12 12:00 Mar 13 12:00 Mon Mar 14 12:00 Tue Mar 15 (iEJEEY 00

arch global.go_runtime_shortversion COUNT + HEATMAP(Log_Duration) COUNT_DISTINCT(meta.local_hostname) < P99(duration_ms) P50(_ms) _ms)
. amd64 Bl 2,436,396, 531 /\ 16,194 1,940.61384 242.42897 325.81033
. armé4 1.18 953,247,976 /\ 16,071 2,869.15901 307.28266 477.1254

elapsed query time: 8.285680584s &

- s

Yes*, do this at home!

Most realtime bulk workloads benefit

Move state from local machines onto object storage
Shard list of objects into work units

Parallelize object processing

Reduce results outside Lambda afterwards

L]
R PR @lizthegrey

Just beware the dragons

e Avoid latency-insensitive batch workloads (cost)

e Avoid tiny workloads (set-up latency)

e Check cloud provider limits, state your intentions (capacity
planning)

L]
R PR @lizthegrey

Do this before scaling out

Ensure it's tuned properly (items/invoke, CPU/RAM ratio)
Ensure your code is optimized properly (esp if multi-arch)
Ensure you use observability layers (e.g. OTel layer)
Measure metrics carefully (esp cost)

L]
R PR @lizthegrey

ff | Remember: nothing matters
unless users (developers) are happy

@jessitron

Observability o

Engineering OREILLY

Observability
Engineering

Achieving Production Excellence

Explore preview chapters
from our new book

Earl

Release
Raw & Unedited

Sponsor
o® Charity Majors,
@ honeycomb.io Liz Fong-JoneS
& George Miranda

L]
@, h © 2021 Hound Technology, Inc. All Rights Reserved. @ | I Zt h e g rey

@jessitron @lizthegrey

C:honeycomb.io

www.honeycomb.io

https://www.honeycomb.io/

\ 4
h

https://www.honeycomb.io/blog/speeding-things-up-so-
your-queries-can-bee-faster/

AWS Lambda Instrumentation | Honeycomb

© 2021 Hound Technology, Inc. All Rights Reserved.

67

https://docs.honeycomb.io/getting-data-in/integrations/aws/aws-lambda/

