
Alexey Skorikov

Data freshness monitoring
in complex data pipelines
SREcon21 | USENIX



Common challenges many organisations face

● Growing complexity in data pipelines and organizations

○ More nodes and more interactions in business data flows

○ More teams touching pipelines makes coordination challenging

● Lack of clarity and awareness in end to end data dependencies

● Growing technical debt as a result of rapid growth



Implications on data integrity

● Lack of operational readiness to deal with specific 
failure modes and their downstream effects

● Outages due to slow bleed, misconfigured data 
interfaces

● Longer times for incident investigation, mitigation 
and resolution



Risk multiplies with each hop downstream

Healthy dataset Stale or corrupted dataset

Points 
of consumption

A part of data pipeline, 
batch or streaming

C2

C1

C3

D4

C4

C5

D3D2

D5

D1

S1

S2

Data sources



Understanding critical business data flows,
upstream & downstream dependencies

Cornerstone 1



Mapping data dependencies automatically

data
access

patterns



Recording data access events

Levels

● Job binary
○ Process

Persistent storage types

● File storages
● Databases

Examples of recorded metadata

● Modification time, access time
● Writer, reader
● Logical size

Provision forms

● Sampled flow time series
● Knowledge base

Sources

● Access logs scrapers
○ Storage systems: job-storage
○ Processing systems: job-storage
○ API endpoints: job-job



Mapping a data dependency graph

Dimensions

● Time
● Service
● Environment (e.g. prod, staging)
● Instance (e.g. region, datacenter, rack)
● Role: producer, consumer
● Data owner

Logical grouping

● Datasets
○ Groups of data entities with a common purpose

● Systems
○ Binaries, compute functions, etc.



Instrumenting centralized data access recording

● Centralized logging example: Logstash

● Distributed tracing example: Jeager

● Filesystem level events capturing example: ionotify

Microservices 
requests, e.g. 
RPC call logs

Database query 
logs

Filesystem access 
reporting

Centralized 
Log 

Processing

Distributed
Tracing

Data 
dependency 

graph

Access 
metadata time 

series



Continuous data annotation

Examples

● Criticality
● Ownership (team contacts)
● Data recovery objectives
● Data retention plans

How

● Automatic inference
● Regular teams’ review



Plethora of DI solutions to build on top

Risk analysis

holistic view of impact on 
downstream consumers

Business continuity

data integrity and 
recovery plans

Data validation

real time data validation and 
consistency checks

Early detection of slow bleeds

horizontal monitoring to catch 
data staleness and corruption

Incident response aid

traceability of data 
dependencies and 
ownership



Plethora of DI solutions to build on top

Data validation

real time data validation and 
consistency checks

Incident response aid

traceability of data 
dependencies and 
ownership

Early detection of slow bleeds

horizontal monitoring to catch 
data staleness and corruption

Risk analysis

holistic view of impact on 
downstream consumers

Business continuity

data integrity and 
recovery plans



Holistic data monitoring to eliminate slow bleeds
caused by data staleness or corruption

Cornerstone 2



Slow bleed problem

Misconfiguration between upstream and downstream systems, bad migration or schema update, 
permission issues, network issues, resource starvation, concurrent writes, change in input data

↓
Producer systems fail to update datasets or generate corrupted data 

↓
Consumer systems downstream keep reading stale or corrupted data

Slow bleeding may go unnoticed for weeks or months. Daily incremental impact is hard to detect.

↓
$$$ Large accumulated business impact



Freshness monitoring at scale

Curated data dependency graph

Harvested update behavior

Analysis of change patterns

Alerting

Historical insights

Health reports

↓

↓

Comprehensive solution at scale

Minimum effort for adoption

Cost-effective additional layer of 
defence



Types of detectable data anomalies

Data staleness

● Dataset’s last modification time > expected age threshold
● Age threshold auto-adjusted based on historic performance

○ Helps make a distinction between static and dynamic data

Data corruption

● Direct, e.g. data consistency checks
● Inferred

○ Explosion: unexpected spikes or dips in logical size or rate of change
○ Rogue concurrency: unexpected writers changing data



Key features

● No direct access to data needed for anomaly detection 

● Minimal configuration cost, blanket coverage

● Newly discovered datasets get covered by default

● Health picture for all critical datasets

● Actionable alerting from consumer and producer perspectives



One of Google’s solutions: breakdown

Freshness monitoring Corruption detection

Based on the data dependency graph

File storages Databases

Horizontal monitoring

Historical insights Alerting

Alerts

Age threshold auto-tuning

SettingsGraphs

Sc
op

in
g

D
et

ec
ti

on
In

te
rf

ac
e

Reports

Size Writer



Lessons learned

❏ Detect real data staleness issues

❏ Identify obsolete datasets for tech debt to cut DI risks

❏ Raise awareness of upstream risks in data consumers

The monitoring 
approach helped to

✓

✓

✓

❖ Basic data annotation is key to infer data criticality

❖ Auto-tune alert thresholds based on data change patterns

❖ Recognise copies and shards of datasets

❖ Exclude obsolete data from alerting based on access times

❖ Exclude static data from alerting based on heuristics

Maximizing 
signal-to-noise 

ratio of alerts

surprize



Thank you.


