
eBPF: The next power tool of SRE’s

Michael Kehoe
Sr Staff Security Engineer

Agenda

2

An introduction & history of BPF
What is all the fuss about?

How to get started with eBPF
Write your first program

Capability 1: Observability & Tracing
High performance, high fidelity tracing

Capability 2: Networking
Firewall, DDoS, Load-balancing

Capability 3: Security
Container & LSM controls

The future of eBPF & SRE
Where are we going

Introduction

Introduction: Michael Kehoe

• Sr Staff Security Engineer - Confluent
• InfraSec/ CloudSec team

• Previously:

• Sr Staff SRE @ LinkedIn
• PhoneSat intern @ NASA

• Background in:

• Networks
• Microservices
• Traffic Engineering
• KV Databases
• Incident Management

• Twitter: @michaelkkehoe
• LinkedIn: linkedin.com/in/michaelkkkehoe
• Website: michael-kehoe.io

4

5

An Introduction to eBPF

Put your hand up if you’ve used BPF
before?

7

Put your hand up if you’ve used tcpdump
before?

8

What is cBPF?

• cBPF - Classic BPF
• Also known as “Linux Packet Filtering”

• BPF was first introduced in 1992 by Steven McCanne and Van Jacobson in BSD
• Implemented in Linux kernel 2.2 (Linux Socket Filtering)

• Originally used for network packet filtering & later, seccomp

• Works by: Filter expressions → byte code → interpreter

• Uses: Small, in-kernel VM, Register based, limited instructions

9

What is cBPF?

10

What is eBPF?

11

“eBPF does to Linux what JavaScript does to HTML”

12

Brendan Gregg
Sr Performance Engineer, Netflix

“eBPF is Linux’s new superpower”

13

Gaurav Gupta
SAP Labs

“BPF is a highly flexible and efficient virtual machine-like
construct in the Linux kernel allowing to execute bytecode
at various hook points in a safe manner. It is used in a
number of Linux kernel subsystems, most prominently
networking, tracing and security (e.g. sandboxing).”

14

Cilium

What is eBPF?

• eBPF - extended Berkeley Packet Filter

• User defined, sandboxed bytecode executed by the kernel

• VM that implements a RISC-like assembly language in kernel space

• Multiple verification layers to ensure kernel safety

• Interactions between kernel/ user space are done through eBPF “maps”
• And blocking trace pipes

• eBPF does not allow loops*

• Kernel-like functionality without the FUD

* Bounded loops in kernel 5.3

15

What is eBPF

16

http://hsdm.dorsal.polymtl.ca/system/files/eBPF-5May2017%20%281%29.pdf

bpf() system call

17

bpf_cmd

Interface between user-space & eBPF VM

eBPF Program Types

18

bpf_prog_type

Determines the subset of kernel helper
functions the program may call

bpf_context

The program type will help determine the
set of arguments given to a eBPF program

eBPF Map Types

19

eBPF Maps

● Generic structure for storage of different
data types

● Allows sharing of data:
○ Within an eBPF program
○ Between kernel & user space

eBPF Helpers

20

eBPF Helpers

● Specific functions to be run within an
eBPF program

● Various functionality
○ Manipulating maps
○ Debug functions
○ Load data from packets
○ ….and more

● Check your kernel for compatibility

https://manpages.ubuntu.com/manpages/focal/man7/bpf-helpers.7.html

How to get started with eBPF

Where to get started with eBPF

1. Run the most recent kernel possible

2. Ensure that eBPF kernel configuration options are set to ‘y’

3. Install bcctools (https://github.com/iovisor/bcc/)

4. Start coding

22

Where to get started with eBPF

CONFIG_BPF=y
CONFIG_BPF_SYSCALL=y

[optional, for tc filters/ actions]
CONFIG_NET_CLS_BPF=m
CONFIG_NET_ACT_BPF=m

CONFIG_BPF_JIT=y

[for Linux kernel versions 5.7 and later]
CONFIG_BPF_LSM=y

[for Linux kernel versions 4.7 and later]
CONFIG_HAVE_EBPF_JIT=y

[optional, for kprobes]
CONFIG_BPF_EVENTS=y

Need kernel headers through /sys/kernel/kheaders.tar.xz
CONFIG_IKHEADERS=y

23

How to get started with eBPF

CentOS/ Redhat
$ sudo yum install bcc bcc-doc bcc-tools

Debian/ Ubuntu
$ sudo apt-get install bpfcc-tools linux-headers-$(uname -r)

24

Where to get started with eBPF: Hello World

from bcc import BPF

Kernel-Space
prog = “““
 int kprobe__sys_clone(void *ctx) {
 bpf_trace_printk("Hello, World!\\n");
 return 0;
 }
”””

User-Space
BPF(text=prog).trace_print()

25

https://github.com/iovisor/bcc/blob/master/docs/tutorial_bcc_python_developer.md

Where to get started with eBPF: Hello World

michael@laptop:~$ sudo python ebpf_demo.py
b' Privileged Cont-3480 [005] d... 78819.733331: bpf_trace_printk: Hello, World!'
b''
b' WebExtensions-3801 [001] d... 78819.816553: bpf_trace_printk: Hello, World!'
b''
b' WebExtensions-3801 [001] d... 78819.822080: bpf_trace_printk: Hello, World!'
b''
b' WebExtensions-3801 [001] d... 78819.822308: bpf_trace_printk: Hello, World!'
b''
b' WebExtensions-3801 [001] d... 78819.822495: bpf_trace_printk: Hello, World!'

26

Capability 1:
Observability

eBPF Observability

28

K(ret)probes/ U(ret)probes USDT’s

• Captures the entering (or exiting) of a
kprobe or uprobe

• Exceptionally useful for capturing:
• Disk operations
• Network connections
• Execution of programs

• Captures user statically defined
tracepoints (USDT’s) in a program

• You can add tracepoints to your own
program and then debug it with eBPF

eBPF Observability

29

Tracepoints Perf Events

• Allows you to instrument (pre-defined)
tracepoints in kernel code.

• Can have higher performance than
kprobes

• Allows you instrument software and
hardware performance events
otherwise known as perf-events

Observability: disksnoop.py

from bcc import BPF
from bcc.utils import printb

b = BPF(text="""
#include <uapi/linux/ptrace.h>
#include <linux/blk-mq.h>

BPF_HASH(start, struct request *);

void trace_start(struct pt_regs *ctx, struct request *req) {
// stash start timestamp by request ptr
u64 ts = bpf_ktime_get_ns();
start.update(&req, &ts);

}

void trace_completion(struct pt_regs *ctx, struct request *req) {
u64 *tsp, delta;
tsp = start.lookup(&req);
if (tsp != 0) {

delta = bpf_ktime_get_ns() - *tsp;
bpf_trace_printk("%d %x %d\\n", req->__data_len,
 req->cmd_flags, delta / 1000);
start.delete(&req);

}
}
""") 30

https://github.com/iovisor/bcc/blob/master/examples/tracing/disksnoop.py

Observability: disksnoop.py

b.attach_kprobe(event="blk_mq_start_request", fn_name="trace_start")
b.attach_kprobe(event="blk_account_io_done", fn_name="trace_completion")

while 1:
try:

(task, pid, cpu, flags, ts, msg) = b.trace_fields()
(bytes_s, bflags_s, us_s) = msg.split()

if int(bflags_s, 16):
type_s = b"W"

elif bytes_s == "0": # see blk_fill_rwbs() for logic
type_s = b"M"

else:
type_s = b"R"

ms = float(int(us_s, 10)) / 1000

printb(b"%-18.9f %-2s %-7s %8.2f" % (ts, type_s, bytes_s, ms))
except KeyboardInterrupt:

exit()

31

https://github.com/iovisor/bcc/blob/master/examples/tracing/disksnoop.py

Observability: disksnoop.py

$./disksnoop.py

TIME(s) T BYTES LAT(ms)
16458043.435457 W 4096 2.73
16458043.435981 W 4096 3.24
16458043.436012 W 4096 3.13
16458043.437326 W 4096 4.44
16458044.126545 R 4096 42.82
16458044.129872 R 4096 3.24
16458044.130705 R 4096 0.73
16458044.142813 R 4096 12.01
16458044.147302 R 4096 4.33
16458044.148117 R 4096 0.71

32

https://github.com/iovisor/bcc/blob/master/examples/tracing/disksnoop_example.txt

Capability 2:
Networking

eBPF Networking

34

Easily firewall/ filter millions of packets per
second

Network Filters/ DDoS protection

Prioritize/ monitor flows

Easily load-balance/ forward millions of packets
per second

Load balancing

Traffic Control (tc)

Additional controls for sockets after they have
been created

Control of sockets

Write custom programs to perform network flow
dissection for monitoring & accounting

Flow dissection

eBPF Networking

• Katran (Facebook load balancer)

• Cilium/ Hubble (Kubernetes network load-balancing/ firewall & more)

• Calico (Kubernetes CNI)

• Cloudflare edge infra (read their blog)

• https://github.com/iovisor/bcc/tree/master/examples/networking

• https://blog.cloudflare.com/tag/ebpf/

35

https://github.com/iovisor/bcc/tree/master/examples/networking
https://blog.cloudflare.com/tag/ebpf/

Capability 3:
Security

eBPF Security

37

cgroup device cgroup sysctl

• Control/ monitor usage of host’s devices
by a cgroup

• Control/ monitor usage of host’s sysctl’s
by a cgroup

eBPF Security

38

cgroup skb LSM

• Firewall/ network-filters for cgroups • Instruments an LSM hook as a BPF
program.

• It can be used to audit security events
and implement MAC security policies in
BPF.

Security: LSM example

import os
import sys
import time

from bcc import BPF, libbcc

src = """
#include <linux/fs.h>
#include <uapi/asm-generic/errno-base.h>

LSM_PROBE(file_open, struct file *file) {
 bpf_trace_printk("LSM hook: file_open\\n");

 u32 pid = bpf_get_current_pid_tgid();
 if (pid != 1) {
 bpf_trace_printk("LSM hook: file_open: Denied\\n");
 return -EPERM;
 }
 bpf_trace_printk("LSM hook: file_open: Allowed\\n");
 return 0;
}
"""

39

Ref: https://www.kernel.org/doc/html/v5.2/security/LSM.html

https://www.kernel.org/doc/html/v5.2/security/LSM.html

Security: LSM example

b = BPF(text=src)
fn = b.load_func("file_open", BPF.LSM)

try:
 while 1:
 time.sleep(0.5)
 print(b.trace_fields())
 # Extra logging logic
 except KeyboardInterrupt:
 sys.exit()

40

Ref: https://www.kernel.org/doc/html/v5.2/security/LSM.html

https://www.kernel.org/doc/html/v5.2/security/LSM.html

The future of eBPF & SRE

The future of eBPF & SRE

42

Observability Networking Security

• Allows you to troubleshoot
low-level issues without
worrying about
performance

• Never have to use
strace again

• Opens up new possibilities
to optimize user-owned
software and locate bugs

• Real-life examples in
Kubernetes/ Cilium

• Hyperscale for everyone:
• Firewalls
• Load-balancing
• WAFs

• Deep integration with
LSM’s for rich runtime
security data

• Cgroup protections:
• Devices
• sysctl’s
• Network Traffic

The future of eBPF & SRE: Words of caution

• Despite the performance of eBPF, you can still harm your system
• Know your performance boundaries/ limitations

• Be wary of OS/ kernel compatibility
• CentOS/ Redhat often backport to older kernels

• You will need to think about your deployment strategies (hint: look at CO-RE)
• Running programs via systemd is an option

• While eBPF is kernel-safe, you still need to thoroughly test before production

43

Resources

• https://github.com/michael-kehoe/bpf-workshop

• https://ebpf.io/

• https://docs.cilium.io/en/stable/bpf/

• https://github.com/iovisor/bcc

• https://github.com/aquasecurity/tracee

• Linux Observability with BPF (Book)

• BPF Performance Tools (Book)

44

https://github.com/michael-kehoe/bpf-workshop
https://ebpf.io/
https://docs.cilium.io/en/stable/bpf/
https://github.com/iovisor/bcc/
https://github.com/aquasecurity/tracee
https://www.oreilly.com/library/view/linux-observability-with/9781492050193/
https://www.brendangregg.com/bpf-performance-tools-book.html

Q & A

