
Software patching
needn’t be a can of worms

SREcon EMEA 2019
Philip Rowlands

1

2Photo by John Barkiple on Unsplash

https://unsplash.com/@barkiple?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

import std_disclaimer
❖ Opinions are mine
❖ Trademarks are theirs
❖ Copyrights are inline
❖ Zero warranty express or implied
❖ Void where prohibited

3

Intro "There's no record of what third-party software
or versions we use. I don't know what updates
are available, and of those, which are the most
important. It's hard to get downtime on
production systems. There's no test environment
for this. I'm scared the upgrade will break stuff,
and when it does, rolling back will be even
harder."

-- You, possibly

If this is the problem, automation is the solution.

4

 VENDOR APPROACHES

5

Real Life example
#1 fully automated

❖ Phones - iOS, Android
❖ Operating Systems - macOS,

Windows
❖ Smart TVs
❖ Web browsers

6

Real Life example
#2 semi automated

❖ Linux package managers e.g. DNF,
APT

❖ VOIP phones
❖ Either the software has its own

freshness-check feature, or sidecar
tools to compare versions and
deliver updates

❖ Any software that can check its
own status (not just a URL)

7

Real Life example
#3 - fully manual

❖ No help from software or package
management

❖ You do all the legwork to discover
and bring in new versions

❖ e.g. tar files downloaded directly /
built from source

❖ e.g. COTS software with no
version awareness

8

Case study:
Cars

❖ All major manufacturers run
“Technical” websites providing
paywall access to software for cars

❖ e.g. Ford Etis, VW erWin
❖ Tesla - Over The Air updates
❖ Caution: Chrysler UConnect

9

http://www.ukautotalk.com/techlinks.htm

Single update track
vs LTSB

Does the vendor distinguish security /
bugfix / feature releases?

For example, Firefox Extended Support
Release, Linux LTS, Windows 10 LTSC,
Cisco NX-OS Long Lived release.

For example, Red Hat Enterprise Linux
Maintenance Support Phase, or Solaris
10 Extended Support (until Jan 2021).

10

AUTOMATION TO THE RESCUE

11

Overview ❖ Inventory
❖ Awareness
❖ Assessment
❖ Planning / Risk
❖ Rollout / Rollback
❖ GOTO 10

12

Automation:
Inventory

❖ Awareness
❖ Assessment
❖ Planning / Risks
❖ Rollout / Rollback

● The goal is to draw together all the
data about what third-party
software you’re running

● Enterprise vendors may provide
tooling for this, e.g. Dell
OpenManage

● Roll your own, but check first for
existing tools

● Coverage - is everything
network-accessible?

● Zombies - is everything
network-accessible right now?

13

Automation:
❖ Inventory

Awareness
❖ Assessment
❖ Planning / Risks
❖ Rollout / Rollback

❖ Now you know what’s running,
what updates are available?

❖ e.g. MSBA Windows Update
offline scan file, yum repos, Solaris
patchdiag.xref

14

Automation:
❖ Inventory
❖ Awareness

Assessment
❖ Planning / Risks
❖ Rollout / Rollback

❖ Should we take every update / release?
❖ Classify into now, soon, sometime /

never
❖ In-house assessment vs delegation to

vendor / distro / third-party (Snyk)
❖ Safer to assume that every version you

run will sooner or later be replaced
with a critical security update.

15

Automation:
❖ Inventory
❖ Awareness
❖ Assessment

Planning
❖ Rollout / Rollback

When to apply? Is downtime required? If so,
do we have a maintenance window? If not,
when?

What level of redundancy?

❖ N+0 2AM Sunday
❖ N+1 Tolerate single failure
❖ N+2 Tolerate single failure +

maintenance

If horizontal scaling, can you apply a rolling
update, or is a flag day needed?

16

Automation:
❖ Inventory
❖ Awareness
❖ Assessment

Risks
❖ Rollout / Rollback

Proactive risks include:

❖ fat-finger error,
❖ startup bitrot,
❖ introducing new bugs / regressions

Reactive risks include:

❖ major version jump
❖ EOL version no longer supported
❖ unfamiliar work
❖ 20-step manual process
❖ ignores “many eyes”

17

Case study:
WannaCry vs NHS

Timeline:

❖ 2009-04-14 Windows XP support ends
❖ 2017-03-14 MS17-010 update published

to disable SMBv1, “Critical - Remote
Code Execution”

❖ 2017-05-12 Ransomware worm
❖ 2018-02-01 Postmortem published

18

“The majority of NHS devices infected
were running the supported, but
unpatched, Microsoft Windows 7
operating system. Unsupported devices
(those on XP) were … decreased … to 1.8
per cent in January 2018.”

-- NHS Improvement postmortem

https://go.microsoft.com/fwlink/?linkid=843149
https://www.theregister.co.uk/2018/02/02/nhs_wannacry_post_mortem/

Automation:
❖ Inventory
❖ Awareness
❖ Assessment
❖ Planning / Risks

Rollout /
Rollback

Easier to justify rollout for a new version if
rollback is available and simple.

Is there a test for the intended change? If not, we
must rely on regression, stability and performance.

The new version must not fail any tests we run,
nor crash, nor exhibit (more) errors, nor use +%50
CPU.

For example, full mitigations for Meltdown &
Spectre issues reduced CPU performance by
Intel’s own benchmarks.

Gain confidence with comprehensive QA
automation (CI), and/or incremental rollout (5%,
15%, 50%, 100%)

19

https://newsroom.intel.com/editorials/intel-security-issue-update-initial-performance-data-results-client-systems/

then do it all over
again

Assertion: there is no bug-free software

Corollary: eventually all maintained
software will have an available update

20

TRIGGER WARNING: UPDATE AVAILABLE

21

Don’t stop at
Security

If you have a Security team, they probably
already do some of this, at least for the
vulnerabilities which have names (Dirty
COW, Spectre, Meltdown, Heartbleed,
Shellshock, POODLE, DROWN).

Why not task the folks already doing this
work to go beyond security fixes when
considering Inventory, Awareness,
Assessment etc.?

22

Everything dies Some commercial software gives several
years’ notice; some OSS project may simply
stop updating, or lose a maintainer.

IBM’s VM/370 (1972), still updated as z/VM
in 2018.

Do you know your third-party software’s
end-of-life? Is there an available major
upgrade? It might take months to migrate
and deploy. e.g. Windows 10 desktops.

Caution: not easily automatable

23

24

Case study:
The Octonauts
Explore the Great
Big Ocean

© 2012 MEOMI Design Inc.

25

“Dashi dog was
updating the
Octopod’s software”

26

Bug fixes and
performance
improvements

Release notes are mostly useless. Do you
have time to read them?

Helpful if release notes tell you:

● CVE issues resolved
● Vendor/distro urgency (Critical,

Important, Optional)

If risk averse, it’s reasonable not to apply
updates under 1 month old, and let others
find the regressions.

27

Incremental
automation

What do you already have which could be
built upon?

❖ Inventory
❖ CI / CD
❖ Release engineering

28

The 2nd best day to
start is today

You’re more likely in the situation where
things are in a poor state, rather than
greenfield patching planning.

As retro-fit work, benefits are realised
incrementally.

Virtuous side-effects of automation as
applied to your in-house software.

29

Further reading Stuff that didn’t fit in the small margin of
this talk:

❖ Linux Vendor Firmware Service
❖ Container Image Security scans
❖ Huawei OpenSSL proliferation

30

https://fwupd.org/
https://cloud.google.com/container-registry/docs/container-analysis
https://arstechnica.com/information-technology/2019/03/uk-cyber-security-officials-report-huaweis-security-practices-are-a-mess/

THAT’S ALL FOLKS

31

❖ What can we automate?
❖ What can we delegate?
❖ Which incidents would have been avoided?

