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Today

How serverless is useful for on-demand compute

How serverless is painful for on-demand compute

How to experiment with serverless in your environment
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Whatis Lambda for?

Let's talk use cases of serverless

.



- T

What is Lembde for?

We'd like to optimize our custom datastore, Retriever

.



What is Retriever for?

It's a distributed column store for real-time event aggregation

@jessitron



What is Retriever for?

Real-time event aggregation for interactive querying over traces
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https://docs.google.com/file/d/1-Vmt20vJOwgWBNOUkUoFHvzSnwUbIGa5/preview

Interactive investigation of
production behavior

We run fast queries across any combination of fields.

@jessitron
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Emphasis: interactive.

100ms is fast. 1000ms is ok. 10sec is slow. 100sec is unacceptable.

.



Retriever stores all your event data
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Retriever is a distributed datastore.
- 39

W(¥\¥\Dd\(\§/ qu_ﬂ

Refniever
p er

Qafl Yo

@jessitron



Retriever is a distributed datastore.
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Retriever is a distributed column store.
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Retriever is a distributed column store.
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Retriever indexes segments by timestamp.
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Retriever indexes segments by timestamp.
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Retriever indexes segments by timestamp.
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Dynamic aggregation of any
fields across any time range

A custom datastore, carefully suited, continually optimized.
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Bigger customers, more data coming in.




Segments hold a smaller time range.
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Solution: MOAR storage
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Now we can keep data for a fixed time range!

S oo

—1 0

e — @jessitron



Retrievers grab data back from S3 at need.
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Now people can run queries over 60 days ¢
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Now people can run queries over 60 days &’
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ff | Lots more compute to play
with, pretty please!
but only if | want to play!

Retrievers
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MOAR compute, on demand.

VISUALIZE WHERE GROUP BY
CONCURRENCY service_name = lambda None; don't segment Run 2 minute
name = Invoke ago
+ ORDER BY + LIMIT + HAVING
Results BubbleUp Metrics Traces Raw Data (O Compareto 1 day prior v {3} Graph Settings
Sep 28 2021, 8:46 PM - Sep 29 2021, 8:46 PM (Granularity: 1 min)
CONCURRENCY
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Problem: too much data for one retriever...
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Solution: more compute, on demand.
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Increase in query time is sublinear
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Buy compute in 1060msims units

Compute scales with time range, so response time doesn'’t have to.

.



Lambda scales* up our compute

median* startup of ours return* as expensive*
time within 1.5s as EC2
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Considerations

Lambda is on-demand compute, but they didn't build it for this.



Lambdp our compute

median startup of ours return as expensive as
time within 1.5s EC2

(Y h © 2021 Hound Technology, Inc. All Rights Reserved.



Lambda scales... within limits
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Lambda scales... within limits
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Observability helps: concurrency

VISUALIZE WHERE GROUP BY
CONCURRENCY service_name = lambda None; don't segment Run 2 minute
name = Invoke ago
+ ORDER BY + LIMIT + HAVING
Results BubbleUp Metrics Traces Raw Data (O Compareto 1 day prior v {3} Graph Settings
Sep 28 2021, 8:46 PM - Sep 29 2021, 8:46 PM (Granularity: 1 min)
CONCURRENCY
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Lambda scales... within limits

Study your limits:

https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html

Change the SDK retry parameters

Observability helps &=

Talk to your account reps
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https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html

Lambda scales up our compute

of ours return as expensive as
within 1.5s EC2

median startup
time
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Functions start up... when they do

(m) ‘ (D) retriever-traces Queries | Honey: X D retriever-traces Trace | Honeycor X | -+ o
&) ) https://ui-dogfood.honeycomb.io/prod/datasets/retriever-traces/result/fMrmnrkk9BV/trace/kDJ6kSoZaTz QU 18 B & % @ \ / = §° 6
< Trace 4a4cc66ech68cf734239d25674ee5a3b at 2021-09-29 20:31:59 Rerun lambda >
main
Search spans Z Fields
. Distribution of span duration &
name - ¢ service_name - 0s 200s 400s 600s 800s 1,000s 1,186s
HEATMAP(duration_ms)
[215] main lambda 13.24ms i
T
* fun lambda 1.863s
*  sleep lambda | 3.945s
. rn lambda | 353.7ms
*  sleep lambda - 33.204s Fields
e run lambda | 614.8ms Filter fields and values in span
*  sleep lambda - 40.089s
Timestamp
* run lambda | 1.225s
2021-09-30T01:31:59.04967907Z
*  sleep lambda | 15.48ms diifationems
. run lambda | 974.ams 13.236605
o sleep lambda I 9.063s global_availability_zone
* fun lambda | 1.333s
global.build_depth
*  sleep lambda l 8.284s 11117
= run lambda | 12975 global.build_id
352504
*  sleep lambda I 12.119s
global.commit_hash
2 lambda | 13568 66b8e1fadb87b42b900c54f2805a7751806
*  sleep lambda | 57238 6c004
*run lambda | 3.608s globaleny
production
. 22.405:
.. Sleep lamids . 2 global.infra_type
L/ h © 2021 Hound = un lambda | 17388 aws_instance
o sleep lambda | 13.15ms alobal.instance tvoe
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Lambda scales up our compute

median startup
time

as expensive as
EC2

of ours return
ithin 1.5s
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Functions return... usually

Sep 28 2021, 9:14 PM - Sep 29 2021, 9:14 PM (Granularity: 1 min)

HEATMAP(duration_ms)
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Functions accept... JSON

Put the data in S3 and send a link.

@lizthegrey



Functions return... up to 6Mb

Sep 28 2021, 9:22 PM - Sep 29 2021, 9:22 PM (Granularity: 1 min)

HEATMAP(app.response_size)
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Put the data in S3 and send a link.
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Lambda scales up our compute

median startup of ours return
time within 1.5s

as expensive as
EC2
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Functions cost... something

— Query run every 1440 minutes Define the calculation to perform and any relevant filters
VISUALIZE WHERE AND v GROUP BY
X  SUM(lambda_cost) x dataset_id exists x  dataset_id

Triggering Queries are constrained to one calculation, and as many filters as you'd like.

Below, we show the SUM(1lambda_cost) trends for each dataset_id (where dataset_id exists) forthe last 16 1440-minute intervals.

The markers indicate the last 16 points at which the trigger would have run.

Sep 15 2021, 8:15:43 PM - Oct 1 2021, 8:15:43 PM (Granularity: 1 day)

Sep 30,2021 7:00 PM

SUM(lambda_cost)
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Trigger notification if returned SuM(lambda_cost) for any dataset_id is 300




Functions cost... let’s make it less?

AWS News Blog

AWS Lambda Functions Powered by AWS Graviton2 Processor — Run
Your Functions on Arm and Get Up to 34% Better Price Performance

by Danilo Poccia | on 29 SEP 2021 | in AWS Lambda, Compute, Graviton, Serverless | Permalink | ® Comments | # Share
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Mé6g instances are superior to C5 in every aspect—they cost less, have
more RAM, exhibit lower median and significantly narrower tail
latency, and run cooler with the same proportional workload per host.
Converting our entire ingest worker fleet has allowed us to run 30%
fewer instances, and each instance costs 10% less.

Yours Truly

@lizthegrey



Observability helps!

P99(duration_ms)
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P50(duration_ms)
7.0k —
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30k —
20k —

arch < COUNT » HEATMAP(Log_Duration) < P99(duration_ms) < P50(duration_ms) <

amd64 262,988 /\ 1,168.09377 139.24663
arme4 161,394 /L 2,677 .62006 175.50275



3 LaunchDarkly APP 4:48 pm
Liz Fong-Jones updated the flag Retriever Lambda ARM Percentage
I e Added the variation 1% ArM

Liz Fong-Jones updated the flag Retriever Lambda ARM Percentage in

Production

l e Changed the default variation from ss%—ArM to 1% ARM

m lizf C 6:49 Pm

reverting ARM experiment, just keeping a trickle on 1% for validation of
non-breakage/dogfooding of the lambda layer on both archs. it was 20%
slower at p50 and 100% slower at p99, so we need to roll back.

GJ

a 1reply 17 days ago
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seconds ago @
=
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COUNT arch exists arch Run a few
name = processSegment
ORDER BY LimMIT HAVING
COUNT desc None None; include all results
Results BubbleUp Metrics Traces Raw Data (JCompareto 10 minutes prior \ {5 Graph Settings
Oct 12021, 6:39:59 PM - Oct 1 2021, 6:49:59 PM (Granularity: 1 sec)
I
COUNT
14k -
12k -
10k
8k -
6k -
4k
y h h AA
07 T T e =t l T T
18:40 18:41 18:42 18:43 18:44 18:45 18:46 18:47 18:48  (FHEER) 18:49
arch COUNT =
. amd64 583,172
B amos 455,704

© 2021 Hound Technology, Inc. All Rights Reserved.
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Why so slow?

e AWS capacity constraints
e Go register calling convention
e |z4 library asm optimization
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Making progress carefully

3 LaunchDarkly APP 11:06 AM
Liz Fong-Jones turned on the flag Profile Lambda Percent in Production

Liz Fong-Jones scheduled changes for the flag Profile Lambda Percent in

Production

I e Changes will occur on sat, 16 oct 2021 18:15:00 UTC

| e Turn off the flag

Liz Fong-Jones scheduled changes for the flag Retriever Lambda ARM
Percentage in Production

I e Changes will occur on sat, 16 oct 2021 18:20:00 UTC

I e Update default variation to serve 1% ArM

% LaunchDarkly APP 11:15 AM
Completed scheduled changes to the flag Profile Lambda Percent in
Production (via API)

® l e Turned the flag off
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MAX(cpu_util) MAX(amazonaws.com/AWS/Lambda/ConcurrentExecutions.max

0
Wed Mar 9 FriMar 11 Mar 13

iy 1 1’y
'ﬂﬂ i SUM(amazonaws.com/AWS/Lambda/Throttles.count)
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HEATMAP(Log_Duration)
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P99(duration_ms)
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P50(duration_ms)

E%W AN MA_Amaea AN W—— MMM.%AAAN

T T T T T T T T T T T T T T
Wed Mar 9 12:00 Thu Mar 10 12:00 Fri Mar 11 12:00 Sat Mar 12 12:00 Mar 13 12:00 Mon Mar 14 12:00 Tue Mar 15 12:00

AVG(duration_ms)

T T T T T T T T T T T
Wed Mar 9 12:00 Thu Mar 10 12:00 Fri Mar 11 12:00 Sat Mar 12 12:00 Mar 13 12:00 Mon Mar 14 12:00 Tue Mar 15 (iEJEEY 00

arch global.go_runtime_shortversion COUNT + HEATMAP(Log_Duration) COUNT_DISTINCT(meta.local_hostname) < P99(duration_ms) P50( _ms) _ms)
. amd64 Bl 2,436,396, 531 /\ 16,194 1,940.61384 242.42897 325.81033
. armé4 1.18 953,247,976 /\ 16,071 2,869.15901 307.28266 477.1254

elapsed query time: 8.285680584s &
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Yes*, do this at home!



Most realtime bulk workloads benefit

Move state from local machines onto object storage
Shard list of objects into work units

Parallelize object processing

Reduce results outside Lambda afterwards

L]
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Just beware the dragons

e Avoid latency-insensitive batch workloads (cost)

e Avoid tiny workloads (set-up latency)

e Check cloud provider limits, state your intentions (capacity
planning)

L]
R PR @lizthegrey



Do this before scaling out

Ensure it's tuned properly (items/invoke, CPU/RAM ratio)
Ensure your code is optimized properly (esp if multi-arch)
Ensure you use observability layers (e.g. OTel layer)
Measure metrics carefully (esp cost)

L]
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ff | Remember: nothing matters
unless users (developers) are happy
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Observability o

Engineering OREILLY

Observability
Engineering

Achieving Production Excellence

Explore preview chapters
from our new book

Earl

Release
Raw & Unedited

Sponsor
o® Charity Majors,
@ honeycomb.io Liz Fong-JoneS
& George Miranda
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@jessitron @lizthegrey

C:honeycomb.io

www.honeycomb.io


https://www.honeycomb.io/
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https://www.honeycomb.io/blog/speeding-things-up-so-
your-queries-can-bee-faster/

AWS Lambda Instrumentation | Honeycomb

© 2021 Hound Technology, Inc. All Rights Reserved.
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https://docs.honeycomb.io/getting-data-in/integrations/aws/aws-lambda/

